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Abstract

We show error estimates for a cut finite element approximation of a second or-
der elliptic problem with mixed boundary conditions. The error estimates are of
low regularity type where we consider the case when the exact solution u ∈ Hs

with s ∈ (1, 3/2]. For Nitsche type methods this case requires special handling of
the terms involving the normal flux of the exact solution at the the boundary. For
Dirichlet boundary conditions the estimates are optimal, whereas in the case of
mixed Dirichlet-Neumann boundary conditions they are suboptimal by a logarith-
mic factor.

1 Introduction

In this paper we will consider the finite element approximation of the Poisson problem
with mixed boundary conditions under minimal regularity assumptions. Let Ω be a
domain in Rd with smooth boundary ∂Ω, which is decomposed into two subdomains ∂ΩD

and ∂ΩN such that ∂Ω = ∂ΩD ∪ ∂ΩN = ∂ΩD ∪ ∂ΩN and ∂ΩD ∩ ∂ΩN = ∅. Consider the
problem: find u : Ω→ R such that

−∆u = f in Ω (1.1)

u = gD on ∂ΩD (1.2)

∇nu = gN on ∂ΩN (1.3)
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where f : Ω→ R, gD : ΓD → R and gN : ΓN → R satisfy the following bound for s > 1,

‖f‖Hs−2(Ω) + ‖gD‖Hs−1/2(∂ΩD) + ‖gN‖Hs−3/2(∂ΩN ) . 1 (1.4)

Here and below we used the notation a . b for a ≤ Cb, with C a positive constant.
For the approximation of the problem we apply a Cut Finite Element Method (Cut-

FEM). In CutFEM the boundary is allowed to cut through the computational cells in an
(almost) arbitrary way and stabilization terms are added in the vicinity of the boundary
to ensure that the method is coercive and that the resulting linear system of equations
is invertible.

In previous work on fictitious domain finite element methods see [1,2], error estimate
were shown under the assumption that u ∈ Hs(Ω) with s > 3/2. The objective of the
present work is to relax this regularity requirement. Indeed, we show an a priori error
estimates in the energy norm, requiring only that u ∈ Hs(Ω), where s > 1, and ∆u is in
L2(Uδ0) on some arbitrarily thin neighborhood Uδ0 of the Dirichlet boundary ∂ΩD. Since
the test functions in the Nitsche formulation of the Dirichlet condition are not zero on
∂ΩD, we will also have to choose the Neumann data gN in a slightly smaller space than
H−1/2(∂ΩN). We focus our attention on the effects of rough data in CutFEM. We assume
that the boundary ∂Ω of the domain Ω is smooth and that we can evaluate integrals on
the intersection of simplices and the domain and its boundary, exactly. Estimation of the
error resulting from approximation of the domain can be handled using the techniques
in [4].

The study of the convergence of nonconforming methods for the approximation of
solution with low regularity has received increasing interest since the seminal paper by
Gudi [7]. In that work optimal convergence for low regularity solutions were obtained
using ideas from a posteriori error analysis, where the error is upper bounded by certain
residuals of the discrete solution. These residuals are then shown to lead to optimal
upper bounds using the discrete local efficiency bounds. A similar approach was used by
Lüthen et al. [8] for a generalised Nitsche’s method on fitted meshes. This approach does
however not seem to be suitable for the case of cut finite element method since for cut
elements the local efficiency bounds are not robust with respect to the mesh boundary
intersection. Instead, in the spirit of [6], we use a version of duality pairing to handle the
term involving the normal flux of the interpolation error. This is made more delicate by
the presence of mixed boundary conditions. Indeed to include this case in the analysis we
introduce a regularized bilinear form and use the solution to the regularized problem as
pivot in the error estimate. The regularization gives rise to a logarithmic factor. Observe
that this is due to the mixed boundary conditions. For pure Dirichlet conditions or pure
Neumann conditions the analysis results in optimal error bounds for s ≥ 1.

The paper is organized as follows: In Section 2 we introduce the functional framework
for the model problem and formulate the finite element method and in Section 3 we derive
the error estimates.
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2 Weak Formulation and the Finite Element Method

Since we consider low regularity solutions of a problem with mixed boundary condition
we must be careful with the fractional Sobolev spaces for the traces of the functions. In
this section we first introduce the notations and definitions for the functional analytical
framework, leading to the weak formulation of (1.1)–(1.3). Then we introduce the cut
finite element method for the approximation of the weak solutions.

2.1 Function Spaces

Let ω ⊂ Rn and let Hs(ω) denote the usual Sobolev spaces on ω. Define

H1/2(∂Ω) = H1(Ω)|∂Ω (2.1)

‖v‖H1/2(∂Ω) = inf
w∈H1(Ω),w|∂Ω=v

‖w‖H1(Ω) (2.2)

and for Γ ⊂ ∂Ω, define

H1/2(Γ) = H1/2(∂Ω)|Γ (2.3)

‖v‖H1/2(Γ) = inf
w∈H1(Ω),w|Γ=v

‖w‖H1(Ω) (2.4)

and the subspace

H̃1/2(Γ) = {v ∈ H1/2(Γ) : supp(v) ⊂ Γ} ⊂ H1/2(Γ) (2.5)

Then H1/2(∂Ω \ Γ) = H1/2(∂Ω)/H̃1/2(Γ) and H1/2(∂Ω) = H1/2(∂Ω \ Γ)⊕ H̃1/2(Γ). Next
define the dual spaces

H−1/2(∂Ω) = [H1/2(∂Ω)]∗ (2.6)

H−1/2(Γ) = [H̃1/2(Γ)]∗ (2.7)

H̃−1/2(Γ) = [H1/2(Γ)]∗ (2.8)

consisting of functionals g : X → R with duality pairing 〈g, v〉X∗×X = g(v) and norm

‖g‖X∗ = sup
v∈X\{0}

g(v)

‖v‖X
(2.9)

with X ∈ {H1/2(∂Ω), H1/2(Γ), H̃1/2(Γ)}. We will use the simplified notation (g, v)Γ for
the duality pairing. Note that for each g ∈ H−1/2(Γ) we may define g̃ ∈ H−1/2(∂Ω) by
g̃(v) = g(v|Γ) and thus H−1/2(Γ) ↪→ H−1/2(∂Ω).

2.2 Weak Formulation

The problem (1.1)–(1.3) can be cast on weak form: find u ∈ VgD such that

a(u, v) = l(v) v ∈ V0 (2.10)
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where
a(v, w) = (∇v,∇w)Ω, l(v) = (f, v)∂Ω + (gN , v)∂ΩN (2.11)

and, for each gD ∈ H1/2(∂ΩD),

VgD = {v ∈ H1(Ω) : v|∂ΩD = gD} (2.12)

For f ∈ H−1(Ω), gD ∈ H1/2(∂ΩD), and gN ∈ H−1/2(∂ΩN), there exists a unique weak
solution to (2.10) and the following elliptic regularity estimate holds, 1 ≤ s < 3/2,

‖u‖Hs(Ω) . ‖f‖Hs−2(Ω) + ‖gD‖Hs−1/2(∂ΩD) + ‖gN‖Hs−3/2(∂ΩN ) (2.13)

We refer to Savaré [9] for a precise characterization of the regularity for the mixed prob-
lem.

2.3 The Normal Flux

The normal flux ∇nu = n · ∇u ∈ H−1/2(∂Ω), where n is the exterior unit normal, plays
an important role in what follows. For u ∈ H1(Ω), with ∆u ∈ L2(Ω), it can be defined
by the identity

(∇nu, v)∂Ω = (∆u, v)Ω + (∇u,∇v)Ω ∀v ∈ H1(Ω) (2.14)

Observe that in the finite element method we work with weakly enforced boundary
conditions and therefore we will not have test functions that vanish on ∂ΩD, i.e. the test
functions are not in V0, and herefore we will consider boundary data such that

gD ∈ H1/2(∂ΩD), gN ∈ H̃−1/2(∂ΩN) (2.15)

where the Neumann data gN is chosen in the smaller space H̃−1/2(∂ΩN) ⊂ H−1/2(∂ΩN),
compared to the strong formulation and corresponding weak form (2.10). We will also
assume that the source term f is square integrable over some (arbitrary thin) neighbour-
hood of the boundary ∂Ω, see (3.35) below.

2.4 Finite Element Method

To define the cut finite element method let Ω0 be a polygonal domain such that Ω ⊂ Ω0

and let {Th,0 : h ∈ (0, h0]} be a family of quasiuniform meshes covering Ω0 with mesh
parameter h := maxT∈Th,0 diam(T ). For a subset ω ⊂ Ω0, define the submesh of elements
intersecting ω, by Th(ω) := {T ∈ Th,0 : T ∩ ω 6= ∅}, and let Th := Th(Ω) be the so called
active mesh. Let Vh,0 be the conforming finite element space defined on Th,0 consisting of
piecewise affine functions and define Vh = Vh,0|Th . Define the bilinear forms

Ah(v, w) := a(v, w)− (∇nv, w)∂ΩD − (v,∇nw)∂ΩD + βh−1(v, w)∂ΩD (2.16)

sh(v, w) := σh([∇nv], [∇nw])Fh(∂Ω) (2.17)

Lh(v) := (f, v)Ω + (gN , v)∂ΩN − (gD,∇nv)∂ΩD + βh−1(gD, v)∂ΩD (2.18)
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with positive parameters β and σ, Fh(∂Ω) the set of interior faces in Th associated with
an element T ∈ Th(∂Ω) = {T ∈ Th : T ∩ ∂Ω 6= ∅} that intersects the boundary, and the
jump in the normal flux at face F shared by elements T1 and T2 is defined by

[∇nv] = ∇n1v1 +∇n2v2 on F (2.19)

where vi = v|Ti and ni is the unit exterior normal.
Define the finite element method: find uh ∈ Vh such that

Ah(uh, v) + sh(uh, v) = Lh(v) ∀v ∈ Vh (2.20)

3 Error Analysis

In this section we will derive the error estimates, here as usual the consistency of the
method is of essence. However, for solutions with low regularity this is delicate in the case
of mixed boundary conditions. Indeed, in the low regularity case, (2.14) is not sufficient
to make sense of the term (∇nu,w)∂ΩD for approximation purposes, since the division
on ∂ΩD and ∂ΩN necessarily results in a boundary integral over one of the subdomains
that has to be lifted in some other fashion. This is problematic since the solution is not
regular enough to allow for the usual trace inequality arguments. To handle this difficulty
we introduce a regularized finite element formulation (for analysis purposes only), where
a smooth weight function χ is introduced and the problematic term is replaced by

(∇nu,w)χ,∂Ω := (χ∇nu,w)∂Ω (3.1)

The regularized method has a consistency error that can be controlled by sharpening the
cut off function χ.

3.1 Outline

We shall prove low regularity energy norm error estimates using the following approach:

• Similarly to [7] we estimate the error in a norm which does not involve the L2 norm of
the normal trace of the gradient.

• For the case of mixed boundary conditions, we introduce a regularized bilinear form and
the corresponding (nonconsistent) finite element method. The regularization takes the
form of a weight function smoothing the transition from the Dirichlet to the Neumann
boundary condition in the first boundary integral of the form Ah, see equation (2.16). In
the regularized norm we can use a version of H−1/2−H1/2 duality in an ε neighborhood
of ∂ΩD.

• The total error is estimated using a Strang type argument. The error is divided into the
approximation error, the discrete error between an interpolant and the finite element
solution of the regularized formulation and finally the regularization error between the
regularized and standard finite element solutions.
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3.2 The Cut Off Function

Key to the regularized problem is the design of the weight function, χ : Ω → R with
support in a neighbourhood of ∂ΩD. This function takes the value 1 on ∂ΩD and decays
smoothly to zero in an ε neighbourhood of ∂ΩD∩∂ΩN and into the domain away from the
boundary. This way it plays the role of a cut off, that localizes the boundary integral to
∂ΩD, while the form remains well defined for low regularity solutions. In order to define
the cut off function we introduce some notation.

Notation. For x ∈ Rd, ω ⊂ Rd, let ρω(x) > 0 be the distance function ρω(x) =
dist(x, ω) and let pω : Rd → ω be the closest point mapping. In the case ω ≡ ∂Ω we drop
the subscript. For δ ∈ (0, δ0], define the δ-neighbourhood of ∂Ω,

Uδ(∂Ω) = {x ∈ Ω : ρ(x) < δ} (3.2)

Then there is δ0 > 0 such that the closest point mapping p : Uδ0(∂Ω)→ ∂Ω maps every x
to precisely one point at ∂Ω. We also define δ-neighbourhood of ∂ΩD and ∂ΩN as follows

Uδ(∂ΩD) = {x ∈ Uδ(∂Ω) : p(x) ∈ ∂ΩD}, Uδ(∂ΩN) = Uδ \ Uδ(∂ΩD) (3.3)

Let Σ = ∂(∂ΩD) = ∂(∂ΩN) be the smooth interface separating ∂ΩD and ∂ΩN and let
ν be the unit conormal to Σ exterior to ∂ΩN and tangent to ∂Ω. See Figure 1. For
t ∈ [0, δ0] let

∂Ωt = {x ∈ Ω : ρ(x) = t} (3.4)

∂ΩN,t = {x ∈ ∂Ωt : p(x) ∈ ∂ΩN} (3.5)

Σt = {x ∈ ∂Ωt : p(x) ∈ Σ} (3.6)

Note that p : ∂Ωt → ∂Ω is a bijection for all t ∈ [0, δ0]. Let

Ut,γ(Σt) = {x ∈ ∂ΩN,t : ρΣt(x) < γ} ⊂ ∂ΩN,t (3.7)

be the γ tubular neighborhood of Σt in ∂ΩN,t, and assume that γ ∈ (0, γ0] with γ0 small
enough to guarantee that the closest point mappings pΣt are well defined for all t ∈ [0, δ0],
and let

Uγ(Σ) = U0,γ(Σ0) ⊂ ∂ΩN (3.8)

Define
Uδ,ε = ∪t∈[0,δ]Ut,γ(t)(Σt) (3.9)

with γ(t) = t+ ε for ε ∈ (0, ε0] and ε << δ, see Figure 2. Defining, for z ∈ Σ,

Uδ,ε(z) = {x ∈ Uδ,ε : pΣ(x) = z} (3.10)

where pΣ is the closest point mapping associated with Σ, we have Uδ,ε = ∪z∈ΣUδ,ε(z).
Note that Uδ,ε(z) = Uδ,ε∩p−1

Σ (z) ⊂ Uδ0(Σ)∩p−1
Σ (z), which is a subset of the 2 dimensional

normal space NΣ(z) to the d− 2 dimensional tangent space TΣ(z) of Σ at z. In the case
d = 2, Σ consists of distinct points and in that case Uδ,ε ⊂ Uδ0(z) ⊂ p−1

Σ (z), for δ0 small
enough. Finally, let

Uδ = Uδ(∂ΩD) ∪ Uδ,ε (3.11)
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∂ΩD

∂ΩN
Σ

ΣUδ(∂ΩD)

Uδ(∂ΩN)

Σ

Σ

Uδ,ε

Uδ,ε

Figure 1: Left: the Dirichlet boundary ∂ΩD, the Neumann boundary
∂ΩN , the interface Σ, and the tubular neighborhood Uδ(∂Ω) = Uδ(∂ΩD) ∪
Uδ(∂ΩN ). Right: the set Uδ,ε ⊂ Uδ(∂ΩN ).

Uδ(∂ΩD)

∂ΩD

Σ

Uε(Σ) ∂ΩN

Uδ,ε

∂ΩD

Σ

t

γ(t)

Σt

Ut,γ(t)(Σt)

ε

Figure 2: Left: Close up of the set Uδ,ε including Uε(Σ) ⊂ ∂ΩN . Right:
The set Σt and Ut,γ(t)(Σt).
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The Cut Off Function. We will below take δ ∼ h and ε ∼ hα with α = d. Let
χ : Ω→ [0, 1] be smooth such that


χ = 1 on ∂ΩD

χ = 0 on ∂ΩN \ Uε(Σ)

χ = 0 on Ω \ Uδ


‖∇χ‖L∞(Uδ\Uδ,ε) . δ−1

‖∇nχ‖L∞(Uδ,ε) . δ−1

‖∇Σχ‖L∞(Uδ,ε) . 1

‖∇νχ‖L∞(Ut,γ(t)) . (γ(t))−1 t ∈ [0, δ]

(3.12)

Observe that in the definition above ∇Σ denotes the projection of the gradient on the
tangent plane of Σ. By the construction of χ, ‖∇Σχ‖L∞(Uδ,ε) is bounded and depends
only on ε, δ and the regularity of Σ.

Lemma 3.1. The cut off function χ satisfies the following estimate

sup
z∈Σ
‖∇νχ‖2

Uδ,ε(z)
. | ln(1 + δ/ε)| (3.13)

and with
δ ∼ h, ε ∼ hα (3.14)

for 1 ≤ α . 1 we obtain
‖∇νχ‖2

Uδ,ε
. 1 + | ln(h)| (3.15)

Proof. Using the bounds for ∇νχ we obtain

‖∇νχ‖2
Uδ,ε(z)

=

∫
Uδ,ε(z)

|∇νχ|2 .
∫ δ

0

∫
Ut,t+ε(z)

(t+ ε)−2

.
∫ δ

0

(t+ ε)−1 = [ln(t+ ε)]δ0 = ln(1 + δ/ε)

Estimate (3.15) follows directly from the definition of δ and ε. �

3.3 The Regularized Problem

For ε ∈ (0, ε0] define the regularized form

Ah,ε(v, w) = (∇v,∇w)Ω − (∇nv, w)χ,∂Ω − (v,∇nw)∂ΩD + βh−1(v, w)∂Ω (3.16)

and define Ah,0 = Ah. We will show that the mapping [0, ε0] 3 ε 7→ Ah,ε is continuous for
ε small enough, see Lemma 3.3 below for details.

For ε ∈ [0, ε0] define the regularized finite element method: find uh,ε ∈ Vh such that

Ah,ε(uh,ε, v) + sh(uh, v) = Lh(v) ∀v ∈ Vh (3.17)

This method is not consistent, but we have the identity

Ah,ε(u− uh,ε, v) = Ah,ε(u, v)− Lh(v) + sh(uh, v) (3.18)

= sh(uh, v)− (gN , v)χ,∂ΩN ∀v ∈ Vh (3.19)
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since using Green’s formula gives

Ah,ε(u, v) = (∇u,∇v)Ω − (∇nu, v)χ,∂Ω − (u,∇nv)∂ΩD + βh−1(u, v)∂Ω (3.20)

= −(∆u, v)Ω + (∇nu, v)∂Ω − (∇nu, v)χ,∂Ω − (u,∇nv)∂ΩD + βh−1(u, v)∂Ω (3.21)

= (f, v)Ω − (gD,∇nv)∂ΩD + βh−1(gD, v)∂ΩD + (gN , v)∂ΩN − (gN , v)χ,∂ΩN (3.22)

= Lh(v)− (gN , v)χ,∂ΩN (3.23)

where we used the fact that χ = 1 on ∂ΩD to conclude that

(∇nu, v)∂Ω − (∇nu, v)χ,∂Ω = (∇nu, v)∂ΩN − (∇nu, v)χ,∂ΩN (3.24)

= (gN , v)∂ΩN − (gN , v)χ,∂ΩN (3.25)

3.4 Properties of the Bilinear Forms

We here summarize the basic results on the bilinear forms and conclude with a proof of
existence, uniqueness, and stability of the finite element solutions.

Inverse and Trace Inequalities. Let us recall some inverse and trace inequalities.
Here P1(T ) denotes the set of polynomials of degree less than or equal to 1 on the
simplex T .

• Inverse inequalities (see [5, Section 1.4.3]),

‖∇v‖H1(T ) . h−1
T ‖v‖L2(T ) ∀v ∈ P1(T ) (3.26)

and
‖v‖L∞(T ) . h−

d
2‖v‖L2(T ) ∀v ∈ P1(T ) (3.27)

• Trace inequalities (see [5, Section 1.4.3]),

‖v‖L2(∂T ) ≤ CT

(
h
−1/2
T ‖v‖L2(T ) + h

1/2
T ‖∇v‖T

)
∀v ∈ H1(T ) (3.28)

and
‖v‖L2(∂T ) ≤ Cth

−1/2
T ‖v‖L2(T ) ∀v ∈ P1(T ) (3.29)

• Inverse trace inequality on cut elements. For a simplex T such that T ∩ ∂Ω 6= ∅, there
holds

‖v‖L2(T∩∂Ω) . h
−1/2
T ‖v‖L2(T ) ∀v ∈ P1(T ) (3.30)

Stabilization Estimates. For any two elements T1 and T2 in Th, sharing a face F , we
have the estimate

‖∇mv‖2
T1
. ‖∇mv‖2

T2
+ h3−2m‖[∇nv]‖2

F m = 0, 1, v ∈ Vh (3.31)
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Repeated use of (3.31) leads to

‖∇v‖2
Th . ‖∇v‖

2
Ω + ‖v‖2

sh
v ∈ Vh (3.32)

For sets ω0 ⊂ ω1 ⊂ Ω such that diam(ω1 \ ω0) . h, we may also derive the estimate

‖∇mv‖2
Th(ω1) . ‖∇mv‖2

Th(ω0) + h3−2m‖[∇nv]‖2
Fh(ω1) m = 0, 1, v ∈ Vh (3.33)

where Fh(ω1) denotes the interior faces of Th(ω1).

The Energy Norm. We equip the finite element space Vh with the energy norm

|||v|||2h = ‖∇v‖2
Ω + ‖v‖2

sh
+ h−1‖v‖2

∂ΩD
(3.34)

where ‖v‖2
sh

:= sh(v, v). In order to have the normal flux well defined on the Dirichlet
boundary we assume that

v ∈ V = {v ∈ H1(Ω) : ∆v|Uδ0 ∈ L
2(Uδ0)} (3.35)

where we recall, see (3.11), that supp(χ) ⊂ Uδ0 = Uδ0(∂ΩD) ∪ Uδ0,ε0 for all regularization
parameters ε ∈ [0, ε0]. The stabilization form sh is not defined on V , due to the low
regularity, and therefore we equip V with the weaker energy norm

|||v|||2 = ‖∇v‖2
Ω + h−1‖v‖2

∂ΩD
(3.36)

Lemma 3.2. There is constant such that for all v ∈ V + Vh, w ∈ Vh, and ε ∈ [0, ε0],

Ah,ε(v, w) . |||v||| |||w|||h + |(∇nv, w)χ,∂Ω| (3.37)

where we use the norm ||| · |||, which does not include the stabilization, on V + Vh.

Proof. To verify this estimate we start from the definition (3.16) of the regularized form
and using the Cauchy Schwarz inequality we get

Ah,ε(v, w) . ‖∇v‖Ω‖∇w‖Ω + |(∇nv, w)χ,∂Ω| (3.38)

+ h−1/2‖v‖∂ΩDh
1/2‖∇nw‖∂ΩD + βh−1‖v‖∂Ω‖w‖∂Ω (3.39)

. |||v||| |||w|||h + |(∇nv, w)χ,∂Ω| (3.40)

We estimated h1/2‖∇nw‖∂ΩD , with w ∈ Vh, using the inverse inequality

h‖∇nw‖2
∂ΩD
. ‖∇v‖2

Th(∂ΩD) . ‖∇w‖2
Th . ‖∇w‖

2
Ω + ‖w‖2

sh
. |||w|||2h (3.41)

where we first used the inverse trace inequality (3.30) and then the stabilization estimate
(3.32). �

We will now prove a bound on the error introduced by replacing Ah by its regularized
counterpart Ah,ε.
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Lemma 3.3. There is a constant such that for all v, w ∈ Vh, and ε ∈ [0, ε0] with ε0 ∼ h,

|Ah,ε(v, w)− Ah(v, w)| . εh1−d|||v|||h|||w|||h (3.42)

Proof. Using the definitions (2.16) and (3.16) of the forms Ah and Ah,ε we obtain

|Ah(v, w)− Ah,ε(v, w)| = |(∇nv, χw)∂ΩN | (3.43)

. h1/2‖∇nv‖Uε(Σ)h
−1/2‖w‖Uε(Σ) (3.44)

. εh1−d|||v|||h|||w|||h (3.45)

where we used the fact that supp(χ)∩ ∂ΩN ⊂ Uε(Σ), see (3.8). To estimate h‖∇nv‖2
Uε(Σ)

we proceed in the same way as in (3.41), we first use an inverse estimate and then the
stablization (3.32),

h‖∇nv‖2
Uε(Σ) . h‖∇nv‖2

Th(Uε(Σ))∩∂ΩN
. ‖∇v‖2

Th(Uε(Σ)) . ‖∇v‖2
Th . |||v|||

2
1,h (3.46)

Next to estimate h−1‖v‖2
Uε(Σ) we pass over to the L∞ norm in order to extract an ε factor

and then we use suitable inverse bounds to pass to the energy norm.

h−1‖v‖2
Uε(Σ) . h−1ε‖v‖2

L∞(Uε(Σ)) (3.47)

. h−1ε‖v‖2
L∞(Th(Uε(Σ))) (3.48)

. h−1εh−d‖v‖2
Th(Uε(Σ)) (3.49)

. h−1εh−d
(
h‖v‖2

∂ΩD∩T̃h(Uε(Σ))
+ h2‖∇v‖2

T̃h(Uε(Σ))

)
(3.50)

. εh1−d
(
h−1‖v‖2

∂ΩD
+ ‖∇v‖2

Th

)
(3.51)

. εh1−d|||v|||2h (3.52)

Here T̃h(Uε(Σ)) is a slightly larger patch of elements such that the d − 1 dimensional

measure of its intersection with the Dirichlet boundary satisfies |T̃h(Uε(Σ))∩∂ΩD| ∼ hd−1

,which allows us to utilize the control available in |||v|||h at the Dirichlet boundary and
to employ a Poincaré inequality in (3.50), see the appendix in [3]. The patch Th(Uε(Σ))
does not in general satisfy Th(Uε(Σ))∩∂ΩD ∼ hd−1 and therefore it is enlarged by adding
a suitable number of face neighboring elements in Th(∂ΩD). In the last step (3.52) we
also used the stabilization (3.32). Note that due to the assumption that ε ∈ [0, ε0] with
ε0 ∼ h it follows from shape regularity that there is a uniform bound on the number of
elements in T̃h(Uε(Σ)). �

Lemma 3.3 is instrumental for the coercivity that we prove next.

Lemma 3.4. For β large enough and σ > 0, the forms Ah,ε + sh, h ∈ (h, h0], ε ∈ [0, chd]
with c small enough, are coercive

|||v|||2h . Ah,ε(v, v) + sh(v, v) v ∈ Vh (3.53)

11



Proof. First we note that Ah,0 is coercive using standard techniques together with the
inverse estimate (3.41). Next using the bound (3.42) of Lemma 3.3, we obtain

Ah,ε(v, v) = Ah,0(v, v) + Ah,ε(v, v)− Ah,0(v, v)

≥ C1|||v|||2h − |Ah,ε(v, v)− Ah,0(v, v)|
≥ (C1 − C2εh

1−d)|||v|||2h
& |||v|||2h

where in the last step we choose ε ≤ chd with h ∈ (0, h0] and c small enough. �

Using Lax-Milgram we conclude that for each ε ∈ [0, chd], there is a unique solution
uh,ε ∈ Vh to the regularized problem (3.17) such that

|||uh,ε|||h . sup
v∈Vh\{0}

Lh(v) . ‖f‖H−1(Ω) + ‖gN‖H̃−1/2(∂ΩN ) + h−1/2‖gD‖∂ΩD (3.54)

3.5 Technical Lemmas

In this section we collect some technical results that will be useful in the analysis. More
precisely we start with four technical lemmas before proving Lemma 3.8 which is used to
estimate the problematic term (∇nv, w)χ,∂Ω in the regularized problem.

Lemma 3.5. There is a constant such that for all v ∈ Vh,∫
Σ

‖v‖2
L∞(Uδ0,ε0 (z)) . (1 + | ln(h)|) |||v|||2h (3.55)

Proof. 1. Recall that for z ∈ Σ, Uδ,ε(z) = {x ∈ Uδ,ε : pΣ(x) = z}, see (3.10), and we
have Uδ,ε = ∪z∈ΣUδ,ε(z). There are δ0 ∼ ε0 ∼ 1 such that δ ∈ (0, δ0], ε ∈ (0, ε0] and

Uδ,ε(z) ⊂ Uδ0,ε0(z) (3.56)

We shall first show that there is a constant such that for all z ∈ Σ,

‖v‖2
L∞(Uδ0,ε0 (z)) . (1 + | ln(h)|)‖v‖2

H1(Uδ0,ε0 (z)) + h2‖∇v‖2
L∞(Uδ0,ε0 (z)) (3.57)

To that end note that Uδ0,ε0 has the following cone property: for each x ∈ Uδ0,ε0(z) there
is a cone (or sector since Uδ0,ε0 is two dimensional) Λr0(x) ⊂ Uδ0,ε0(z), with vertex x,
radius r0 ∼ δ0 ∼ 1, and opening angle θ0 ∼ 1. For x ∈ Uδ0,ε0(z) and r, θ ∈ Λr0(x) we have
the identity

v(x) = v(r, θ)−
∫ r

0

∂rv(s, θ)ds (3.58)

and the estimate

v2(x) . v2(r, θ) +

(∫ r0

0

∂rv(s, θ)ds

)2

(3.59)
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We estimate the integral on the right hand side as follows(∫ r0

0

∂rv(s, θ)ds

)2

.

(∫ ηh

0

∂rv(s, θ)ds

)2

+

(∫ r0

ηh

∂rv(s, θ)ds

)2

(3.60)

. (ηh)2‖∇v‖2
L∞(Ληh) + | ln(d/ηh)|

∫ r0

ηh

(∂rv(s, θ))2sds (3.61)

where for the second term on the right hand side we used the estimate(∫ r0

ηh

∂rv(s, θ)ds

)2

.
∫ r0

ηh

s−1ds

∫ r0

ηh

(∂rv(s, θ))2sds (3.62)

. | ln(d/ηh)|
∫ r0

ηh

(∂rv(s, θ))2sds (3.63)

Combining (3.59) and (3.61), we get

v2(x) . v2(r, θ) + (ηh)2‖∇v‖2
L∞(Ληh) + | ln(r0/ηh)|

∫ r0

ηh

(∂rv(s, θ))2sds (3.64)

and integrating over Λr0(x) gives

|Λr0|v2(x) .
∫ r0

0

∫ θ0

0

v2(r, θ)rdθdr + |Λr0| (ηh)2‖∇v‖2
L∞(Ληh(x)) (3.65)

+ | ln(d/ηh)|
∫ r0

0

∫ θ0

0

(∫ r0

ηh

(∂rv(s, θ))2sds

)
rdθdr (3.66)

. ‖v‖2
Λr0 (x) + |Λr0| (ηh)2‖∇v‖2

L∞(Ληh(x)) + d2| ln(d/ηh)| ‖∇v‖2
Λr0 (x) (3.67)

Here r0 ∼ 1, and |Λr0| ∼ r2
0 ∼ 1 is independent of x, and thus we obtain

v2(x) . ‖v‖2
Λr0 (x) + | ln(d/ηh)|‖∇v‖2

Λr0 (x) + (ηh)2‖∇v‖2
L∞(Ληh(x)) (3.68)

which leads to

‖v‖2
L∞(Uδ0,ε0 (z)) . (1 + | ln(h)|)‖v‖2

H1(Uδ0,ε0 (z)) + h2‖∇v‖2
L∞(Uδ0,ε0 (z)) (3.69)

and thus (3.57) holds.

2. d = 2. In the two dimensional case d = 2, the interface Σ consist of a set of
isolated points and we may cover the two dimensional set Uδ0,ε0(z) by a patch of elements
Th(Uδ0,ε0), and then apply the element wise inverse inequality (3.27),

‖v‖2
L∞(Uδ0,ε0 (z)) . (1 + | ln(h)|)‖v‖2

H1(Uδ0,ε0 (z)) + h2‖∇v‖2
L∞(Uδ0,ε0 (z)) (3.70)

. (1 + | ln(h)|)‖v‖2
H1(Th(Uδ0,ε0 (z))) + h2‖∇v‖2

L∞(Th(Uδ0,ε0 (z))) (3.71)

. (1 + | ln(h)|)‖v‖2
H1(Th(Uδ0,ε0 (z))) + ‖∇v‖2

Th(Uδ0,ε0 (z))) (3.72)

. (1 + | ln(h)|)|||v|||2h (3.73)

where we finally used the stabilization estimate (3.32). This completes the proof in the
case d = 2.
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3. d ≥ 3. Here, the set Uδ0,ε0(z), for a given z ∈ Σ, is a subset of a two dimensional
plane, that cuts through the d dimensional elements in a general way, which requires a
more refined argument since an element wise trace inequality can not be applied due to
the presence of cut elements. We start by integrating (3.57) over Σ,∫

Σ

‖v‖2
L∞(Uδ0,ε0 (z)) . (1 + | ln(h)|)

∫
Σ

‖v‖2
H1(Uδ0,ε0 (z)) + h2

∫
Σ

‖∇v‖2
L∞(Uδ0,ε0 (z)) (3.74)

. (1 + | ln(h)|)‖v‖2
H1(Th(Uδ0,ε0 )) + ‖∇v‖2

Th(Uδ0,ε0 ) (3.75)

. (1 + | ln(h)|)‖v‖2
H1(Th(Uδ0,ε0 )) (3.76)

. (1 + | ln(h)|)|||v|||2h (3.77)

Here we used the inverse estimate

h2

∫
Σ

‖∇v‖2
L∞(Uδ0,ε0 (z)) . ‖∇v‖2

Th(Uδ0,ε0 ) (3.78)

To verify (3.78) we first note that, with w = ∇v, we have for each z ∈ Σ,

‖w‖2
L∞(Uδ0,ε0 (z)) = max

T∈Th(Uδ0,ε0 (z))
‖w‖2

L∞(Uδ0,ε0 (z)∩T ) (3.79)

.
∑

T∈Th(Uδ0,ε0 (z))

‖w‖2
L∞(Uδ0,ε0 (z)∩T ) (3.80)

.
∑

T∈Th(Uδ0,ε0 )

‖w‖2
L∞(T )1T (z) (3.81)

.
∑

T∈Th(Uδ0,ε0 )

h−d‖w‖2
T1T (z) (3.82)

where 1T (z) = 1 if Uδ0,ε0(z)∩T 6= ∅ and 0 otherwise, and we employed an inverse inequality
in the last step. We next note that 1T : Σ → {0, 1} is the characteristic function of the
closest point projection pΣ(T ) of T on Σ, and therefore∫

Σ

1T . hd−2 (3.83)

Integrating, (3.82) over Σ we get∫
Σ

‖w‖2
L∞(Uδ0,ε0 (z)) .

∫
Σ

∑
T∈Th(Uδ0,ε0 )

h−d‖w‖2
T1T (z) (3.84)

.
∑

T∈Th(Uδ0,ε0 )

h−d‖w‖2
T

∫
Σ

1T (z) (3.85)

= h−2‖w‖2
Th(Uδ0,ε0 ) (3.86)

where we used (3.83). This completes the verification of (3.78).
�
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Lemma 3.6. Let χ be defined by (3.12), then there is a constant such that for all v ∈ Vh,

‖(∇χ)v‖Uδ,ε . (1 + | ln(h)|)|||v|||h (3.87)

Proof. Splitting ‖(∇χ)v‖2
Uδ,ε

into three contributions corresponding to the directions of
the derivative relative to the interface Σ we obtain

‖(∇χ)v‖2
Uδ,ε
. ‖(∇Σχ)v‖2

Uδ,ε
+ ‖(∇nχ)v‖2

Uδ,ε
+ ‖(∇νχ)v‖2

Uδ,ε
(3.88)

. ‖v‖2
Uδ,ε

+ δ−2‖v‖2
Uδ,ε

+ ‖(∇νχ)v‖2
Uδ,ε

(3.89)

. ‖v‖2
Uδ,ε

+

∫
Σ

‖v‖2
L∞(Uδ,ε(z))

+ (1 + | ln(h)|)2|||v|||2h (3.90)

. (1 + | ln(h)|2) |||v|||2h (3.91)

where we for the second term (3.89) used the facts |Uδ,ε(z))| . δ2 . h2, ‖v‖L∞(Uδ,ε(z)) ≤
‖v‖L∞(Uδ0,ε0 (z)) followed by (3.55), and for the third term we used the estimate

‖(∇νχ)v‖Uδ,ε . (1 + | ln(h)|)|||v|||h (3.92)

which we verify next. This argument completes the proof of (3.87).
To verify (3.92) we use Hölder’s inequality twice, first on Uδ,ε(z) and then on Σ, employ

(3.15), and finally (3.55),

‖(∇νχ)v‖2
Uδ,ε

=

∫
Σ

‖(∇νχ)v‖2
Uδ,ε(z)

(3.93)

.
∫

Σ

‖∇νχ‖2
Uδ,ε(z)

‖v‖2
L∞(Uδ,ε(z))

(3.94)

.
(

sup
z∈Σ
‖∇νχ‖2

Uδ,ε(z)

)∫
Σ

‖v‖2
L∞(Uδ,ε(z))

(3.95)

. (1 + | ln(h)|)
∫

Σ

‖v‖2
L∞(Uδ,ε(z))

(3.96)

. (1 + | ln(h)|)
∫

Σ

‖v‖2
L∞(Uδ0,ε0 (z)) (3.97)

. (1 + | ln(h)|)2|||v|||2h (3.98)

Thus (3.92) holds. �

Lemma 3.7. There is a constant such that for all w ∈ Vh,

h−2‖w‖2
Th(Uδ)

+ ‖∇w‖2
Th(Uδ)

. |||w|||2h (3.99)

which holds for δ = ηh with η a sufficiently small constant.

Proof. First observe that by construction no point in Uδ is further than O(δ) from ∂ΩD.
Using estimate (3.33) followed by the Poincaré inequality

‖w‖2
Th(Uδ(∂ΩD)) . δ‖w‖∂ΩD + δ2‖∇w‖Th(Uδ(∂ΩD)) (3.100)
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see appendix [3], we obtain

‖w‖2
Th(Uδ)

. ‖w‖2
Th(Uδ(∂ΩD)) + ‖w‖2

Th(Uδ,ε)
(3.101)

. ‖w‖2
Th(Uδ(∂ΩD)) + h3‖[∇nw]‖2

Fh(∂Ω∩Uδ) (3.102)

. δ‖w‖∂ΩD + δ2‖∇w‖Th(Uδ(∂ΩD)) + h2‖∇w‖2
Th(∂Ω∩Uδ) (3.103)

where we used the estimate

h‖[∇nw]‖2
Fh(∂Ω∩Uδ) . ‖∇v‖

2
Th (3.104)

Applying now (3.32) and using δ ∼ h we conclude that

h−2‖w‖2
Th(Uδ)

+ ‖∇w‖2
Th(Uδ)

. h−1‖w‖2
∂ΩD

+ ‖∇w‖2
Ω + ‖w‖2

sh
. |||w|||2h (3.105)

�

Lemma 3.8. There is a constant such that for all v ∈ V, vh ∈ Vh, and w ∈ Vh,

(∇n(v − vh), w)χ,∂Ω .
(

(1 + | ln(h)|)‖∇(v − vh)‖Uδ

+ h‖∆v‖Uδ + h1/2‖[∇nvh]‖Fh∩Uδ
)
|||w|||h (3.106)

Proof. For v ∈ V , see (3.35), we have ∆v ∈ L2(supp(χ)) ⊂ L2(Uδ0) and using Green’s
formula

(∆v, χw)Ω = (∇nv, χw)∂Ω − (∇v, (∇χ)w)Ω − (∇v, χ∇w)Ω (3.107)

For vh ∈ Vh we use Green’s formula element wise

(∇vh, χ∇w)Ω = (∇nvh, χw)∂Ω + ([∇nvh], χw)Fh∩Ω (3.108)

− (∆vh, χw)Th∩Ω − (∇vh, (∇χ)w)Ω (3.109)

Combining the formulas and rearranging the terms we obtain

(∇n(v − vh), w)χ,∂Ω = (∇(v − vh), χ∇w)Ω + (∇(v − vh), (∇χ)w)Ω (3.110)

+ (∆v, χw)Ω + ([∇nvh], χw)Fh∩Ω (3.111)

To estimate the right hand side we may directly estimate the first two terms using the
Cauchy Schwarz inequality and (3.99),

(∇(v − vh), χ∇w)Ω . ‖∇(v − vh)‖Uδ‖∇w‖Uδ . ‖∇(v − vh)‖Uδ |||w|||h (3.112)

(∆v, χw)Ω . h‖∆v‖Uδh−1‖w‖Uδ . h‖∆v‖Uδ |||w|||h (3.113)
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Next using the Cauchy Schwarz inequality, the element wise trace inequality (3.28),

([∇nvh], χw)Fh∩Ω . h1/2‖[∇nvh]‖Fh∩Uδh−1/2(h−1‖w‖2
Th(Uδ)

+ h‖∇w‖2
Th(Uδ)

)1/2 (3.114)

. h1/2‖[∇nvh]‖Fh∩Uδ(h−2‖w‖2
Th(Uδ)

+ ‖∇w‖2
Th(Uδ)

)1/2 (3.115)

. h1/2‖[∇nvh]‖Fh∩Uδ |||w|||h (3.116)

where for the last inequality we employed (3.99). For the remaining term we use the
Cauchy Schwarz inequality, followed by (3.99) and (3.87),

(∇(v − vh), (∇χ)w)Ω . ‖∇(v − vh)‖Uδ
(
‖(∇χ)w‖Uδ(∂ΩD) + ‖(∇χ)w‖Uδ,ε

)
(3.117)

. ‖∇(v − vh)‖Uδ
(
δ−1‖w‖Uδ(∂ΩD) + ‖(∇χ)w‖Uδ,ε

)
(3.118)

. (1 + | ln(h)|)‖∇(v − vh)‖Uδ |||w|||h (3.119)

Collecting the bounds we arrive at

(∇n(v − vh), w)∂Ω .
(

(1 + | ln(h)|)‖∇(v − vh)‖Uδ (3.120)

+ h‖∆v‖Uδ + h1/2‖[∇nvh]‖Fh∩Uδ
)
|||w|||h (3.121)

which completes the proof of (3.106).
�

3.6 Interpolation

Let E : Hs(Ω) → Hs(Rd) be a continuous extension operator. Define the interpolant
πh : H1(Ω)→ Vh by πh = πh,Cl ◦E where πh,Cl : L2(Ωh)→ Vh is the Clement interpolant
and Ωh = ∪T∈ThT . Using the interpolation results for the Clement interpolation operator
and the stability of the extension operator we conclude that

‖v − πhv‖Hm(Ω) . hs−m‖v‖Hs(Ω) 0 ≤ m ≤ s ≤ 2 (3.122)

For the energy norm (3.36) it holds

|||v − πhv|||+ ‖πhv‖sh . hs−1‖v‖Hs(Ω) (3.123)

Proof. With ρ = v − πhv we have

|||ρ|||20,h . ‖∇ρ‖2
Ω + h−1‖ρ‖2

∂ΩD
(3.124)

Using (3.122) we directly have

‖∇ρ‖2
Ω . h2(s−1)‖u‖2

Hs(Ω) (3.125)
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and using the trace inequality

‖v‖2
∂ΩD
. δ−1‖v‖2

Uδ(∂ΩD) + δ‖∇v‖2
Uδ(∂ΩD) (3.126)

with δ ∼ h we obtain

h−1‖ρ‖2
∂ΩD
. h−1(δ−1‖ρ‖2

Uδ(∂ΩD) + δ‖∇ρ‖2
Uδ(∂ΩD)) (3.127)

. h−2‖ρ‖2
Uδ(∂ΩD) + ‖∇ρ‖2

Uδ(∂ΩD) (3.128)

. h2(s−1)‖v‖2
Hs(Ω) (3.129)

Finally, we have with πh,Cl∇Ev ∈ V d
h ,

‖πhv‖2
sh
. h‖[∇πhv − πh,Cl∇Ev]‖2

Fh (3.130)

. ‖∇πhv − πh,Cl∇Ev‖2
Th (3.131)

. ‖∇n(πhv − v)‖2
Th + ‖πh,Cl∇Ev −∇Ev‖2

Th . h2(s−1)‖v‖2
Hs(Ω) (3.132)

In the first inequality the inverse inequality

h‖[∇w]‖2
F . ‖∇w‖2

T1
+ ‖∇w‖2

T2
, w ∈ Vh|T1∪T2 (3.133)

where T1 and T2 are the two elements that share face F . �

3.7 Error Estimates

Theorem 3.1. Let u ∈ Hs(Ω), s ∈ [1, 3/2], be the solution to (1.1)-(1.2) and uh the
finite element approximation defined by (2.20), then

|||u− uh|||+ ‖uh‖sh . hs−1
(

(1 + | ln(h)|)‖u‖Hs(Ω) + ‖gN‖H̃s−3/2(∂ΩN )

)
+ h
(
‖f‖Uδ + ‖f‖H−1(Ω) + ‖gN‖H̃−1/2(∂ΩN ) + ‖gD‖H1/2(∂ΩD)

)
The logarithmic factor is present only for the case of mixed Dirichlet-Neumann boundary
conditions.

Proof. We split the error as follows

|||u− uh|||+ ‖uh‖sh . |||u− πhu|||h + |||πhu− uh|||h + ‖uh‖sh
. |||u− πhu|||h︸ ︷︷ ︸
.hs−1‖u‖Hs(Ω)

+ |||πhu− uh,ε|||h︸ ︷︷ ︸
I

+ |||uh,ε − uh|||h︸ ︷︷ ︸
II

+ ‖uh‖sh︸ ︷︷ ︸
III

where uh,ε is the solution to the regularized problem (3.17) and we used the interpolation
error estimate (3.123) to estimate the first term on the right hand side.
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Term I. The following estimate holds

|||πhu− uh,ε|||h . (1 + | ln(h)|)hs−1
(
‖u‖Hs(Ω) + ‖gN‖H̃s−3/2(∂ΩN )

)
+ h‖f‖Uδ (3.134)

To verify the estimate let ρh = πhu− uh,ε. Using coercivity (3.53) we obtain

|||ρh|||2h . Ah,ε(ρh, ρh) + sh(ρh, ρh)

and then employing the definition (3.17) of uh,ε we obtain

Ah,ε(πhu− uh,ε, ρh) + sh(πhu− uh,ε, ρh) (3.135)

= Ah,ε(πhu, ρh)− Lh(ρh) + sh(πhu, ρh) (3.136)

= Ah,ε(πhu− u, ρh) + Ah,ε(u, ρh)− Lh(ρh) + sh(πhu, ρh) (3.137)

. (|||πhu− u|||+ ‖πhu‖sh)|||ρh|||h + |(∇n(πhu− u), ρh)χ,∂Ω| (3.138)

+ |Ah,ε(u, ρh)− Lh(ρh)| (3.139)

. hs−1‖u‖Hs(Ω)|||ρh|||h + (1 + | ln(h)|)hs−1‖u‖Hs(Ω) + h‖f‖Uδ)|||ρh|||h (3.140)

+ (1 + | ln(h)|)|hs−1‖gN‖H̃s−3/2(∂ΩN )|||ρh|||h (3.141)

where we used the continuity (3.37) in (3.138), and in (3.140) we used the interpolation
error estimate (3.123) to estimate the first term and then the following estimates

|(∇n(πhu− u), ρh)χ,∂Ω| .
(

(1 + | ln(h)|)hs−1‖u‖Hs(Ω) + h‖f‖Uδ
)
|||ρh|||h (3.142)

|Ah,ε(u, ρh)− Lh(ρh)| . (1 + | ln(h)|)hs−1‖gN‖H̃s−3/2(∂ΩN )|||ρh|||h (3.143)

(3.142). Using (3.106) followed by the interpolation estimate (3.123),

|(∇n(πhu− u), ρh)χ,∂Ω| (3.144)

.
(

(1 + | ln(h)|)‖∇(u− πhu)‖Uδ (3.145)

+ h‖∆u‖Uδ + h1/2‖[∇nπhu]‖Fh∩Uδ)
)
|||ρh|||h (3.146)

.
(

(1 + | ln(h)|)hs−1‖u‖Hs(Ω) + h‖f‖Uδ)
)
|||ρh|||h (3.147)

where we used the fact ∆u = −f .

(3.143). Starting from the identity (3.19) we get

|Ah,ε(u, ρh)− Lh(ρh)| = |(gN , χρh)∂ΩN | (3.148)

. ‖gN‖H̃s−3/2(∂ΩN )‖χρh‖H3/2−s(∂ΩN ) (3.149)

To estimate ‖χρh‖H3/2−s(∂ΩN ) we use a trace inequality on Uδ0(∂ΩN)),

‖χρh‖H3/2−s(∂ΩN ) . ‖χρh‖H2−s(Uδ0 (∂ΩN )) (3.150)
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In order to estimate the right hand side using the available bounds we employ the inter-
polation between norms estimate

‖v‖Hγ(ω) . ‖v‖1−t
Hs1 (ω)‖v‖

t
Hs2 (ω) (3.151)

for t ∈ [0, 1] and γ = (1− t)s1 + ts2. In our case γ = 2− s ∈ [1/2, 1] and we take s1 = 0
and s2 = 1, which gives t = 2− s. Observing that supp(χ) ∩ Uδ0(∂ΩN) ⊂ Uδ,ε we get

‖χρh‖H2−s(Uδ,ε) . ‖χρh‖
s−1
H0(Uδ,ε)

‖χρh‖2−s
H1(Uδ,ε)

(3.152)

.
(

(1 + | ln(h)|)h|||ρh|||h
)s−1(

(1 + | ln(h)|)|||ρh|||h
)2−s

(3.153)

. (1 + | ln(h)|)hs−1|||ρh|||h (3.154)

Here we used the following two estimates. First

‖ρh‖2
Uδ,ε

=

∫
Σ

‖ρh‖2
Uδ,ε(z)

(3.155)

.
∫

Σ

h2‖ρh‖2
L∞(Uδ,ε(z))

(3.156)

.
∫

Σ

h2‖ρh‖2
L∞(Uδ0,ε0 (z)) (3.157)

. h2(1 + | ln(h)|)|||ρh|||21,h (3.158)

where we at last used (3.55). Second

‖χρh‖H1(Uδ,ε) . ‖χρh‖Uδ,ε + ‖(∇χ)ρh‖Uδ,ε + ‖χ∇ρh‖Uδ,ε (3.159)

. (1 + | ln(h)|)|||ρh|||h (3.160)

where we used (3.87) and (3.99). This completes the bound for Term I.

Term II. For ε ∼ hα with α = d, we shall prove the estimate

|||uh,ε − uh|||h . h
(
‖f‖H−1(Ω) + ‖gN‖H̃(∂ΩN ) + ‖gD‖∂ΩD

)
(3.161)

We start once again with coercivity, this time of Ah+sh, using the notation ζh = uh,ε−uh
we have

|||ζh|||2h . Ah(ζh, ζh) + sh(ζh, ζh) (3.162)

Then using the definition of the method and estimate (3.42) we obtain

|||ζh|||2h . Ah(uh,ε − uh, ζh) + sh(uh,ε − uh, ζh) (3.163)

= Ah(uh,ε, ζh) + sh(uh,ε, ζh)− Lh(ζh) (3.164)

= Ah(uh,ε, ζh)− Ah,ε(uh,ε, ζh) (3.165)

. εh1−d|||uh,ε|||h|||ζh|||h (3.166)

. hα+1−d
(
‖f‖H−1(Ω) + ‖gN‖H̃−1/2(∂ΩN ) + h−1/2‖gD‖H1/2(∂ΩD)

)
|||ζh|||h (3.167)

. h
(
‖f‖H−1(Ω) + ‖gN‖H̃−1/2(∂ΩN ) + ‖gD‖H1/2(∂ΩD)

)
|||ζh|||h (3.168)

for α = d, where we used the stability estimate (3.54).
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Term III. We finally have the following estimate for the stabilization term

‖uh‖sh ≤ ‖uh − uh,ε‖sh + ‖πhu− uh,ε‖sh + ‖πhu‖sh (3.169)

= |||ζh|||h + |||ρh|||h + ‖πhu‖sh (3.170)

where the first two terms are estimated in (3.161) and (3.134) and the third by the
interpolation estimate (3.123).

Conclusion. The theorem now follows by collecting the bounds for the terms I, II,
and III. �

Remark 3.1. Observe that the logarithmic factor can be traced to Lemma 3.5, Lemma
3.6 and (3.143) all of which are invoked only for the case of mixed boundary conditions
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[8] N. Lüthen, M. Juntunen, and R. Stenberg. An improved a priori error analysis
of nitsches method for robin boundary conditions. Numerische Mathematik, 2017.
https://doi.org/10.1007/s00211-017-0927-1.
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