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ENUMERATION OF LEFT BRACES WITH ADDITIVE GROUP

C4 × C4 × C4

A. BALLESTER-BOLINCHES, R. ESTEBAN-ROMERO, AND V. PÉREZ-CALABUIG

Abstract. We show that the number of isomorphism classes of left braces of
order 64 with additive group isomorphic to C4 × C4 × C4 is 1 515 429.

1. Introduction

The notion of skew left brace was introduced by Guarnieri and Vendramin in
[9]. A skew left brace is a triple (B,+, ·) where B is a set and +, · are two binary
operations on B such that (B,+) and (B, ·) are groups and that are related by the
distributive-like law a(b+ c) = ab− a+ ac. As it is common in the theory of skew
left braces, we omit the sign · and we write ab instead of a · b and we use −a to
denote the inverse of a in the group (B,+); the expression a − b means a + (−b).
When, in addition, (B,+) is an abelian group, then we speak of a left brace, a
notion introduced by Rump in his seminal paper [12].

One of the most natural problems in the theory of skew left braces is the de-
termination of skew left braces of a given finite order. Guarnieri and Vendramin
present in [9, Algorithm 5.1] an algorithm to enumerate all skew left braces with a
given finite additive group A. They presented in [9] the numbers of isomorphism
classes of left braces of order n for n ≤ 120 except for n ∈ {32, 64, 81, 96} obtained
with their implementation of this algorithm in Magma [6]. In fact, they claim in
their paper: “With current computational resources, we were not able to compute
the number of non-isomorphic left braces of orders 32, 64, 81 and 96.” This com-
putation appears open as [9, Problem 6.1]. Vendramin posed in [13, Problem 2.13]
the problem of constructing all left braces of order 32, for which he presented some
partial results on [13, Table 2.3]. He also wrote as a comment to this problem:
“The number of (skew) left braces of size 64, 96 or 128 seems to be extremely large
and our computational methods are not strong enough to construct them all.”

Bardakov, Neshchadim, and Yadav presented in [5, Algorithm 2.4] a modification
of [9, Algorithm 5.1] for the computation of finite skew left braces with a given
additive group. They were able to enumerate the isomorphisms classes of skew left
braces of orders 32 and 81, as well as the left braces of order 96. With respect to the
isomorphism classes of left braces of order 64, they were able to enumerate them
in [5, Table 6] for all isomorphism classes of abelian groups of order 64, except for
the cases of additive group isomorphic to C4 × C4 × C4 (SmallGroup(64, 55) in
the notation of GAP [8]) and to C2 × C2 × C4 × C4 (SmallGroup(64, 192)).
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In this paper we obtain the isomorphism classes of left braces with additive group
isomorphic to C4 × C4 × C4.

Theorem 1.1. There are 1 515 429 isomorphism classes of left braces of order 64
whose additive group is isomorphic to C4 × C4 × C4.

Table 1 summarises these isomorphism classes by the isomorphism class of the
multiplicative group. For instance, the first two entries of the first row of the table
(4, 42) mean that there are two isomorphism classes of braces with additive group
C4 × C4 × C4 and multiplicative group isomorphic to SmallGroup(64, 4).

The study of the left braces with additive group isomorphic to C2×C2×C4×C4

has been the object of a later research in [4], after the submission of this paper.
That article has been accepted for publication while writing the revised version for
this paper. We must indicate that the techniques used in this paper to classify the
left braces with additive group C4 × C4 × C4 up to isomorphism are not enough
to solve the corresponding problem for the additive group C2 × C2 × C4 × C4 due
mainly to the high number of intermediate subgroups needed in the algorithm and
we have had to use new ideas that are described with detail in [4]. The main results
of that paper are the following ones.

Theorem 1.2 ([4, Theorem 1.1]). The number of isomorphism classes of left braces
of order 64 with additive group isomorphic to C2 × C2 × C4 × C4 is 10 326 821.

Corollary 1.3 ([4, Corollary 1.2]). The number of isomorphism classes of left
braces of order 64 is 15 095 601.

2. The holomorph of a group

Most of the results in this section can be considered as folklore. We present them
here for the sake of completeness.

Let (G,+) be a group. The holomorph of G is

Hol(G,+) = {(g, α) | g ∈ G,α ∈ Aut(G)}

with the operation given by

(g, α)(h, β) = (g + α(h), α ◦ β).

The identity element of Hol(G,+) is (0, 1) and the inverse of the element (g, α) ∈
Hol(G,+) is

(g, α)−1 = (−α−1(g), α−1).

The subgroup A = {(0, α) | α ∈ Aut(G,+)} is isomorphic to Aut(G,+). We
identify A with Aut(G,+).

The group Hol(G,+) acts on (G,+) by means of

(g, α) ∗ h = g + α(h), g, h ∈ G.

Note that when (G,+) is the additive group of a vector space, then Hol(G,+) can
be identified with the affine group on the vector space G and this corresponds to
the natural action of the affine group on G.

Furthermore, let us show that this action is faithful: If (g, α) ∗ h = (k, β) ∗ h for
all h ∈ G, then g + α(h) = k + β(h) for all h ∈ G. In particular, taking h = 0, we
obtain that g = k. Consequently, α(h) = β(h) for all h ∈ G and so α = β. Hence,
this action is faithful. Therefore, we can identify Hol(G,+) with a subgroup of the
group ΣG of all permutations of the set G.
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Table 1. Number of isomorphism classes of left braces with ad-
ditive group C4 × C4 × C4 by multiplicative group

id # id # id # id # id #

4 42 75 43 525 119 67 165 81 221 26 932
5 40 76 14 422 120 66 166 130 222 5 404
6 4 77 28 837 121 67 167 1 223 32 308
7 22 78 43 304 122 66 168 47 224 2 763
8 74 79 43 180 123 1 169 46 225 2 731
9 64 80 14 420 124 40 170 47 226 21 671

10 16 81 43 123 125 40 172 46 227 64 744
13 2 82 4 118 128 63 173 34 228 21 644
14 16 83 32 129 135 175 34 229 14 412
17 50 84 33 130 163 176 48 230 3 618
18 82 85 42 131 92 177 34 231 10 802
19 12 86 32 132 164 178 82 232 43 179
20 156 87 102 133 224 179 1 233 21 576
21 36 88 93 134 287 181 1 234 43 092
22 24 89 112 135 98 182 1 235 10 786
23 406 90 947 136 326 192 976 236 10 794
24 48 91 266 137 130 193 3 453 237 10 790
25 106 92 149 138 485 194 2 826 240 10 828
32 294 93 58 139 515 195 6 945 241 21 686
33 283 94 164 140 1 196 16 440 242 3 664

34 133 95 57 141 42 197 3 624 243 21 516
35 160 96 101 142 73 198 5 468 244 10 820
36 2 97 109 143 114 199 6 987 246 13
37 10 98 135 144 73 200 489 247 55
55 567 99 65 145 138 201 5 430 248 56
56 3 757 100 105 146 131 202 7 632 249 66
57 3 640 101 316 147 35 203 19 248 250 12
58 21 838 102 280 148 96 204 13 610 251 43
59 21 628 103 39 149 131 205 16 629 252 31
60 3 908 104 42 150 35 206 27 099 253 120
61 21 812 105 32 151 96 207 8 277 254 147
62 11 052 106 17 152 64 208 5 407 255 203
63 10 850 107 17 153 16 209 9 052 256 246
64 7 193 108 21 154 48 210 32 312 257 52
65 3 682 109 67 155 2 211 1 919 258 144
66 43 617 110 24 156 43 212 2 763 259 92
67 43 927 111 24 157 2 213 13 608 260 193
68 86 219 112 52 158 43 214 2 758 261 1 011
69 87 259 113 54 159 1 215 19 242 262 173
70 43 183 114 46 160 66 216 19 092 263 2 052
71 21 837 115 68 161 52 217 8 253 264 1 921
72 21 725 116 140 162 52 218 13 543 265 489
73 14 585 117 68 163 69 219 53 836 266 503
74 14 420 118 1 164 81 220 32 333 267 10

Given g ∈ G, let τg : G −→ G be given by τg(h) = g + h, the left translation of
G defined by g. It is clear that T = {τg | g ∈ G} is a subgroup of ΣG isomorphic
to G. Furthermore, we can identify τg with (g, 1) ∈ Hol(G,+). The proof of the
following proposition can be found, for instance, in [11, Application 1.5.2].

Proposition 2.1. The normaliser in ΣG of T coincides with the holomorph of (G,+).
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We now present some characterisations of regular subgroups that are useful for
our purposes.

First of all, note that a subgroup H of Hol(G,+) ≤ ΣG is regular if, and only if,
it acts transitively on G and the stabiliser Hg of each element g ∈ G is trivial. In
other words, given h, k ∈ G, there exists a unique (g, α) ∈ H such that (g, α)∗k = h.
Suppose that H is a regular subgroup of Hol(G,+). Given h ∈ G, there exists a
unique (g, α) ∈ H such that (g, α) ∗ 0 = h. Consequently, g + α(0) = g = h.
Suppose that (g, α), (g, β) ∈ H . Since g = (g, α) ∗ 0 = (g, β) ∗ 0 = g, the regularity
of the action of H on G shows that α = β. Hence, α is uniquely determined by
g ∈ G, let us call α = λg. Consequently H = {(g, λg) | g ∈ G}, where the map
λ : G −→ G, λ(g) = λg depends on H . Furthermore, since the action is transitive,
the “projection” of H on the G-component of Hol(G,+) is surjective.

Note that (0, 1) ∗ 0 = 0, therefore λ0 = 1 and so H ∩ Aut(G,+) = {(0, 1)}.

Remark 2.2. Other authors have considered the regularity of a subgroup H of
Hol(G) in the following equivalent way: given k ∈ G, there exists a unique (h, β) ∈
H such that (h, β) ∗ k = 0, that is, for every k ∈ G there exists a unique (h, β) ∈ H
such that h + β(k) = 0. We have preferred the opposite point of view because we
obtain more easily the expression H = {(g, λg) | g ∈ G} for a regular subgroup H
of Hol(G) (cf. [9, Lemma 4.1]).

In the following proposition, we assume that (G,+) is a finite group.

Proposition 2.3. Let (G,+) be a finite group and let H be a subgroup of Hol(G,+).
Let us denote by πG the “projection” of Hol(G,+) on G. Then |H | = |πG(H)||H ∩
Aut(G,+)|.

Proof. The orbit of 0 ∈ G with respect to the action of Hol(G) on G is {(g, α) ∗ 0 |
(g, α) ∈ H} = πG(H) and the stabiliser of 0 is {(g, α) ∈ H | (g, α) ∗ 0 = 0} =
{(g, α) ∈ H | g = 0} = Aut(G) ∩ H . The result follows as an application of the
orbit-stabiliser theorem. �

Proposition 2.3 is useful in the finite case to discard subgroups whose subgroups
cannot contain regular subgroups because the “projection” to G is not surjective in
the computation of all regular subgroups of the holomorph of a given finite group
(G,+). We can do it by means of the following result.

Proposition 2.4. Let (G,+) be a finite group and let H be a subgroup of Hol(G,+).
The restriction of the “projection” πG of Hol(G,+) to H is surjective if, and only
if, |H | = |G||H ∩ Aut(G,+)|.

Another consequence of Proposition 2.3 is the following characterisation of reg-
ular subgroups of Hol(G,+) for a finite group (G,+).

Proposition 2.5 (cf. [1]). Let (G,+) be a finite group. Every two of the following
three statements about a subgroup H of Hol(G,+) imply the other one.

(1) |H | = |G|.
(2) H ∩Aut(G,+) = {(0, 1)}.
(3) The restriction to H of the “projection” πG of Hol(G,+) on G is surjective.

Moreover, a subgroup H of Hol(G,+) satisfying two of the three previous properties
(and so the other one) is regular.
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Proof. The fact that every two of the three statements imply the other one is an
immediate consequence of Proposition 2.4. As in the proof of Proposition 2.3,
πG(H) is the orbit of 0 under the action of H and H ∩ Aut(G) is the stabiliser of
0. If H satisfies all these properties, then the orbit of 0 is G and its stabiliser is
trivial, that is, H is regular. �

Proposition 2.6. Let H be a regular subgroup of Hol(G), say H = {(g, λg) | g ∈
G}. Then, given g, k ∈ G, λg+λg(k) = λg ◦ λk and λ−1

g = λλ
−1

g (−g)

Proof. Note that (g, λg)(k, λk) = (g + λg(k), λg ◦ λk) = (g + λg(k), λg+λg(k)) ∈ H .

When we apply this to k = λ−1
g (−g), we obtain that 1 = λ0 = λg ◦ λλ

−1

g (−g). The

result follows. �

The following fact is mentioned in [5] and used to improve the algorithms to
obtain all skew left braces with a given additive group.

Proposition 2.7. Let H be a regular subgroup of Hol(G,+) with (G,+) a group
and let (g, α) ∈ Hol(G,+). Then (g, α)H(g, α)−1 is again a regular subgroup of
Hol(G,+). Furthermore, there exists β ∈ Aut(G,+) such that (g, α)H(g, α)−1 =
(0, β)H(0, β)−1.

3. Regular subgroups and skew left braces

We present now the result that allows us to construct all skew left braces with
a given additive group (G,+). All these results are well known (see, for instance,
[9, Section 4]) and we present them here for completeness.

Proposition 3.1. Let (B,+, ·) be a skew left brace. Given a ∈ B, let λa : B −→ B
be the lambda map given by λa(b) = −a + ab. Then H = {(a, λa) | a ∈ B} is a
regular subgroup of Hol(B,+).

Proof. It is well known that λa ∈ Aut(B,+) for all a ∈ A. Since

(a, λa)(b, λb) = (a+ λa(b), λaλb) = (a+ λa(b), λa+λa(b)) ∈ H

by Proposition 2.6 and, by the same result, λ−1
a = λλ

−1

a (−a) and so (a, λa)
−1 =

(λ−1
a (−a), λ−1

a ) = (λ−1
a (−a), λλ

−1

a (−a)) ∈ H , H is a subgroup of Hol(B,+). Given

a ∈ G, there exists a unique element (g, α) in H such that (g, α) ∗ 0 = a, namely
(g, α) = (a, λa). Therefore, H is regular. �

The proof of the following proposition can be found in [9, Theorem 4.2].

Proposition 3.2. Given a regular subgroup H of Hol(G,+), with (G,+) a group,
then H admits a structure of skew left brace whose additive group is isomorphic to
(G,+).

The following result combines Lemma 2.1 and Theorem 2.2 of [5].

Proposition 3.3. Two regular subgroups H1 and H2 of Hol(G,+) induce isomor-
phic skew left braces if, and only if, they are conjugate by an element of Aut(G,+).

Note that, by Proposition 2.7, the condition of Proposition 3.3 can be replaced
by conjugation in Hol(G,+).
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4. Computational challenges

By Section 3, the problem of determining the skew left braces with additive group
isomorphic to G = C4 ×C4 × C4 up to isomorphism is reduced to determining the
conjugacy classes of regular subgroups of Hol(G). Furthermore, since G is a 2-
group, every regular subgroup H of Hol(G) has order |H | = |G| = 64 and so a
conjugate of H is contained in a fixed Sylow 2-subgroup of Hol(G). Hence it is
enough to determine all regular subgroups of a Sylow 2-subgroup of Hol(G).

Hulpke [10] has developed an algorithm to determine the lattice of subgroups of
a finite soluble group S. This algorithm is implemented by means of the function
SubgroupsSolvableGroup of GAP [8]. We summarise this algorithm as follows:

(1) We compute a normal series S D N1 D · · · D Nr = 1 with elementary
abelian factors.

(2) We construct by induction the subgroups of S/Ni+1 from the subgroups of
S/Ni. Without loss of generality, we assume that Ni+1 = 1, N = Ni, and
we know the subgroups of S/N . We have the following possibilities for a
subgroup U of S:
(a) U contains N and thus U is the full preimage of a subgroup of S/N

under the natural epimorphism;
(b) U is contained in N and so U is a subspace of the vector space N , or
(c) B := U ∩N is a proper subgroup of N and A = NU is a subgroup of

G that contains properly N .
The subgroups of the first type are simply the preimages of the subgroups
of S/N , that have been computed by induction. The subgroups of the
second type are the subspaces of the vector space N . Hence it is enough to
consider the third case. In the third case, B E U and B E N . Therefore
B E NU = A and A ≤ NS(A) ∩ NS(B). It follows that U/B can be
computed as a complement of N/B in A/B.

We cannot apply this algorithm directly to S = Hol(G) since Hol(G) is not
soluble, but we can apply it to a Sylow 2-subgroup of Hol(G). The implementation
of SubgroupsSolvableGroup in GAP includes the possibility of adding restrictions
like ExactSizeConsiderFunction to avoid the computation of subgroups that do
not lead to subgroups of the specified order. This is useful since regular subgroups
of Hol(G) have the same order as G. We also note that regular subgroups of Hol(G)
must have a surjective “projection” onto G and so we can add the restriction of
Proposition 2.4 to discard all subgroups leading only to non-regular subgroups.

In the GAP implementation of SubgroupsSolvableGroup, the list of all conju-
gacy classes of subgroups of G/Ni (layer i) and all computed conjugacy classes of
G/Ni+1 (layer i+1) are stored at each layer. However, only one group of the layer i
is needed at each step and the groups obtained for the layer i + 1 will not be used
until advancing to the next layer. Furthermore, they can be a lot of subgroups and
they can use a large amount of memory, that could eventually exhaust the physical
memory. Our approach is to replace saving these subgroups to the memory by
saving them to a hard disk at the obvious drawback of speed. Furthermore, in the
event of a power loss, we could restart the computation at the exact point it was
stopped. We have also modified the algorithm to use space on a hard disk instead
of the RAM.
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We note that the GAP function SubgroupsSolvableGroup, when it is applied
with some restrictions like ExactSizeConsiderFunction, returns all subgroups sat-
isfying these restrictions, but it might return other subgroups. Our implementation
includes a final check to remove these eventually extra subgroups.

5. Our computations

The implementation of this modified algorithm for the computation of the reg-
ular subgroups of a Sylow 2-subgroup of Hol(C4 × C4 × C4) produced 31 367 678
conjugacy classes. Of course, some of these classes can have representatives that are
not conjugate in the Sylow 2-subgroup, but can be conjugate in Hol(C4×C4×C4).
Consequently, the next natural step is to classify their representatives by conjuga-
tion in Hol(C4 ×C4 ×C4). Since we were expecting many regular subgroups to be
compared by conjugation in Hol(C4 × C4 × C4), in the last step of the algorithm
we classify the regular groups by their isomorphism class, the isomorphism class of
the kernel of the action of the brace on the additive group (the set of all elements
of the regular subgroup that stabilise all elements of C4 × C4 × C4, that coincides
with the centraliser of the normal subgroup C4 × C4 × C4 in the holomorph as a
semidirect product with respect to this action) and the isomorphism class of the
quotient by this normal subgroup. We have obtained an overall number of 1 442
equivalence classes.

Our idea is to reduce the checking of conjugation to each of these 1 442 equiv-
alence classes. The comparisons of different equivalence classes can be performed
in parallel by using different processors. Some of these equivalence classes turn
out to be small, for example, 74 of them have only one element and 1 055 have
at most 100 elements. In all these classes the comparison by conjugation is fast.
However, 63 equivalence classes have more than 100 000 subgroups, 19 equivalence
classes have more than 500 000 subgroups, 13 equivalence classes have more than
800 000 subgroups, and the 4 largest equivalence classes have more than 1 000 000
subgroups. The largest one has 1 782 312 subgroups.

We have decided to refine the 63 largest equivalence classes by means of the
length of the conjugacy class in Hol(C4 × C4 × C4). This refinement applied to
all equivalence classes gives a total number of 2 353 equivalence classes. In some
cases, this has allowed us to obtain some small numbers of subgroups that can
be easily compared by conjugation, but for the largest conjugacy class lengths the
computations were still slow. The execution of these comparisons on a computer
with an Intel processor i7-11700 that allows the execution of 16 parallel tasks and
32 Gb of RAM running GNU/Linux during a couple of months made us guess that
we would need more than two years to perform the task.

At that time we applied for the use of the scientific supercomputer Llúıs Vives
to the Computer Service of the Universitat de València (see [7]). We thank the
Computer Service for granting an immediate access to this machine and for their
help installing GAP and solving our doubts. On this machine, we were able to com-
plete the computations in less than two months by running several comparisons in
parallel. Our implementation of parallelism in this setting has consisted of running
several instances of GAP that select from a list of regular subgroups a unique rep-
resentative of each conjugacy class in Hol(C4 × C4 × C4) or select from two lists
of regular subgroups for which two elements in the same list are not conjugate in
Hol(C4 × C4 × C4) a list of the subgroups of both lists that contain no pairs of
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conjugate subgroups. We have not used any particular computer package to run
GAP in parallel mode, as our setting has been enough for our purposes. The total
number of conjugacy classes of regular subgroups of Hol(C4 × C4 × C4) we have
found is 1 515 429. Table 1 summarises the numbers of conjugacy classes by the
first invariant we consider, the isomorphism class of the multiplicative group of the
resulting left brace.
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Data availability

The complete list of left braces or order 64 is available for use in GAP [8] on
https://github.com/RamonEstebanRomero/braces64 [3]. It also includes the left
braces with additive group C2 ×C2 ×C4 ×C4 computed by the authors in [4]. The
storage of these left braces follows the ideas of [2] of representing them as triply
factorised groups. This repository also includes some GAP functions to use these
left braces with the help of the YangBaxter package [14] for GAP.
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