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Abstract

High-resolution simulations of particle-based kinetic plasma models typically require a high number
of particles and thus often become computationally intractable. This is exacerbated in multi-query
simulations, where the problem depends on a set of parameters. In this work, we derive reduced
order models for the semi-discrete Hamiltonian system resulting from a geometric particle-in-cell
approximation of the parametric Vlasov–Poisson equations. Since the problem’s non-dissipative and
highly nonlinear nature makes it reducible only locally in time, we adopt a nonlinear reduced basis
approach where the reduced phase space evolves in time. This strategy allows a significant reduction
in the number of simulated particles, but the evaluation of the nonlinear operators associated with
the Vlasov–Poisson coupling remains computationally expensive. We propose a novel reduction of
the nonlinear terms that combines adaptive parameter sampling and hyper-reduction techniques to
address this. The proposed approach allows decoupling the operations having a cost dependent on the
number of particles from those that depend on the instances of the required parameters. In particular,
in each time step, the electric potential is approximated via dynamic mode decomposition (DMD) and
the particle-to-grid map via a discrete empirical interpolation method (DEIM). These approximations
are constructed from data obtained from a past temporal window at a few selected values of the
parameters to guarantee a computationally efficient adaptation. The resulting DMD-DEIM reduced
dynamical system retains the Hamiltonian structure of the full model, provides good approximations
of the solution, and can be solved at a reduced computational cost.

2020 Mathematics Subject Classification. 65M99, 37N30, 65P10.

1 Introduction
The kinetic modeling of collisionless magnetized plasmas is based on the Vlasov–Maxwell equations,
which describe the evolution of the distribution function of a collection of charged particles under the
action of self-consistent electromagnetic fields. Because of the high dimensionality of the phase space, the
large separation of scales, the inherent nonlinearity, and the infinitely many conserved quantities, the
numerical treatment of the Vlasov–Maxwell equations, and of its electrostatic limit of Vlasov–Poisson
equations, is a challenging task.

Arguably, the most widely used family of numerical methods for the solution of kinetic plasma models
are Particle-In-Cell (PIC) methods [35]. The idea of PIC schemes is to sample the distribution function
in velocity space using a finite number of macro-particles that are evolved along their characteristics. The
electromagnetic fields are discretized on a grid in the computational domain, and the macro-particles move
through the grid according to the Lorentz force. To preserve key physical properties of the problem, such
as conservation of total energy, PIC schemes have evolved into variational algorithms based on least action
principles [37, 36, 60] or on the Hamiltonian formulation of the Vlasov–Maxwell and Vlasov–Poisson
equations [40, 17]. In parallel, several numerical methods [60, 17] for kinetic plasma models have leveraged
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discrete differential forms and de Rham complexes for the geometric approximation of the electromagnetic
fields through Maxwell’s equations. Combining these ideas of structure-preserving approximations has
led to finite element PIC methods able to exactly satisfy physical constraints, like the Gauss laws, and to
guarantee the preservation of the Hamiltonian structure of the problem. Examples include the canonical
[51] and non-canonical [66] symplectic particle-in-cell algorithms, the Hamiltonian particle-in-cell method
of [22], and its generalization, the Geometric Electromagnetic PIC (GEMPIC) method [32].

The multiscale nature of plasmas implies that PIC codes require a significant amount of computational
resources to resolve the shortest length scale and the fastest plasma frequency, and, thus, to yield
stable and accurate numerical approximations. Moreover, the slow convergence rate of particle-based
methods necessitates the use of many particles to achieve sufficient accuracy, to capture, for example,
time-dependent physical phenomena such as plasma instabilities. As a result, PIC methods can be
prohibitively expensive in terms of computational cost. This computational burden can become intractable
in the parametric case, when simulations for many input parameters are of interest. This problem has
been tackled from an algorithmic standpoint via the improvement of algorithms’ structure and the
use of suitable computational hardware. In this work, we propose to address this computational issue
through model order reduction. Starting from the high-resolution geometric PIC approximation of the
Vlasov–Poisson problem, the idea is to derive a low-dimensional surrogate model that can be solved at a
reduced computational cost and still provides accurate approximate solutions.

In recent years, several works have been devoted to the development of reduced representations
of kinetic plasma dynamics based on model order reduction techniques, sparse grids and low-rank
approximation [30, 31, 13, 15, 16, 14]. A dynamical low-rank approximation of the infinite-dimensional
Vlasov–Poisson problem has been proposed in [15, 16, 14] with the intent to optimize the number of degrees
of freedom needed for a sufficiently accurate and stable approximation of the solution. The continuous
distribution function of the Vlasov–Poisson problem is expanded into a finite sum of low-rank factors, for
which a new dynamical system is derived. Discretization in space and velocity of the resulting problem
yields a low-rank approximation of the original dynamics. Another class of methods has considered
the model reduction of the ordinary differential equation ensuing from the semi-discretization of the
Vlasov–Poisson problem. A semi-Lagrangian method to solve the problem on a sparse grid is proposed in
[31]. In [30], time splitting is combined with a spline-based semi-Lagrangian scheme where each step
consists of linear combinations of low-rank approximations. In [13], the solution of the full-Eulerian time-
dependent Vlasov–Poisson system is approximated using a tensor decomposition whose rank is adapted
at each time step. To address the problem of the fluid closure for the collisionless linear Vlasov system,
an interpolatory order reduction is proposed in [18]. In the context of a particle-based discretization of
kinetic plasma models, a dynamic mode decomposition (DMD) strategy has been proposed in [44] to
reconstruct the electric field within an Electromagnetic particle-in-cell (EMPIC) algorithm. Although the
proposed approach can effectively capture and extrapolate the electric field behavior around equilibria,
the computational burden associated with the high number of particles is not overcome. Model order
reduction — in the number of particles — of parametric plasma models is, to the best of our knowledge,
an open problem. Moreover, the conservation of the Hamiltonian structure has not been explored in
reduced representations of plasma dynamics. This work aims at addressing these issues.

We focus on the parametric 1D-1V Vlasov–Poisson problem and consider its discretization in space
and velocity via a geometric PIC method. The resulting dynamical system has a Hamiltonian form and,
hence, corresponds to a symplectic flow. Model order reduction of the Vlasov–Poisson problem poses
some major challenges, and standard reduced basis techniques are prone to fail in terms of numerical
stability, computational efficiency, and accuracy of the simulations. The application [65] of the symplectic
reduced basis methods proposed in [48, 1] to the Vlasov equation, with a fixed external electrostatic
field, shows the importance of retaining the symplectic structure of Vlasov’s equation in the reduced
model. However, the multi-scale nature of the problem makes it difficult for a reduced order model to
characterize, with sufficient accuracy, the plasma behavior using a small number of degrees of freedom.
This implies that accurate reduced representations of the solution may require large approximation spaces
that eliminates the benefits of model order reduction. To overcome this limitation, we focus on methods
that adapt the approximate reduced space in time while preserving the geometric properties of the original
problem. This approach allows to accurately describe the plasma evolution with a considerably reduced
number of particles without compromising the quality of the simulation. The bulk of the computational
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effort to solve the reduced dynamics is due to the nonlinearity of the particles-to-grid mapping, and
thus the Hamiltonian, whose evaluation needs to be performed in the original high-dimensional space.
To alleviate these computational inefficiencies, we propose a strategy that approximates the reduced
Hamiltonian gradient via a combination of hyper-reduction techniques and parameter sampling procedures.
A reduction in the computational runtimes of the algorithm is achieved by decoupling the operations
that depend on the number of particles from those that depend on the number of parameters while
retaining an accurate representation of the plasma dynamics. The resulting dynamical system preserves
the symplectic structure of the problem, ensures the stability of the approximation, and exploits the
local-in-time low-rank nature of the solution.

The remainder of this work is organized as follows. In Section 2, the parametric Vlasov–Poisson
problem is introduced both in its classical Eulerian formulation and in the Hamiltonian formulation.
Moreover, the semi-discrete approximation of the problem via a particle method coupled with a finite
element discretization of the Poisson problem is described. In Section 3, the model order reduction of the
parametric dynamical system originating from the semi-discretization of the Vlasov–Poisson equation is
considered. First, we describe a global-in-time symplectic reduced basis method, and then we consider a
nonlinear approach, based on dynamical low-rank approximation, still preserving the symplectic structure
of the flow field. After discussing the computational complexity of the dynamical reduced basis algorithm,
Section 4 is devoted to the DMD-DEIM structure-preserving approximation of the nonlinear Hamiltonian
gradient and the particles-to-grid mapping. The numerical temporal discretization of the resulting
reduced model is discussed in Section 5. Numerical experiments in Section 6 on benchmark tests show
that the proposed method can accurately reproduce the dynamics of particle-based kinetic plasma models
with significant speedups compared to solving the original system. Concluding remarks are presented in
Section 7.

2 The physical model
We consider the parametric Vlasov–Poisson problem with parameters that describe physical properties of
the system. In particular, we focus on the study of the effect of parametrized initial distributions on
the plasma dynamics. Let us assume that the parameters range in a compact set Γ ⊂ Rq, with q ≥ 1.
The plasma, at any time t ∈ T ⊂ R, is described in terms of the distribution function f(t, x, v; η) in the
Cartesian phase space domain (x, v) ∈ Ω := Ωx × Ωv ⊂ R2. We focus on single species plasmas but the
proposed method can be trivially extended to the multi-species case. Assume that Ωx := Td = Rd/(2πZd)
is the d-dimensional torus and Ωv := Rd. For η ∈ Γ fixed, we introduce the space

Vη := {f(t, ·, · ; η) ∈ L2(Ω) : f(t, x, v; η) > 0 for all (x, v) ∈ Ω, f(t, ·, v; η) ∼ e−v2

as |v| → ∞}.

The 1D-1V Vlasov–Poisson problem (d = 1) reads: For each η ∈ Γ and f0(η) ∈ Vη
∣∣
t=0

, find f(·, ·, · ; η) ∈
C1(T ;L2(Ω)) ∩ C0(T ;Vη), and the electric field E(·, · ; η) ∈ C0(T ;L2(Ωx)) such that

∂tf(t, x, v; η) + v ∂xf(t, x, v; η) +
q

m
E(t, x; η) ∂vf(t, x, v; η) = 0, in Ω× T ,

∂xE(t, x; η) = q

∫
Ωv

f(t, x, v; η) dv, in Ωx × T ,

f(0, x, v; η) = f0(η), in Ω.

Here q is the charge and m is the particle mass. The boundary conditions for f are periodic in space and
prescribed via the space Vη in velocity.

Since the electric field can be written as the spatial derivative of the electric potential ϕ, namely
E(t, x; η) = −∂xϕ(t, x; η), the Vlasov–Poisson problem can be recast, for each η ∈ Γ, as

∂tf(t, x, v; η) + v ∂xf(t, x, v; η)−
q

m
∂xϕ(t, x; η) ∂vf(t, x, v; η) = 0, in Ω× T ,

− ∂xxϕ(t, x; η) = ρ(t, x; η) := q

∫
Ωv

f(t, x, v; η) dv, in Ωx × T ,
(2.1)
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where ρ is the electric charge density. In the presence of a background charge, as in the numerical
experiments, the right hand side of the Poisson problem reads 1−

∫
Ωv
f(t, x, v; η) dv and the formulation

of the method presented in the following sections can be extended straightforwardly.
The Lagrangian and Hamiltonian formulation of the Vlasov–Poisson and Vlasov–Maxwell equations

reveals a set of mathematical and geometric features that encode the physical properties of these systems.
The Vlasov–Poisson problem admits a Hamiltonian formulation, cf. [8, Sections 1 and 2], with a
Lie–Poisson bracket, and Hamiltonian given by the sum of the kinetic and electric energy as

H(f, η) =
m

2

∫
Ω

v2f(t, x, v; η) dx dv +
1

2

∫
Ωx

|E(t, x; η)|2 dx. (2.2)

Eulerian-based discretizations of kinetic plasma models in Hamiltonian form, with general noncanonical
Poisson brackets, do not appear to inherit the phase space structure of the continuous problem, as has been
observed in [42, 58]. On the contrary, particle-in-cell methods have led to the geometric approximation of
these models when coupled to the discretization of the electromagnetic fields via discrete differential forms
[66, 51, 22, 32]. For the structure-preserving approximation and reduction of the Vlasov–Poisson system
(2.1) we rely on the Hamiltonian structure of its semi-discrete formulation obtained via particle-based
methods as derived in the following.

2.1 Geometric particle-based discretization
We consider a particle method for the approximation of the Vlasov equation, coupled with aH1-conforming
discretization of the Poisson problem for the electric potential. In detail, the distribution function fs is
approximated by the superposition of N ∈ N computational macro-particles as

f(t, x, v; η) ≈ fh(t, x, v; η) =

N∑
ℓ=1

ωℓ S(x−Xℓ(t, η)) δ(v − Vℓ(t, η)), (2.3)

where ωℓ ∈ R is the weight of the ℓ-th particle, δ is the Dirac delta, S is a compactly supported shape
function, and, for each η ∈ Γ and t ∈ T , X(t, η) ∈ RN and V (t, η) ∈ RN denote the vectors of the position
and velocity of the macro-particles, respectively. In this work, we assume homogeneous macro-particles’
weights so that mℓ = m and ωℓ = ω, for all ℓ = 1, . . . , N . The proposed method can be extended to the
general case mutatis mutandis.

The idea of particle methods is to derive the time evolution of the approximate distribution function
fh by advancing the macro-particles along the characteristics of the Vlasov equation, i.e. the particles’
positions and velocities satisfy the following set of ordinary differential equations

Ẋ(t, η) = V (t, η), in T ,
V̇ (t, η) =

q

m
E(t,X(t, η); η), in T ,

(2.4)

under suitable initial conditions. Here and throughout, the dot denotes the derivative with respect to time.
The macro-particles move through a computational grid under the influence of electromagnetic fields. The
latter are self-consistently calculated from the positions of the particles on the grid via the Poisson equation
(2.1). On a partition of the spatial domain Ωx, we consider a finite element discretization of the Poisson
equation in the space PkΛ

0(Ωx) ⊂ H1(Ωx) of continuous piecewise polynomial functions of degree at most
k ≥ 1. The semi-discrete variational problem reads: For each η ∈ Γ, find ϕh(· ; η) ∈ C1(T ;PkΛ

0(Ωx))
such that

ah(ϕh(t, · ; η), ψ) = g(ψ), ∀ψ ∈ PkΛ
0(Ωx), (2.5)

where the bilinear form ah corresponds to the Laplace operator, while the linear function g is associated
with the density ρ ; thereby

ah(φ,ψ) :=

∫
Ωx

dxφ(x) dxψ(x) dx, g(ψ) := q

∫
Ω

fh(t, x, v; η)ψ(x) dv dx, ∀ψ,φ ∈ PkΛ
0(Ωx).
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Let {λ0i (x)}Nx
i=1 be a basis of the space PkΛ

0(Ωx), so that the semi-discrete potential can be written as
ϕh(t, · ; η) =

∑Nx

i=1 Φi(t, η)λ
0
i (x), for any t ∈ T and η ∈ Γ. We introduce the matrices L ∈ RNx×Nx and

Λ0(X) ∈ RN×Nx , defined as

Li,j := (dxλ
0
j , dxλ

0
i )L2(Ωx), (Λ0(X))ℓ,i := λ0i (Xℓ), i, j = 1, . . . , Nx, ℓ = 1, . . . , N. (2.6)

Then the time-dependent algebraic system ensuing from (2.5) reads

LΦ(t, η) = Λ0(X(t, η))⊤Mq =: ρh(X(t, η); η), (2.7)

where Mq ∈ RN is the vector of entries (Mq)ℓ = qωℓ, for ℓ = 1, . . . , N . The proposed discretization of
the electromagnetic field allows to recast the characteristic equations (2.4) as a Hamiltonian system. The
phase space of Hamiltonian systems is characterized by a symplectic geometric structure. We denote
with V2N ⊂ R2N the phase space of (2.4) and we assume it is a 2N -dimensional symplectic vector space.

Let W (t, η) = [X(t, η);V (t, η)] ∈ V2N denote the vector of all particle positions and velocities at a
given time t ∈ T and parameter value η ∈ Γ, obtained by concatenating the vectors X(t, η) and V (t, η).
The latter are also known as generalized position and momentum in the symplectic formalism. We denote
with W ∈ V2N ⊂ R2N the state vector collecting the positions and velocities of all particles of all species.
To simplify the notation, we define the Hamiltonian H resulting from the proposed discretization of (2.2)
up to the constant mp := mω. First, we introduce the (nonlinear) electric energy E : R2N × Γ → R
defined as

E(X(t, η); η) :=
m−1

p

2

∫
Ωx

|∂xϕh(t, x; η)|2 dx =
m−1

p

2
Φ(t, η)⊤LΦ(t, η)

=
m−1

p

2
M⊤

q Λ0(X(t, η))L−1Λ0(X(t, η))⊤Mq.

(2.8)

The Hamiltonian is the sum of the kinetic and electric energy and it is given, for any W (t, η) ∈ V2N , by

H(W (t, η)) =
1

2
V (t, η)⊤V (t, η) + E(X(t, η); η). (2.9)

Differentiating the discrete Hamiltonian in (2.9) with respect to the vector X of particles’ positions and
the vector V of particles’ velocities, results in the semi-discrete system in Hamiltonian formẊ(t, η)

V̇ (t, η)

 = J2N

m−1
p diag(Mq)∇Λ0(X(t, η))L−1Λ0(X(t, η))⊤Mq

V (t, η)

 . (2.10)

Here ∇Λ0(X) ∈ RN×Nx is defined as (∇Λ0(X))ℓ,i := (dxλ
0
i )(Xℓ), for i = 1, . . . , Nx and ℓ = 1, . . . , N ,

and J2N ∈ R2N×2N , called Poisson tensor, is the block matrix

J2N =

 0N IN

−IN 0N

 , (2.11)

with 0N and IN being the null and identity matrices of size N , respectively. A generalization of this
discretization to the case of Vlasov–Maxwell’s equations leads to the GEMPIC method introduced in [32].
Note that the proposed semi-discretization preserves the Hamiltonian, which corresponds to the discrete
energy of the system, but not the momentum. In PIC it does not appear possible to simultaneously
conserve momentum and energy [35].

3 Model order reduction of the Vlasov–Poisson problem
The parametric Hamiltonian system (2.10) reads: For each η ∈ Γ and for W0(η) = [X(0, η);V (0, η)] ∈ V2N ,
find W (·, η) ∈ C1(T ,V2N ) such that{

Ẇ (t, η) = J2N∇WH(W (t, η)), in T ,
W (0, η) =W0(η),

(3.1)

where the initial condition W0(η) ∈ V2N is prescribed by the initial distribution f0(η).
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3.1 Projection-based symplectic reduced basis methods
The parametric differential problem (3.1) is said to be reducible if the solution set M := {W (t, η) ∈
V2N ⊂ R2N : t ∈ T , η ∈ Γ}, which collects the solution of (3.1) under variation of time and parameter,
can be well approximated by a 2n-dimensional subspace M2n, with n ≪ N . The reducibility of a
problem is measured via the so-called Kolmogorov n-width [49]: roughly speaking, the faster its decay as
n increases, the better M can be approximated by a low dimensional space.

Within model order reduction techniques, projection-based reduced basis methods construct a modal
approximation of the solution W (t, η), for each (t, η) ∈ T × Γ, of the form UZ(t, η), U ∈ R2N×2n is
a basis spanning the reduced approximation space M2n, and Z(t, η) ∈ M2n ⊂ R2n are the expansion
coefficients of the approximate reduced solution in the reduced basis. The reduced solution is then
obtained by solving a lower dimensional dynamical systems obtained by the Galerkin projection of the
full model (3.1) onto the reduced space. If the basis U is orthogonal, the reduced problem reads: For
each η ∈ Γ and W0(η), find Z(t, η) ∈ M2n such that{

Ż(t, η) = U⊤J2N∇WH(UZ(t, η)), in T ,
Z(0; η) = U⊤W0(η).

(3.2)

The reduced basis U is constructed from a collection of full order solutions at sampled values of time and
parameters, via SVD-type methods, like POD, or greedy algorithms.

Note that (3.2) does not possess the Hamiltonian structure of the full model (3.1). In the setting of
conservative systems, it is vital not only to provide accurate reduced representations of the solution but
also to preserve the geometric structure underlying the physical properties and conservation laws of the
dynamics. Moreover, violating intrinsic properties of the dynamics raises concerns about the reduced
model’s validity and reliability as a surrogate model. To preserve the Hamiltonian structure of the
problem after reduction, symplectic reduced basis techniques have been proposed in [48, 1, 25]. Despite
symplectic reduced basis methods providing stable and structure-preserving surrogate models, these
might not be considerably more efficient to solve than the original model. Indeed, the non-dissipative
nature of Hamiltonian problems is associated with poor reducibility and a slowly decaying Kolmogorov
n-width. As a consequence, accurate reduced representations of the solution of (3.1) may require large
approximation spaces that jeopardize the benefits of model order reduction. To overcome this limitation,
we focus on adaptive methods where the reduced space changes in time while preserving the geometric
properties of the original problem.

We remark that, in this work, we aim at tackling the challenges posed by problems that are not
globally reducible in time. We implicitly assume that, for a fixed time, the solution under variation of
parameter can be accurately represented by a low-rank approximation. The more general case of local
reducibility with respect to both time and parameter is out of the scope of the present work and a short
discussion on possible research in this direction is presented in the conclusions.

3.2 Dynamical structure-preserving model order reduction
For the model order reduction of the semi-discrete Vlasov–Poisson problem (3.1), we adopt the structure-
preserving dynamical reduced basis method for Hamiltonian systems introduced in [45]. This approach
can be related to both classical reduced basis methods and dynamical low-rank approximation [28].
Differently from a traditional reduced basis approach, the method does not have a separation into an
offline phase and an online phase and it does not rely on snapshots. On the other hand, when the reduced
basis is fixed, i.e. the approach becomes global, we recover a symplectic reduced basis method as in
[48, 1]. As described in this section, the dynamical reduced models derived in [45] are obtained via a
structure-preserving projection of the original evolution problem onto the tangent space of the reduced
manifold, rather than on the reduced manifold itself. This is typical of dynamical low-rank approximation
techniques and dynamically orthogonal (DO) field equations [54, 43]. We refer to [45, Introduction] for a
detailed discussion on the relationship among these approaches.

Assume we seek to solve the semi-discrete Vlasov–Poisson problem (3.1) for p parameters Γh :=
{ηj}pj=1 ⊂ Γ. The idea of the dynamical approach [45] is to find a low-rank approximation of the solution
of problem (3.1) at each time instant. For this reason it is of interest to look at the properties of the
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solution, for each fixed time, under variation of the p parameters of interest. We therefore incorporate
the parameters of interest in the problem formulation by recasting (3.1) as an evolution equation in the
matrix-valued unknown R(t) := [W (t, η1)| . . . |W (t, ηp)] ∈ Vp

2N ⊂ R2N×p, with Vp
2N := V2N × · · · × V2N .

Given R0 = [W0(η1)| . . . |W0(ηp)], we look for R ∈ C1(T ,Vp
2N ), such that{

Ṙ(t) = J2N∇RHp(R(t)), in T ,
R(0) = R0.

(3.3)

The Hamiltonian of (3.3) is a vector-valued quantity Hp : Vp
2N → Rp that collects the values of the

Hamiltonian of (3.1) for each parameter in Γh, namely (Hp(R(·)))j = H(W (·, ηj)), for j = 1, . . . , p.
Moreover, the gradient ∇RHp(R) ∈ Vp

2N is defined as

(∇RHp(R))ℓ,j =
∂H(W (·, ηj))
∂Wℓ(·, ηj)

, ℓ = 1, . . . , 2N, j = 1, . . . , p.

The idea of dynamical low-rank approximations is to expand the full order solution in a truncated
modal decomposition where both the basis and the expansion coefficients are time-dependent. For all
t ∈ T , we approximate R(t), in (3.3), as R(t) = U(t)Z(t), where U(t) ∈ R2N×2n is the time-dependent
basis and Z(t) ∈ R2n×p are the associated expansion coefficients, with Z(t) := [Z1(t)| . . . |Zp(t)], and
Zi(t) := Z(t, ηi). The reduced space is then defined as

Mp
2n := {R ∈ R2N×p : R = UZ with U ∈ U(2n,R2N ), Z ∈ Z}, (3.4)

where
U(2n,R2N ) := St(2n,R2N ) ∩ Sp(2n,R2N ),

is the manifold of orthosymplectic matrices, being St(2n,R2N ) := {U ∈ R2N×2n : U⊤U = I2n} the Stiefel
manifold and Sp(2n,R2N ) := {U ∈ R2N×2n : UTJ2NU = J2n} the manifold of symplectic matrices. The
factor Z in (3.4) is assumed to belong to the space

Z := {Z ∈ R2n×p : rank(ZZT + J2nZZ
TJ2n) = 2n}, (3.5)

with n ≪ N and 2n < p. The full-rank condition, (3.5), guarantees the uniqueness of U in the
decomposition in (3.4), for all t ∈ T , once Z is fixed. Let Xi

r(t) := UX(t)Zi(t) ∈ RN and V i
r (t) :=

UV (t)Zi(t) ∈ RN denote the reduced velocity and position vectors, respectively, associated with the
parameter ηi, for i = 1, . . . , p. The submatrices UX , UV ∈ RN×2n are defined as (UX)i,j = (U)i,j ,
(UV )i,j = (U)i+N,j for any i = 1, . . . , N and j = 1, . . . , 2n. For fixed U and for each parameter ηi ∈ Γh,
the flow map of the coefficient equation is a canonical symplectic map with a Hamiltonian having the
i-th entry equal to

HU,i(Zi(t)) := H(U(t)Zi(t)) =
1

2
V i
r (t)

⊤V i
r (t) + EU,i(Zi(t)), (3.6)

where the first part is quadratic in the coefficients Zi, and EU,i : R2N → R is the nonlinear electric energy
component (2.8) of the Hamiltonian function, i.e., for all i ∈ Sp,

EU,i(Zi(t)) = E(Xi
r; ηi) =

m−1
p

2
M⊤

q Λ0(Xi
r(t))L

−1Λ0(Xi
r(t))

⊤Mq. (3.7)

We introduce the matrices

G p
H(U,Z) := [G p

H(U,Z1)| . . . |G p
H(U,Zp)] ∈ R2N×p,

and
gpH(U,Z) := [gpH(U,Z1)| . . . |gpH(U,Zp)] ∈ R2n×p

having as columns the p instances of the gradient of the Hamiltonian and of the reduced Hamiltonian,
respectively,

G p
H(U,Zi) := ∇UZi

HU,i(Zi) ∈ R2N , gpH(U,Zi) := U⊤G p
H(U,Zi) = ∇Zi

HU,i(Zi) ∈ R2n. (3.8)
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where

∇UZi
HU,i(Zi(t)) =

m−1
p diag(Mq)∇Λ0(Xi

r(t))L
−1Λ0(Xi

r(t))
⊤Mq

V i
r (t)

 . (3.9)

Under these assumptions, a dynamical system for the reduced solution is characterized via the symplectic
projection of the velocity field of the full dynamical system (3.3) onto the tangent space of Mp

2n at each
state [45, 43]. The resulting reduced dynamics is given in terms of evolution equations for the reduced
basis and for the expansion coefficients as

Ż(t) = J2ng
p
H(U,Z) = J2n∇ZHU (Z), in T ,

U̇(t) = (I2N − UU⊤)
(
J2NG

p
H(U,Z)Z⊤ −G p

H(U,Z)Z⊤J⊤
2n

)
S(Z)−1, in T ,

U(t0)Z(t0) = U0Z0,

(3.10a)

(3.10b)

(3.10c)

where S(Z) = ZZ⊤ + J⊤
2nZZ

⊤J2n, and the initial condition U0Z0 ∈ Mp
2n is computed via a truncated

complex SVD of R0 ∈ R2N×p. More details on the symplectic projection and on the gauge conditions
enforced on the tangent space of Mp

2n can be found in [45].
Equation (3.10a) describes the evolution of the coefficients Z(t) and is a system of p independent

equations, each in 2n unknowns. It corresponds to the Galerkin projection of the full order Hamiltonian
systems onto the space spanned by the columns of U(t), as obtained with the global symplectic reduced
basis method. Here, however, the basis U changes in time, and the evolution problem (3.10b), for the
basis U , is a matrix-valued problem in 2N ×2n unknowns on the manifold of ortho-symplectic rectangular
matrices. Observe that the reduced basis depends on the parameters, but it is the same for all parameters
in the set Γh.

4 Efficient treatment of nonlinear terms
In this section, we discuss the computational cost of the numerical solution of the reduced problem
(3.10), and propose a novel algorithm for the efficient and structure-preserving treatment of the nonlinear
operators.

The proposed reduction of the nonlinear terms is independent of the numerical time integrators used
to solve the reduced dynamical system (3.10). However, the algorithm can be optimized depending on
the time integrator of choice. We consider the structure-preserving partitioned Runge–Kutta temporal
integrators proposed in [45, 26]. In particular, the evolution of the basis U is approximated with an
explicit method, while a symplectic temporal integrator is employed for the evolution of the coefficients Z,
and this latter will generally be an implicit scheme. Observe that we do not require that the stages of the
RK integrators for the basis U and coefficients Z coincide. We will discuss the details and implementation
of such schemes in Section 6. Although not strictly necessary, here we also assume that the first step of
the partitioned RK method involves the evolution of the reduced basis; this assumption implies that we
have the information on the Hamiltonian gradient at the beginning of the temporal interval (at least for
some parameter values).

Let us split the temporal domain T into sub-intervals Tτ := (tτ−1, tτ ], for any τ = 1, . . . , Nτ , where
t0 = 0 and ∆t = tτ − tτ−1 is the uniform time step. For each temporal interval Tτ , the dynamical reduced
basis method involves the following operations.

• The evolution of the basis U requires O(Nnp)+O(N2
xp)+O(Npc)+O(Nn2)+O(n2p) flops, where

c ∈ N is the number of finite element basis functions whose support is contained in a given mesh
element, and we recall that N is the number of particles, n the size of the reduced basis and p
denotes the number of parameter values. Note that c is a mild constant, and it is equal to 2
for piecewise polynomial functions in 1D, as in the discretization discussed in Section 2.1. The
computational costs of this step are distributed as follows
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Arithmetic complexity Operation

O(Nnp) computation of Vr = UV Z and Xr = UXZ

O(Npc) assembly of ∇Λ0(Xi
r) and of Λ0(Xi

r), for all i ∈ Sp

O(Npc) +O(N2
xp) computation of diag(Mq)∇Λ0(Xi

r(t))L
−1Λ0(Xi

r(t))
⊤Mq

O(pn2) +O(n3) construction and inversion of the matrix S(Z)

O(Nnp) +O(Nn2) matrix-matrix multiplications in the r.h.s. of (3.10b)

The first three rows of the table correspond to the assembly and evaluation of G p
H(U,Z) for all p

parameters in Γh.

• The integration, using an implicit time scheme, of the evolution equation (3.10a) for the p vector-
valued coefficients requires O(Nnp) +O(N2

xp) +O(Npc) flops:

Arithmetic complexity Operation

O(Nn) computation of U⊤
V V

i
r = U⊤

V UV Zi

O(Nn) +O(N2
x) +O(Nc) assembly and evaluation of G p

H(U,Zi)

O(Nn) computation of U⊤
XG

p
H(U,Zi)

Each of the operation listed in the table needs to be performed for each parameter ηi ∈ Γh, at each
stage of the RK scheme, and at each iteration of the nonlinear solver.

The leading computational cost in both steps depends on the product of the number of particles N
and of the number of parameter p, both potentially large in multi-query simulations of high-dimensional
problems. This cost is associated with the remapping of the particles to the full dimensional space, in each
temporal interval and for each parameter, and with the evaluation of the velocity field of the reduced flow.
Indeed, the sole knowledge of the expansion coefficients with respect to the reduced basis is not enough to
compute the particles-to-grid mapping needed to evaluate the electric field and, hence, the Hamiltonian.
Even in the reduced model (3.10), these operations require the reconstruction of the approximate particle
positions, at a cost proportional to the size of the full model. This lifting to the high-dimensional space
needs to be performed for each instance of the parameter, at each stage of the RK time integrator, and
at every iteration of the nonlinear solver. Analogous computational problems are common in model order
reduction and emerge whenever non-affine and nonlinear operators are involved, cf. e.g. [52, Chapters 10
and 11]. In the presence of low-order polynomial nonlinearities, tensorial techniques [61] can be used
to separate terms that depend on full spatial variables and on reduced coefficients to allow efficient
computations of the nonlinear terms. The non-polynomial nature of the nonlinearity in the gradient of
(3.6) prevents us from using the aforementioned tensorial approach to accelerate the computation. For
general nonlinear operators, several so-called hyper-reduction techniques have been proposed to mitigate
or overcome the computational bottleneck associated with the lifting. The empirical interpolation method
(EIM) [3] and its discrete counterpart (DEIM) [9] are interpolatory techniques used to approximate the
nonlinearity in the projection-based ROM, requiring the computations of only a few components of the
original nonlinearity. While effective in the case where each component of the nonlinearity depends only
on a few components of the input, they are not suited for the treatment of not component-wise nonlinear
terms. Using a sparsity argument [9] or the introduction of auxiliary variables [46], DEIM has been
adapted to deal with the approximation of the nonlinear terms at interpolation points that require the
evaluation of the reduced solution on a limited number of neighboring mesh points, as it happens for
high-order spatial discretization schemes with large stencils. However, the same strategy does not work
for the treatment of the gradient of (3.6), as the inverse of the discrete Laplacian operator is generally
dense, and hence each of its entries requires the computation of Xi

r for p sampled parameters, making
traditional approaches computationally impractical. Moreover, traditional hyper-reduction techniques,
like EIM and DEIM, applied to a gradient vector field do not result in a gradient field, which means that
the geometric structure of the Hamiltonian dynamics is compromised in the hyper-reduction process.
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To achieve computational efficiency in the simulation of (3.10) without compromising its geometric
structure, we propose a strategy that approximates the reduced Hamiltonian gradient via a combinated
hyper-reduction technique and sampling procedure. A reduction in the computational runtimes of the
algorithm is achieved by decoupling the operations that depend on N from those that depend on p, while
retaining an accurate representation of the plasma dynamics. There are several challenges that we need
to face in the development of such techniques: (i) the preservation of the Hamiltonian structure of the
dynamics; (ii) the lack of information on the full model solution and nonlinear operators, traditionally
collected in an offline phase via snapshots; and (iii) the lack of a sparsity pattern in the nonlinear
Hamiltonian gradient, i.e., the fact that each entry of the electric energy vector (3.7) depends on all N
computational particles.

4.1 Parameter sampling
The reduced dynamics (3.10) involve p evolution equations for the expansion coefficients, one per
parameter value, and one evolution problem for the matrix-valued reduced basis. Since, at each time,
the reduced basis is the same for all parameters, one can reduce the computational cost required for its
evolution by sampling over the parameter space and constructing a reduced basis for only a subsample of
parameters, but which remains accurate for all other parameters in Γh. This corresponds to a reduction
in parameter space. Let us denote by p the cardinality of the set Γh and assume that the parameters
in Γh are indexed from the set Sp := {1, . . . , p}. Let us consider a subset Γ∗

h of Γh of size p∗ ≪ p.
Define Sp∗ ⊂ Sp to be the set of indices corresponding to the parameters in the selected subset so that
Γ∗
h = {ηi ∈ Γh| i ∈ Sp∗} ⊂ Γh. The idea of the proposed sampling approach is to replace, in the evolution

of the basis (3.10b), the matrix of the expansion coefficients Z(t) ∈ R2n×p by the matrix obtained via
the concatenation of the columns of Z with indices in Sp∗ . Following the discussion at the beginning of
the section, this approximation leads to a computational complexity for the basis evolution of the order
of O(Nnp∗) +O(N2

xp
∗) +O(Np∗c) +O(Nn2) +O(n2p∗). To preserve the accuracy of the method, we

must ensure that the chosen subset Γ∗
h is representative of the entire parameter set Γh. For the sake of

simplicity, in this work, we set it at t = 0, and we keep it fixed over time. Starting from Γ∗
h = ∅, the set

Γ∗
h is constructed using a greedy algorithm that, at each iteration, adds to the index subset Sp∗ the index
i that satisfies

max
i∈Γh\Γ∗

h

min
j∈Γh

∥Z0
i − Z0

j ∥2, (4.1)

until a user-defined threshold value of the cost function or a maximum number of iterations. Possible
research directions to improve the selection strategy would be to adapt in time the set Γ∗

h to capture
significant changes in the behavior of the solution relative to the parameters or to modify the cost
function to incorporate errors in the evaluation of physical quantities, such as the electric field. However,
as (4.1) is an NP-complete problem [59], it is not currently known if it is possible to find an optimal
parameter selection strategy with a polynomial cost in p. Thus, in the current form, while affordable if
performed only once at t = 0, the selection strategy may become computationally expensive for large p
and could compromise the efficiency of the proposed dynamical RB method if repeated in each temporal
sub-interval. Suboptimal, yet more efficient, algorithms could be adopted by framing the problem into
the more general column subset selection problem (CSSP) [5], that consists in finding an optimal subset
of columns of a given matrix that minimizes the residual of the projection of the given matrix onto the
selected column subset. Other parameter reduction strategies, like active subspaces [10], might also be
envisioned.

Concerning the expansion coefficients, for which one differential equation per parameter needs to be
solved, subsampling is not an option.

4.2 DMD-DEIM approximation of the Hamiltonian gradient
In this section, we develop a reduction algorithm where, in each temporal interval Tτ , DMD is used
for the hyper-reduction of the electric potential Φ(Xi

r(t)) = L−1Λ0(Xi
r(t))

⊤Mq in (3.7), while a DEIM
strategy is developed to approximate the component Λ0(Xi

r(t)) of the particles-to-grid mapping. Note
that in (3.6), the quadratic term involving the particles’ velocity represents a linear contribution in the
gradient of the reduced Hamiltonian and, hence, does not require any hyper-reduction.
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4.2.1 Dynamic Mode Decomposition of the electric potential

Dynamic mode decomposition is an equation-free data-driven approach, proposed in [56, 57], that uses
only data measurements of a given dynamical system to approximate the dynamics and predict future
states. The idea is to decompose the problem into a set of coherent spatial structures, known as DMD
modes, and associate correlated data to specific Fourier modes that capture temporal variations. DMD
was initially employed as a spectral decomposition method for complex fluid flows [53]. More recently, it
has proved successful in a wide range of settings such as background/foreground separation in real-time
video [19], characterization of dynamic stall [39], and analysis of the propagation of infectious diseases
[50]. DMD hinges on the theory of Koopman operators [29], which allows to represent the flow of a
nonlinear dynamical system via an infinite-dimensional linear operator on the space of measurement
functions. Without explicit knowledge of the operator describing the dynamics, DMD computes a
least-squares regression of data measurements to an optimal finite-dimensional linear dynamical system
that approximates the infinite-dimensional Koopman operator. In this subsection, we first describe the
classical DMD algorithm following [34]. Next, we introduce a sliding-window based DMD formulation for
the hyper-reduction of the electric potential in the dynamical reduced model (3.10) of the Vlasov–Poisson
problem.

Consider a general nonlinear dynamical system: Find y : T → Rℓ, for ℓ ∈ N such that{
ẏ(t) = F (t,y(t)), t ∈ T ,
y(t0) = y0.

(4.2)

Assume that we have as data measurements exact values or approximations of the state at different time
instants, namely

Y =
[
y0 y1 . . . yτ−1

]
∈ Rℓ×τ , Y′ =

[
y1 y2 . . . yτ

]
∈ Rℓ×τ , (4.3)

where yk = y(k∆t) and ∆t is the uniform time step. In the DMD method, data measurements are used
to approximate the nonlinear dynamics (4.2) by a locally linear system ẏ = Ay, where A ∈ Rℓ×ℓ is the
matrix that best fits the measurements in a least-square sense, i.e., A = argminB ∥Y′ −BY∥F , with
∥·∥F being the Frobenius norm. Then, A is given by A = Y′Y†, where † denotes the Moore-Penrose
pseudoinverse.

From the linear approximation of the dynamics, the DMD algorithm computes a low-rank eigende-
composition of the matrix A by extracting its rτ largest eigenvalues ΛA and corresponding eigenvectors
ΘA = [θA1 . . . θ

A
rτ ] ∈ Rℓ×rτ . The resulting DMD approximation of the state y(t), for t > τ∆t, reads

y(t) ≈ yDMD(t) = ΘA
(
Π⊙ eΩ(t−τ∆t)

)
=

rτ∑
j=1

θAj πje
ωj(t−τ∆t), (4.4)

where, for any j = 1, . . . , rτ , ωj := ln(ΛA
j )/∆t is the j-th entry of the vector Ω ∈ Rrτ , while πj is the

j-th entry of the vector Π = (ΘA)†y0 ∈ Rrτ containing the coordinates of the initial condition y0 with
respect to the DMD modes.

If the size of the matrix A is large, A might be severely ill-conditioned and not directly tractable.
In this situation, a different version of the DMD algorithm, proposed in [64], projects the data into a
low-rank subspace instead of deriving A directly from the data, as described in Algorithm 1. Moreover,
given the sensitivity of the DMD algorithm to the duration and sampling of the series Y and Y′, [12]
proposes a sliding-window approach where the measurement data are not taken in the whole temporal
interval but only in the sampling window [tτ−T , tτ ] of length T∆t, with T ∈ N. The rationale is that if
the system is time-varying and the incoming data is harvested in a streaming fashion, it may be beneficial
to accuracy and memory storage to consider only the most recent data. The only computational overhead
is the computation of the DMD modes and weights in the DMD approximation (4.4) as new data are
collected. This cost may be mitigated by efficient online updates of the eigenvalues and eigenvectors of A
[23] or by means of incremental SVD algorithms [41].

In the context of kinetic plasma PIC simulations, a DMD strategy has been used in [44] to detect and
track equilibrium states. The aforementioned method relies on snapshots of the high-fidelity simulation

11



Algorithm 1: DMD algorithm
Input : Y, Y′, tol.
Output : Λ, Θ.

1 Compute the truncated SVD of Y, Y = UΣV ⊤, using tol as tolerance for singular values
selection;

2 Define Atol = U⊤Y′V Σ−1;
3 Compute the eigendecomposition of Atol: AtolW =WΛ;
4 Reconstruct the eigendecomposition of A by defining is eigenvectors as Θ = Y′V Σ−1W .

until an equilibrium is detected and, after this time, the solution is extrapolated via the DMD modes.
Here, we propose to employ a DMD strategy in a different way, namely to hyper-reduce the self-consistent
electric potential Φ(Xi

r(t)) = L−1Λ0(Xi
r(t))

⊤Mq ∈ RNx that enters the reduced Hamiltonian (3.6) for
each parameter ηi ∈ Γh. The idea is to extract low-dimensional dynamical features from a time-series
of the electric potential and use them, as part of the DMD algorithm in (4.4), to extrapolate the value
of Φ(Xi

r(t)) needed for the computation of the reduced Hamiltonian (3.6) in each temporal interval Tτ .
In details, let Φi

τ , for a fixed parameter with index i ∈ Sp∗ and τ = 1, . . . , Nτ , be the approximation of
Φ(Xi

r(t)) at t = tτ for each parameter in the subset Γ∗
h. Since the first step of the temporal integrator

involves the evolution of the reduced basis, these quantities are computed while assembling the right hand
side of the basis evolution equation (3.10b). For each Tτ , we collect the time-discrete approximations of
the electric potential obtained in a past time window of length (T + 1)∆t;

Yi =
[
Φi

τ−T−1 Φi
τ−T · · · Φi

τ−2

]
, Y′

i =
[
Φi

τ−T Φi
τ−T+1 · · · Φi

τ−1

]
, (4.5)

where Yi,Y
′
i ∈ RNx×T for i = 1, . . . , p∗. Extracting the dominant modes from each realization of the

electric potential associated with a fixed parameter is a cumbersome task. To the best of our knowledge,
DMD-based methods for the model order reduction of parametric problems have not been developed.
In our setting, the dependence on the parameter comes from the state, and it is propagated via the
parametric initial distribution f0. This suggests that, instead of extracting the DMD modes for each
fixed parameter ηi ∈ Γ∗

h, we can incorporate the parameter in the DMD procedure to approximate the
dynamics of the electric potential for all parameters. A similar approach can be found in [55] when
dealing with bifurcation parameters in thermo-acoustic systems. For each parameter index i ∈ Sp, the
datasets Yi and Y′

i are concatenated column-wise to form two global datasets Y and Y′, i.e.

Y =
[
Y1 Y2 · · · Yp∗

]
, Y′ =

[
Y′

1 Y′
2 · · · Y′

p∗

]
, (4.6)

with Y,Y′ ∈ RNx×p∗T . This procedure is justified by the absence of an explicit dependence of the electric
potential on the parameter. Following Algorithm 1, we generate the DMD eigenvectors Θ ∈ RNx×rτ and
eigenvalues Λ ∈ Rrτ×rτ of the linear approximation of the dynamics for the problem of interest. The
resulting DMD approximation of the self-consistent electric potential reads

Φ(Xi
r(t)) ≈ Φi

DMD(t) = Θ
(
Πi ⊙ eW (t−(τ−1)∆t)

)
, ∀ i ∈ Sp∗ ,∀ t ∈ Tτ , (4.7)

with W ∈ Rrτ is the vector of entries ωj = ln(Λj)/∆t, for any j = 1, . . . , rτ , and Πi := Θ†Φi
τ−1 ∈ Rrτ for

any i ∈ Sp∗ .
Assuming a smooth dependence of the DMD coordinates Πi on the parameter, interpolation techniques

can be used to recover the DMD coordinates for parameters not included in Γ∗
h, similarly to the POD with

interpolation (PODI) [7]. In this work, we adopt the radial basis interpolation [6], with a Gaussian kernel,
as interpolation algorithm to reconstruct the DMD coordinates Πi for i ∈ Γh \ Γ∗

h. The computational
cost of the interpolation step is negligible as compared to the cost of Algorithm 1, as we comment on at
the end of the section. For ease of the notation, we use the same symbol Πi to represent the interpolated
DMD coefficients for all i ∈ Sp. Knowing Πi for all i ∈ Sp, the electric potential is reconstructed using

12



(4.7). The resulting sampling error can be controlled by enriching the subset of parameters Γ∗
h and by

optimal placement of the location of the parameters with indices in Sp∗ in the parameter space.
Using the DMD estimate of the potential Φ, the Hamiltonian function (3.6) is approximated as

HDMD
U,i (Zi) =

1

2
V i
r (t)

⊤V i
r (t) +

m−1
p

2
M⊤

q Λ0(Xi
r(t))Φ

i
DMD(t), ∀ i ∈ Sp, ∀ t ∈ Tτ . (4.8)

Remark 4.1. If the Hamiltonian function depends explicitly on the parameter, the approach outlined
above is not legitimized because a non-parametric operator would be used to approximate the parametric
potential. An alternative strategy would require an approximation of the form (4.7) for each parameter
realization ηi, with i ∈ Sp∗ , using different Wi and Θi for each i. The resulting DMD approximations of
the potential Φi

DMD(t) could then be directly interpolated on Sp or, as suggested in [11], interpolated
based on physical concepts as in PODI.

The DMD approximation based on the matrix A, instead of its projection Atol defined in Algorithm 1,
would result in a computational complexity O(N3

x). Although this cost might still be tractable in one
dimension, it becomes prohibitive when considering the Vlasov–Poisson problem in higher dimension.
The method described in Algorithm 1 is, therefore, the preferred choice.

The computational cost of the proposed DMD strategy, applied to the electric potential, reduces to
the cost needed to perform Algorithm 1 from the datasets Y,Y′ ∈ RNx×p∗T in (4.6). The truncated SVD
decomposition of Y in Line 1 has arithmetic complexity O(Nxp

∗Trτ ), where rτ is the number of retained
modes [21]. Observe that, if the number rτ of truncated modes is chosen based on a tolerance to control
the magnitude of the neglected singular values, Algorithm 1 computes the full SVD of Y and then performs
the truncation. This variant of Line 1 has computational complexity O(Nx(p

∗T )2), under the assumption
that the number T of chosen DMD samples and the number of parameter subsamples p∗ satisfy Nx > p∗T .
The eigendecomposition of Atol ∈ Rrτ×rτ in Line 3 costs O(r3τ ). Finally, the matrix-matrix multiplications
to compute Atol and Θ in Line 2 and Line 4, respectively, require O(Nxr

2
τ ) +O(Nxp

∗Trτ ) operations.
The computational cost to compute Φi

DMD for every parameter ηi ∈ Γh – including sampling parameters
and reconstructed parameters – is O(Nxrτp). The leading cost is, therefore, O(Nxrτp) +O(Nxp

∗Trτ ),
with the last term replaced by O(Nx(p

∗)2T 2) for a naive implementation of the truncated SVD. This
cost is linear in Nx, does not depend on the number N of particles, and only the computation of the
DMD coordinates Πi depends on the number of parameters p.

4.2.2 Discrete Empirical Interpolation Method for reduction in the number of particles

The DMD approach described in the previous section allows to derive an approximate electric potential
that can be evaluated independently on the number of particles. However, the evaluation of the electric
energy component of the approximate reduced Hamiltonian (4.8) still requires the particles-to-grid
mapping for Λ0(Xi

r(t)), for each value of the parameter, at each stage of the temporal solver, and at
each iteration of the nonlinear solver. The computational cost of this step is a major bottleneck of the
algorithm. To overcome this computational burden, we propose hyper-reduction of the approximate
reduced Hamiltonian (4.8) with a DEIM-based strategy.

The DEIM approach is a discrete variant of the empirical interpolation method (EIM) introduced in [3]
to approximate nonlinear functions via a combination of projection and interpolation. DEIM constructs
carefully selected interpolation indices to specify an interpolation-based projection so that the complexity
of evaluating the nonlinear term becomes proportional to the (small) number of selected spatial indices.
The gist of the DEIM approximation of a given nonlinear operator F : RN → RN is to replace it with
its oblique projection into a lower-dimensional space obtained from the most relevant components of F .
Starting from snapshots of the nonlinear function F , DEIM constructs a lower-dimensional space as the
span of the left singular vectors associated with the d≪ N largest singular values of the snapshot matrix.
If Ψ = [ψ1 . . . ψd] ∈ RN×d denotes the DEIM basis, the DEIM approximation of F reads

F (x) ≈ Ψ(P⊤Ψ)−1P⊤F (x), ∀x ∈ RN , (4.9)

where P ∈ RN×d is defined as P := [eℓ1 . . . eℓd ], with ek = {0, 1}N being the k-th canonical vector. We
denote by IDEIM the set of indices corresponding to the DEIM sampling points so that IDEIM = {ℓk}dk=1.

13



The DEIM sampling indices are iteratively chosen according to the greedy procedure proposed in [9,
Algorithm 1]. The k-th step, for 1 ≤ k ≤ d, of the algorithm consists in choosing the index of the
k-th DEIM vector ψk that maximizes the DEIM projection error of ψk into the current DEIM basis
[ψ1 . . . ψk−1] ∈ RN×(k−1). Under the assumption that each entry of the nonlinear vector-valued function
F depends only on a few entries of the input vector x, the computation of P⊤F (x) requires only
d evaluations of the nonlinear function leading to a computational cost independent of the original
dimension N .

The application of the classical DEIM procedure for the hyper-reduction of the nonlinear Hamiltonian
gradient (3.9) is challenged by several factors. As stated at the beginning of the section, applying the
DEIM interpolation directly to the right-hand side of the coefficients evolution equations (3.10a) arising
from the dynamic reduced basis approach, would not result in a structure-preserving approximation.
Moreover, the classical DEIM algorithm hinges on the availability of snapshots of the full model nonlinear
operator of interest collected in the offline phase. In our dynamical model order reduction approach,
there is no offline phase and, therefore, snapshots are not available.

We consider the Hamiltonian splitting in (3.6), and the approximation of the reduced electric energy
(3.7) resulting from DMD, namely

EDMD
U,i (Zi(t), t) :=

m−1
p

2
M⊤

q Λ0(Xi
r(t))Φ

i
DMD(t), ∀i ∈ Sp, ∀ t ∈ Tτ ,

where Φi
DMD is defined in (4.7). Approximating directly the vector ∇EDMD

U,i by a DEIM interpolation, as
in (4.9), would not preserve the geometric structure of the problem because it is not possible to define
explicitly an Hamiltonian gradient from the interpolated vector field. We propose a DEIM approximation
of the reduced electric energy via hyper-reduction of the term Λ0(Xi

r(t)) ∈ RN×Nx , which otherwise
would require the evaluation of the finite element basis functions at each particle position.

Let us introduce the function Ni(X
i
r(t), t) := Λ0(Xi

r(t))Φ
i
DMD(t) ∈ RN ; approximated using a DEIM

approach in each temporal interval Tτ as follows. First, we consider samples of the nonlinear term
associated with the electric potential Φ (2.7) at p∗ instances of the parameter and over a temporal window
of length (T + 1)∆t. These are obtained from simulations of the reduced dynamical system in the past
window of interest. The data matrix Y ∈ RN×p∗(T+1) is defined as

Y =
[
Y1 Y2 · · · Yp∗

]
, Yi :=

[
Λ0(Xi

r(tτ−T−1))Φ
i
τ−T−1 · · · Λ0(Xi

r(tτ−1))Φ
i
τ−1

]
. (4.10)

Note that the terms Λ0(Xi
r(tτ−j−1)) and Φi

τ−j−1, for i ∈ Γ∗
h and j = 0, . . . , T , are available from the

evolution equation (3.10b) for the reduced basis solved at previous time steps. The DEIM basis matrix
Ψτ ∈ RN×d is obtained by taking the first d left singular vectors of the matrix Y, where the value d is
fixed at the beginning of the simulation and might differ for different problems. We will comment on this
in the numerical experiments in Section 6. Denoting with Pτ ∈ RN×d the matrix corresponding to the
DEIM indices obtained as describe above, the nonlinear term Ni(X

i
r(t), t) is approximated by

Ψ⊤
τ (P

⊤
τ Ψτ )

−1P⊤
τ Ni(X

i
r(t), t), ∀ i ∈ Sp, ∀ t ∈ Tτ .

Observe that, although the basis Ψτ is constructed from the parameter subsample Γ∗
h, the nonlinear term

Ni is approximated by its DEIM projection onto the DEIM space for all instances of the parameter, i.e.,
for all i ∈ Sp.

To reduce the computational burden associated with the computation of the DEIM sampling points
Pτ in each temporal interval Tτ , we follow an update strategy similar to the one proposed in [47]. All the
interpolation indices in the set IDEIM are computed using the standard DEIM greedy method; not at
all time steps but only every kDEIM > 1 time steps. In other temporal intervals, we proceed as follows.
Assume we have computed the set of DEIM indices Iτ−1

DEIM in the temporal interval Tτ−1, then, in the
following interval Tτ , we update only the indices in the subset I∗ ⊂ Iτ−1

DEIM of cardinality nDEIM given by

I∗ = argmax
I⊂Iτ−1

DEIM,
dim(I)=nDEIM

∑
k∈I

(ψτ
k)

⊤ψτ−1
k , (4.11)
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where ψτ
k denotes the k-th vector of the DEIM basis Ψτ at time tτ . The remaining d− nDEIM indices

in Iτ−1
DEIM\I∗ are inherited by IτDEIM. The rationale for the choice of I∗ is to only update the indices

associated with the DEIM basis vectors at tτ−1 that have undergone the largest rotations in the DEIM
basis update from Ψτ−1 to Ψτ .

The resulting approximate reduced Hamiltonian, associated with the parameter ηi ∈ Γh, reads

HDD
U,i (Zi(t), t) =

1

2
V i
r (t)

⊤V i
r (t) +

m−1
p

2
M⊤

q Ψτ (P
⊤
τ Ψτ )

−1P⊤
τ Λ0(Xi

r(t))Φ
i
DMD(t), ∀i ∈ Sp, ∀t ∈ Tτ .

(4.12)
Observe that the multiplication of the matrix Λ0(Xi

r), of the finite element basis functions evaluated at
the particles’ position, by the DEIM sampling matrix P⊤

τ , corresponds to evaluating the finite element
basis functions only on a subset of d ≪ N particles. Hence, this operation represents a substantial
reduction in the number of particles.

The computational cost of the DEIM algorithm can be summarized as follows. The computation of
the data matrix in (4.10) only involves the multiplications of the terms Λ0(Xi

r(tτ−j−1)) and Φi
τ−j−1, for

i ∈ Γ∗
h and j = 0, . . . , T . Indeed, since these terms are available from the solution of the reduced basis

evolution at previous time steps, there is no cost associated with their assembly, at least at this stage of
the proposed model order reduction algorithm. The matrix-matrix multiplications require O(Np∗Tc),
where p∗ is the dimension of the subset of sampling parameters, T is the number of samples in the
temporal window, and c is a mild constant that depends only on the support of the finite element basis
functions. The truncated SVD decomposition of the matrix Y ∈ RN×p∗(T+1) has arithmetic complexity
O(Np∗Td), where d is the number of DEIM modes. The computational cost required to assemble the
interpolation matrix Pτ ∈ RN×d using [9, Algorithm 1] only depends on d. This cost is further reduced
by updating the indices according to the strategy described above and inspired by the adaptive sampling
of [47]. Hence, the leading computational cost of the DEIM algorithm is O(Np∗Td).

4.3 DMD-DEIM reduced dynamics and computational complexity
From (4.12), the Hamiltonian gradient G p

H(U,Zi) in (3.8) is approximated as

GDD
H (U,Zi, t) := ∇UZi

HDD
U,i (Zi(t), t) =

m−1
p diag

(
∇Λ0(Xi

r(t))Φ
i
DMD(t)

)
Pτ (P

⊤
τ Ψτ )

−⊤Ψ⊤
τ Mq

V i
r (t)

 , (4.13)

for all i ∈ Sp, and t ∈ Tτ . Similarly, the approximation of the gradient of the reduced Hamiltonian
gpH(U,Zi) reads

gDD
H (U,Zi, t) = U(t)⊤GDD

H (U,Zi, t) = ∇Zi
HDD

U,i (Zi(t), t)

= UV (t)
⊤V i

r (t) +m−1
p UX(t)⊤diag

(
∇Λ0(Xi

r(t))Φ
i
DMD(t)

)
Pτ (P

⊤
τ Ψτ )

−⊤Ψ⊤
τ Mq,

(4.14)

for all i ∈ Sp, and t ∈ Tτ .
The reduced dynamical system (3.10) is approximated by replacing the gradient of the reduced

Hamiltonian gpH(U,Zi) ∈ R2N with its DMD-DEIM approximation gDD
H (U,Zi, t) from (4.14) in the

evolution equations of the expansion coefficients. The DMD-DEIM reduced dynamics reads
Ż(t) = J2ng

DD
H (U,Z, t), in T ,

U̇(t) = (I2N − UU⊤)(J2NG
p∗

H (U,Z)Z⊤−G p∗

H (U,Z)Z⊤J⊤
2n)S(Z)

−1, in T ,
U(t0)Z(t0) = U0Z0,

(4.15a)

(4.15b)

(4.15c)

Note that this approximate reduced model retains the geometric structure of the full model.
We analyze the computational cost to assemble and evaluate the right hand side of the DMD-

DEIM reduced model (4.15) at each time instance. We then compare the results with the ones at the
beginning of Section 4 corresponding to the reduced model. The evolution of the reduced basis requires
O(Nnp∗) +O(N2

xp
∗) +O(Np∗c) +O(Nn2) +O(n2p∗) flops owing to the parameter sampling discussed
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in Section 4.1. This cost also includes the assembly of the quantities Λ0(Xi
r) and Φi needed in the DMD

and DEIM algorithms. The computational cost required to assemble and evaluate the velocity field of the
flow characterizing the evolution of the coefficients reduces to the cost of the evaluation of the gradient
(4.14) of the DMD-DEIM Hamiltonian at each time instant t. This includes:

(1) The cost to compute the linear part U⊤
V Vr of (4.14), for all instances of the parameter in Γh, is

O(Nn2)+O(pn2). Note that the cost O(Nn2) required to assemble the matrix U⊤
V UV is performed

once per stage of the RK time integrator, while the matrix-matrix product (U⊤
V UV )Z, at cost

O(pn2), has to be performed, at every RK stage, and for each iteration of the nonlinear solver.

(2) The cost to compute the DMD approximation of the electric potential Φi
DMD ∈ RNx , for any i ∈ Sp,

is O(Nxp
∗Trτ ) + O(Nxrτp), as shown in Section 4.2.1. This cost is linear in Nx, and does not

depend on the number N of particles. The evaluation of Φi
DMD, that requires O(Nxrτp) flops,

needs to be performed at each stage of the RK scheme and at each iteration of the nonlinear solver.
The other cost O(Nxp

∗Trτ ) is accounted for once per time step.

(3) The cost to run the DEIM algorithm is O(Np∗Td) + O(Np∗Tc), as described in Section 4.2.2.
The matrix-matrix multiplication (P⊤

τ Ψτ )
−⊤Ψ⊤

τ Mq costs O(Nd) +O(d3). These operations are
performed once per time step.

(4) The computation of the nonlinear time-dependent part of (4.14) for all parameters ηi ∈ Γh, namely
U⊤
Xdiag

(
∇Λ0(Xi

r(t))Φ
i
DMD(t)

)
Pτ , requires O(pdn) +O(pdc) operations. This includes the cost of

the matrix-matrix multiplications and the cost O(pdc) to assemble ∇Λ0(Xi
r) for d particles.

To summarize, we report, in the following table, the leading arithmetic complexity of the various steps
required to solve the DMD-DEIM reduced system (4.15) in a fixed time interval Tτ . Here ns denotes the
number of stages of the RK time integrator and is the number of iteration of the nonlinear solver in the
implicit timestepping, see also Section 5 for further details.

Leading arithmetic complexity Operation

O(Nnp∗ns) +O(N2
xp

∗ns) +O(Nn2ns) evolution of the reduced basis

O(Nn2ns) computation of U⊤
V UV in (4.14)

O(Nxrτp
∗T ) construction of the DMD approximation as in Section 4.2.1

O(Np∗Td) +O(Np∗Tc) construction of the DEIM approximation as in Section 4.2.2

O(pn2nsis) +O(Nxrτpnsis) evolution of (4.14) for all parameters ηi ∈ Γh

The first two rows of the table report the operations required once per stage of the RK time integrator,
while the third and forth rows refer to the operations required once per time interval. Note that these
operations are shared by all parameters, resulting in a computational cost independent of the size p of the
parameter set Γh, but only dependent on the number of parameter subsamples p∗. The last row reports
the arithmetic complexity of the parameter-dependent computations. These need to be performed at
each RK stage and iteration of the nonlinear solver, but their computational cost is independent of the
number of particles N . Therefore, the DMD-DEIM approximation allows a complete separation of the
costs involving the number N of particles and the number p of parameters, both potentially large.

5 Numerical temporal integration of the DMD-DEIM system
For the numerical time integration of the DMD-DEIM reduced dynamics (4.15), we adopt the partitioned
RK method of order 2 proposed in [26]. The idea is to combine a symplectic temporal integrator for the
evolution (4.15a) of the expansion coefficient, with a time discretization of the basis evolution (4.15b)
able to preserve the ortho-symplectic constraint. For the latter, we adopt the tangent method proposed
in [45], summarized next.
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In each temporal sub-interval Tτ = (tτ−1, tτ ], given the approximate reduced basis Uτ−1, the method
constructs a local retraction Rτ−1 from the tangent space TUτ−1U into U so that U(t) = Rτ−1(ξ(t)) for
some ξ in the tangent space at Uτ−1. For the computation of Uτ , the idea is to evolve ξ(t) in the tangent
space and then recover U via the retraction. The reduced problem (4.15) in each temporal sub-interval
Tτ is re-written in terms of the variable Z(t) and ξ(t) as: Given Zτ−1 and ξτ−1 = 0, find Z(t) and ξ(t)
such that {

Ż(t) = J2n g
DD
H

(
Rτ−1(ξ(t)), Z(t), t

)
, in Tτ ,

ξ̇(t) = Y(ξ(t), Z(t)), in Tτ .
(5.1a)

(5.1b)

The velocity field Y : TUτ−1
U × Z → R2N×2n, describing the local flow on the tangent space at Uτ−1, is

Y(ξ, Z) := −Uτ−1(R⊤
τ−1(ξ)Uτ−1 + I2n)

−1(Rτ−1(ξ) + Uτ−1)
⊤Υ(ξ, Z) + Υ(ξ, Z)− Uτ−1Υ

⊤(ξ, Z)Uτ−1,

where Υ(ξ, Z) is given by

Υ(ξ, Z) :=
(
2X (Rτ−1(ξ), Z)− (WU⊤

τ−1 − Uτ−1W
⊤)X (Rτ−1(ξ), Z)

)
(U⊤

τ−1Rτ−1(ξ) + I2n)
−1,

with 2W := (2I2N − Uτ−1U
⊤
τ−1)ξ and X : R2N×2n × Z → R2N×2n being the velocity field of the

approximate basis evolution in (4.15b), i.e.

X (U,Z) := (I2N − UU⊤)
(
J2NG

p∗

H (U,Z)Z⊤−G p∗

H (U,Z)Z⊤J⊤
2n

)
(ZZ⊤ + J⊤

2nZZ
⊤J2n)

−1.

The retraction is defined according to [45, Proposition 5.6] as Rτ−1(ξ) = cay(WU⊤
τ−1 − Uτ−1W

⊤)Uτ−1

where cay denotes the Cayley transform. We refer the reader to [45, 26] for further details regarding the
formal derivation of (5.1). Note that, with the algorithm proposed in [45, Section 5.3.1], the computation
of the retraction R and the assembly of the operator Y have arithmetic complexity O(Nn2).

The partitioned Runge–Kutta scheme applied to (5.1) reads

Zτ = Zτ−1 +∆t

ns∑
ℓ=1

bℓkℓ,

ξτ = ∆t

ns∑
ℓ=1

b̂ℓk̂ℓ, Uτ = RUτ−1
(ξτ ),

k1 = J2n g
DD
H

(
Uτ−1, Zτ−1 +∆t

ns∑
j=1

a1,jkj , tτ−1

)
, k̂1 = X

(
Uτ−1, Zτ−1 +∆t

ns∑
j=1

a1,jkj

)
,

kℓ = J2n g
DD
H

(
RUτ−1

(
∆t

ℓ−1∑
j=1

âℓ,j k̂j
)
, Zτ−1 +∆t

ns∑
j=1

aℓ,jkj , tτ−1 + cℓ∆t

)
, ℓ = 2, . . . , ns,

k̂ℓ = Y
(
∆t

ℓ−1∑
j=1

âℓ,j k̂j , Zτ−1 +∆t

ns∑
j=1

aℓ,jkj

)
, ℓ = 2, . . . , ns,

(5.2a)

(5.2b)

(5.2c)

(5.2d)

(5.2e)

where {aℓ,j , bj , cj} and {âℓ,j , b̂j} are the set of coefficients corresponding to the implicit midpoint rule
and the explicit midpoint method, respectively, cf. [26, Appendix A]. Note that the Hamiltonian (2.9)
is separable, i.e. the gradient of the electric energy determines the evolution of the state variable and
the gradient of the kinetic energy describes the dynamics of the momentum. The separability of the full
order Hamiltonian is, however, not inherited by the reduced model, as seen in (3.6). This precludes the
explicit integration of (5.2a). Even though explicit numerical integrators for non-separable Hamiltonian,
based on Hamiltonian extensions, have been recently proposed [63], further investigations are required to
assess their accuracy in the framework of partitioned Runge–Kutta schemes.

For comparison purposes, in the numerical experiments, we will solve the full order model (2.10).
The Störmer-Verlet scheme [20, Section I.1.4] is the most popular symplectic integrator for separable
Hamiltonian systems and yields the following system of equations

Xi
τ = Xi

τ−1 +∆t

(
V i
τ−1 +

∆t

2
Eh(X

i
τ−1; ηi)

)
,

V i
τ = V i

τ−1 +
∆t

2

(
Eh(X

i
τ−1; ηi) + Eh(X

i
τ ; ηi)

)
,

(5.3a)

(5.3b)
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to be solved for each of the p parameters ηi ∈ Γh. Here Eh denotes the approximate electric field (up to
constants), i.e. Eh(X

i
τ ; ηi) = −m−1

p diag(Mq)∇Λ0(Xi
τ )L

−1Λ0(Xi
τ )Mq.

We summarize the main steps of the proposed method in Algorithm 2.
Algorithm 2: DMD-DEIM dynamical model order reduction

Input : f(0, x, v; η), {ηi}pi=1, Γh, p∗, T , kDEIM.

1 Inizialize particles’ positions {Xi
0}pi=1 and velocities {V i

0 }pi=1 via inverse transform sampling from
f(0, x, v; ηi). Define W0(ηi) = [Xi

0;V
i
0 ];

2 Compute U0 and Z0 via truncated complex SVD of R0 = [W0(η1)| . . . |W0(ηp)];
3 Define the parameter subset Γ∗

h ⊂ Γh, of size p∗ ≪ p, and the indices subset Sp∗ as in Section 4.1;
4 Compute the potential Φi

0, for any i ∈ Sp∗ , by solving the Poisson problem (2.7).;
5 Initialize Yi

DMD := [Φi
0] and Y′,i

DMD := [ ]. Initialize Yi
DEIM := [Λ0(Xi

r(t0))Φ
i
0];

6 for τ = 1, . . . , Nτ do
7 if τ ≤ T
8 Solve the system (3.10a)-(3.10b) in Tτ with the partitioned RK described in Section 5;
9 For any i ∈ Sp∗ , update Yi

DMD = [Yi
DMD Φi

τ ] and Y′,i
DMD = [Y′,i

DMD Φi
τ ];

10 For any i ∈ Sp∗ , update Yi
DEIM :=

[
Yi

DEIM Λ0(Xi
r(tτ ))Φ

i
τ

]
.

11 elseif τ > T
12 At each stage of the RK time integrator:
13 Solve the evolution equation (4.15b) for the reduced basis as in (5.2b);
14 For any i ∈ Sp∗ , update Yi

DMD = [Yi
DMD Φi

τ ] and Y′,i
DMD = [Y′,i

DMD Φi
τ ];

15 Remove the outdated terms at τ − T − 1 from Yi
DMD and at τ − T from Y′,i

DMD;
16 For any i ∈ Sp∗ , update Yi

DEIM :=
[
Yi

DEIM Λ0(Xi
r(tτ ))Φ

i
τ

]
;

17 Remove the outdated terms at τ − T − 1;
18 Compute ΦDMD using (4.7) as described in Section 4.2.1;
19 Approximate Λ0(Xi

r)Φ
i
DMD, for any i ∈ Sp, as described in Section 4.2.2;

20 Build gDD
H as in (4.14);

21 Solve the evolution equation (4.15a) for the coefficients as in (5.2a).
22 end if
23 end for

6 Numerical experiments

6.1 Implementation and numerical study
In this section, we apply the proposed structure-preserving dynamical model order reduction approach to
several periodic electrostatic benchmark problems. In all the examples, computational macro-particles
are loaded from a perturbed initial distribution given by

f(0, x, v; η) = fv(v; η)fx(x; η), (6.1)

where fv(v; η) is the initial velocity distribution, and fx(x; η) := 1 + α cos(kx) is the initial perturbation,
with k as the wavenumber and α as the amplitude of the perturbation. We have chosen physical units
such that the particle mass and particle charge are normalized to one for electrons, i.e., q = −1 and
m = 1, and the weight w of the computational macro-particles is set to N−1. To reduce the statistical
noise [27, 33] introduced by the particle discretization (2.3) of the initial condition (6.1), particles are
loaded following a quiet start procedure based on a quasirandom sequence of samples. In detail, particles’
positions and velocities are initialized by evaluating the inverse cumulative distribution function of
f(0, x, v; η) at the points defined by the Hammersley sequence [62] of length N . The distribution is
defined over Ω := Ωx × Ωv, with Ωv = [−10, 10] for all numerical experiments and Ωx specified for each
example. The quasirandom Hammersley sequence is characterized by a discrepancy value proportional to
N−1, whereas for a random distribution, the discrepancy is proportional to N−1/2. Since the discrepancy
measures the highest and lowest densities of points in a sequence, the Hammersley sequence guarantees
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that the particles are almost evenly distributed, and a significant noise reduction in the electrostatic
field is therefore achieved. The p test parameters are sampled from the set Γ also using a quasirandom
Hammersley sequence.

The DMD-DEIM reduced order model (4.15) is numerically integrated in time, in the interval
T = (0, tf ], according to the scheme described in Section 5, resulting in the system of equations in (5.2).
The full order model is solved using the Störmer-Verlet scheme (5.3). The same uniform time step ∆t
and number of time steps Nτ := tf/∆t+ 1 are considered for the numerical integration of the two models.
In the following, we adopt the notation W i

τ := [Xi
τ ;V

i
τ ] ∈ R2N and Ri

τ := [Xi
r,τ ;V

i
r,τ ] = UτZi,τ ∈ R2N

to denote the numerical solutions of the discrete full order model (5.3) and the discrete reduced order
model (5.2) for the parameter ηi at time tτ , respectively.

The reducibility of the considered benchmark tests is studied in terms of the decay of the singular
values of the snapshots matrices

SX =
[
X1

0 · · · Xp
0 · · · X1

Nτ
· · · Xp

Nτ

]
and SV =

[
V 1
0 · · · V p

0 · · · V 1
Nτ

· · · V p
Nτ

]
,

(6.2)
collecting the position and velocity components of W i

τ . As in traditional reduced basis methods, the
space spanned by the selected snapshots is assumed to be representative of the solution set. The behavior
of the singular values of SX and SV is also compared to the decay of the singular values of the local
snapshots matrices

Sτ
X =

[
X1

τ · · · Xp
τ

]
and Sτ

V =
[
V 1
τ · · · V p

τ

]
, ∀ τ = 1, . . . , Nτ , (6.3)

to assess the applicability and the benefits of the dynamical approach over standard global reduction
methods. For the local snapshots matrices, we compute the ordered singular values {στ

X,j}j of Sτ
X , for

each τ = 1, . . . , Nτ , and normalize them with respect to the maximum singular value στ
X,1. Then, for

each j, we consider the average over time, i.e.,
∑

τ σ
τ
X,j , and the maximum over time, i.e., maxτ σ

τ
X,j .

The same study is carried out for the matrix Sτ
V . A further indicator of the reducibility properties of the

problem is given by the numerical rank of Sτ
X and Sτ

V , defined as the number of singular values larger
than a user-defined threshold tolerance. In the following, different tolerances are considered.

The accuracy of the DMD-DEIM-ROM is evaluated by computing, for each τ = 1, . . . , Nτ , the relative
errors

εrel,X(tτ ) =
∥Sτ

X −Xr,τ∥F
∥Sτ

X∥F
, and εrel,V (tτ ) =

∥Sτ
V − Vr,τ∥F
∥Sτ

V ∥F
, (6.4)

where Xr,τ , Vr,τ ∈ RN×p are the position and velocity components of the discrete reduced order solution
Rτ = UτZτ ∈ R2N×p, respectively. We study the error in the position and velocity of the particles
separately because they are characterized by different scales of absolute error. The relative errors (6.4)
are compared to the target values given by the projection errors

εTarget
rel,X (tτ ) =

∥Sτ
X − Sτ

X,cSVD∥F
∥Sτ

X∥F
, and εTarget

rel,V (tτ ) =
∥Sτ

V − Sτ
V,cSVD∥F

∥Sτ
V ∥F

, (6.5)

where Sτ
X,cSVD, S

τ
V,cSVD ∈ RN×p are the position and velocity components of the projection of the

snapshots onto the space spanned by the ortho-symplectic basis of size 2N × 2n obtained from the
Complex SVD [48] of the matrix Sτ

X + ıSτ
V . Since the Complex SVD provides the ortho-symplectic basis

that minimizes the projection error in the snapshots [48, Theorem 4.6], comparing (6.4) and (6.5) allows
to test the approximability properties of the reduced basis constructed in the dynamical approach.

Moreover, we analyze the evolution of the electric field energy (2.8) for the reduced order approximation,
i.e., E(Xi

r,τ ; ηi), and for the full order solution, i.e., E(Xi
τ ; ηi), for each instance ηi of the parameter. This

term gives information of the macroscopic behavior of the plasma, and it is also the one affected by more
levels of approximation.

Finally, the efficiency of the proposed approach is investigated by comparing the running times
required for the integration over a single time step of the fully-discrete DMD-DEIM reduced model (5.2)
and of the discrete full order model (5.3). The running time for the full model is obtained by summing
the times required for each instance of the parameter ηi ∈ Γh. The comparison focuses on the scalability
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in the approximation of parametric problems as the size p of the parameter set increases, a typical
scenario in a multi-query context. To compare the efficiency of the different methods, we analyze the
runtime required for integration over a single time interval for all parameter values considered. The
values reported were obtained as the average of the runtimes obtained in the first 25 time intervals. For
the dynamical reduced basis method, we also analyze separately the contributions to the computational
cost due to the basis evolution (5.2b)-(5.2e) and to the coefficients evolution (5.2a)-(5.2c)-(5.2d), in line
with the theoretical findings of Section 4.3.

In the construction of the DMD-DEIM reduced model, we consider a tolerance equal to 10−5 in the
computation of the DMD modes in Algorithm 1. Moreover, the nonlinear system, (5.2c) and (5.2d),
describing the evolution of the increments kℓ, ℓ = 1, . . . , ns, is solved using the fixed point iteration
method. As a stopping criterion for the nonlinear solver, we check when the relative norm of the update
to kℓ is smaller than the threshold value 10−9. All numerical simulations are performed using Matlab on
computer nodes with Intel Xeon E5-2643 (3.40GHz). The code and the data supporting the findings of
this study are available upon request.

6.2 Weak Landau damping of 1D Langmuir waves
The first application we consider is the study of the damped propagation of small amplitude plasma waves,
also known as Landau damping (LD). The resonance between physical particles and the propagating
wave generates damping of the electric field energy, without particle collisions. This process is used in
particle accelerators to prevent coherent beams oscillations that could cause potential instabilities [24].
The initial condition is given by (6.1) with the velocity distribution function

fv(v; η) =
1√
2πσ

exp

(
− v2

2σ2

)
, (6.6)

where the amplitude of the perturbation α and the standard deviation σ of the velocity Maxwellian are
the study parameters η = (α, σ), with η ∈ Γ = [0.03, 0.06]× [0.8, 1], and the perturbation wavenumber k
is fixed to 0.5. Following the sampling procedure described in Section 6.1, we solve the Landau damping
problem for p = 300 different realizations of the parameter η. In Figure 1(a) and 1(b) the initial position
and velocity distributions are shown for several of the selected parameter values.
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Figure 1: LD: (a)− (b) Initial position and velocity distributions for selected values of the parameter in Γh. (c)
Exponential time decay of the electrostatic energy E(Xi

τ ; ηi) obtained from the full model solution, for selected
values of ηi in Γh. Since not all parameters in Γh are reported, the black lines in each subplot are used to mark
the region where the plotted quantity is contained, for any value of the parameter in Γh.

We consider periodic boundary conditions on the physical space domain Ωx :=
(
0, 2πk

)
with a uniform

neutralizing background charge. For the numerical solution of the full order model, we use Nx = 32
piecewise linear basis for the Poisson solver, and N = 5× 104 macro-particles for the approximation of
the solution density. A uniform time step ∆t = 0.0025 has been adopted for the evolution of particles’
positions and velocities over the time interval T = (0, 20].

In Figure 2, the decay of the singular values of the global snapshots matrices SX and SV , normalized
with respect to the corresponding largest singular value, are compared to the maximum and averages
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over τ of the normalized singular values of the local counterparts Sτ
X and Sτ

V , computed as described in
Section 6.1. Concerning the particles position, although a plateau of the singular values can be seen for
both global and local matrix, the initial decay is sharper in the local case with singular values that are
two orders of magnitude smaller than in the global case, suggesting a more efficient representation using
a local low-rank model. This gap increases when considering the particles velocity, suggesting that a
global reduced basis approach would not be effective in reducing the computational cost of the Landau
damping simulation.
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Figure 2: LD: Singular values of the global snapshots matrices SX and SV compared to the maximum and time
average (in τ) of the singular values of the local matrices Sτ

X and Sτ
V .

In Figure 3, we report the numerical rank of the matrices Sτ
X and Sτ

V as a function of τ and for
different values of the threshold. The numerical rank remains constant and below 4 for tolerances larger
than 10−3, grows to 8 for a tolerance of 10−4, and reaches a maximum of 13, for positions and 32
for velocities, when the tolerance is set to 10−5. The increase in the solution complexity over time is
partially due to the accumulation of statistical noise associated with the discretization of f(t, x, v; η)
by macro-particles. In Figure 4, in support of this conclusion, we note that as the average number of
particles per cell increases during the initial particle loading phase, the numerical ranks of Sτ

X and Sτ
V ,

at fixed tolerance, decrease.
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Figure 3: LD: Numerical rank of Sτ
X in (a) and Sτ

V in (b), as a function of τ . Different colors are associated with
different values of the threshold, according to the legend.
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Figure 4: LD: Evolution of the numerical ranks of Sτ
X (a)− (c) and of Sτ

V (d)− (f) for different threshold indicated
by Tol. In each subfigure, the rank behavior for different values of Nx and p, in the discretization of the full order
model, is compared.

This behavior of the numerical rank suggests that evolving the basis, but keeping the rank of the
approximation constant, is sufficient to accurately approximate the solution of the full order model, at
least in this test case.

Concerning the reduced dynamical model, we consider 2n = 4 as the reduced manifold dimension.
For the DEIM reduction described in Section 4.2.2, d = 32 interpolation points have been used to reduce
the approximation error, and nDEIM = 12 DEIM indices are updated at each time step, for the sake of
efficiency, according to (4.11). All DEIM indices are recomputed every kDEIM = 3 time steps using [9,
Algorithm 1]. We refer to Section 4.2.2 for further details.

For this test case, we include a numerical study of the evolution of the approximation errors εrel,X
and εrel,V in (6.4) under variations of the size p∗ of the subset of the parameters used to evolve the basis
effectively, according to Section 4.1, and the length (T + 1)∆t of the time window adopted to harvest the
self-consistent electric potential Φ(Xi

r) for the DMD extrapolation step, as described in Section 4.2.1. In
particular, we consider p∗ ∈ {8, 12, 16} and T ∈ {3, 5} and the results are shown in Figure 5. In all tested
combinations of T and p∗, the error is proportional to the best approximation error, both in position and
velocity.
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Figure 5: LD: Evolution of the position (a) and velocity (b) relative errors, as defined in (6.4), for different
choices of p∗ and T . These errors are compared to the target values given by the position component εTarget

rel,X and
the velocity component εTarget

rel,V of the relative projection errors defined in (6.5). The target reduced basis has
dimension 4 and is computed, for each time step, using the Complex SVD algorithm, as described in Section 6.1.

As p∗ increases, both errors decrease: this is expected since a more refined sampling of the subset Γ∗
h

results in a more accurate representation of the dynamics of evolution of the bases in (4.15b). We also
note that, for p∗ = 16, the error εrel,V is, at several time instances, smaller than the target value. This
performance can be explained by the fact that the optimality of the Complex SVD algorithm concerns
the projection of the entire state [Sτ

X Sτ
V ] and not of its components individually. We observe that the

DMD number of samples, T + 1, has no impact on the error when p∗ is large, and a small accuracy
degradation is even registered for p∗ = 8 when T = 5 is chosen over T = 3. The optimal choice of T
remains an open problem: as pointed out in [12], it should capture slow and fast scales of the local
dynamics, but a rigorous optimization strategy would require a study of the multi-scale properties of the
solution to the Vlasov–Poisson equation for each of the parameter realization considered. However, we
stress that the results are relatively robust concerning this parameter.

We remark that in this test case the time step ∆t is rather small, ∆t = 0.0025. The rationale is that
a small time step allows us to gauge the error introduced by the reduction and hyper-reduction without
pollution from other sources of errors, such as the temporal discretization. However, larger time steps can
be chosen without a significant decrease of accuracy, as shown in Figure 6. There we report the evolution
of the relative errors εrel,X and εrel,V for values of the time step ∆t ∈ {0.0025, 0.01, 0.04, 0.08, 0.16, 0.26}
in the case T = 3, p∗ = 12, and kDEIM = 1. It can be observed that the timestepping is not the dominant
source of error up to the value ∆t = 0.04, and that, for ∆t > 0.04, increasing the time step does not
significantly affect accuracy.
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Figure 6: LD: Evolution of the position (a) and velocity (b) relative errors, as defined in (6.4), for different values
of the time step ∆t. The hyperparameters are p∗ = 12, T = 3, and nDEIM = 1.
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Landau theory [4] establishes that, for small perturbations of the initial analytical data of the form
(6.6), the electric energy E(Xi; ηi) decays (in time) exponentially with a damping factor that depends
on the standard deviation σ of the Maxwellian distribution fv but is independent of the amplitude of
the perturbation α. In Figure 7 we report the damping rate of the electric energy for each value of
the parameter η = (α, σ) ∈ Γ: for the p test parameters the damping rate is computed as the slope
of the peaks of the electric energy (excluding the first one); all other values are generated via linear
interpolation/extrapolation on a uniform grid of 90000 points. As can be seen from Figure 7, the
theoretical dependence of the damping rate on the considered parameters is captured by the reduced
model numerical solution.
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Figure 7: LD: Damping rates of the exponential time decay of the electric energy E(Xi; η), defined in (2.8), as
a function of the two-dimensional parameter η = (α, σ). The plots refer to (a) the full order model; (b) the
dynamical reduced model with T = 3 and p∗ = 16; and (c) the dynamical reduced model with T = 5 and p∗ = 8.

In Figure 8(a), we report the evolution of the relative error of the Hamiltonian (2.9) computed in the
reduced and full model solutions, i.e.

∥H([Xτ , Vτ ])−H(UτZτ )∥2
∥H([Xτ , Vτ ])∥2

, ∀ τ = 1, . . . , Nτ . (6.7)

It is observed that the error is bounded and grows only slowly over time. The reason why the Hamiltonian
is not exactly preserved is twofold: the numerical temporal integrator is symplectic but not Hamiltonian-
preserving, and the reduced model possesses a Hamiltonian structure but with an approximate Hamiltonian
function. As pointed out in Section 4, applying DEIM directly to the nonlinear Hamiltonian vector field
yields an approximation that, in general, does not possess a gradient structure and hence fails to provide
a Hamiltonian dynamics. To better understand the aforementioned two sources of errors, we consider the
error in the Hamiltonian at two consecutive time instances of the solution. For the DMD-DEIM reduced
model discretized with the partitioned Runge–Kutta method described in Section 5, it holds

∆Hτ−1→τ := ∥H(UτZτ )−H(Uτ−1Zτ−1)∥2 ≤ ∥H(UτZτ )−H(Uτ− 1
2
Zτ )∥2

+ ∥H(Uτ− 1
2
Zτ−1)−H(Uτ−1Zτ−1)∥2

+ ∥H(Uτ− 1
2
Zτ )−H(Uτ− 1

2
Zτ−1)∥2.

(6.8a)

(6.8b)

(6.8c)

The first two terms (6.8a) and (6.8b) depend on the numerical time integration of the basis equation
(5.2b), while the last term (6.8c) also depends on the DMD-DEIM approximation of the Hamiltonian. In
particular, it holds

∆HZ
τ−1→τ := ∥H(Uτ− 1

2
Zτ )−H(Uτ− 1

2
Zτ−1)∥2 ≤ ∥H(Uτ− 1

2
Zτ )−HDD

U
τ− 1

2

(Zτ , tτ )∥2
+ ∥HDD

U
τ− 1

2

(Zτ−1, tτ−1)−H(Uτ− 1
2
Zτ−1)∥2,

+ ∥HDD
U

τ− 1
2

(Zτ , tτ )−HDD
U

τ− 1
2

(Zτ−1, tτ−1)∥2,

(6.9a)

(6.9b)

(6.9c)
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where HDD
U is defined in (4.12). The first two terms (6.9a) and (6.9b) depend on the approximation

of the Hamiltonian introduced by the DMD-DEIM method, while the last term (6.9c), that we dub
∆HZ,DD

τ−1→τ , in only associated with the numerical time integrator of the coefficient equation. In Figure
8(b) we report the time evolution of ∆Hτ−1→τ , ∆HZ

τ−1→τ and ∆HZ,DD
τ−1→τ , for the hyper-parameters

T = 3 and p∗ = 12. We can observe that the DMD-DEIM method provides a good approximation of the
Hamiltonian (dashed line).
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Figure 8: LD: (a) Evolution of the relative error (6.7) of the Hamiltonian. (b) Evolution of the components
∆Hτ−1→τ , ∆HZ

τ−1→τ and ∆HZ,DD
τ−1→τ of the error bound (6.8), (6.9) in the local conservation of the reduced

Hamiltonian. The values of the hyper-parameters are set to p∗ = 12 and T = 3, respectively.

To study the algorithm efficiency, we investigate the runtime as a function of the number p of tested
parameters. The proposed approach outperforms the full order solver, as shown in Figure 9(a), and the
gap widens as the value of p increases. Depending on the choice of hyper-parameters of the reduced
model, the algorithm speed-up varies between 1.9 and 3.3 when p = 30 and between 46 and 71 when
p = 1000. For p ≥ 2000, the evolution of the expansion coefficients (4.15a) becomes computationally
more demanding than the evolution of the reduced basis (4.15b), as shown in Figure 9(b), and the overall
computational cost of the reduced model begins to grow approximately linearly as a function of p. Thus,
for values of p larger than 2000, the ratio between the time required to integrate the full model and the
time to integrate the reduced model remains constant, with speed-ups ranging between 141 and 183,
depending on the values of the hyper-parameters. We also remark that the computational cost to evolve
the reduced basis (dashed lines in Figure 9(b)) is independent of p because it only depends on the number
p∗ of subsamples.
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Figure 9: LD: (a) Comparison of the runtime per time step (in seconds) between the full order solver and the
dynamical reduced basis approach for different hyper-parameter configurations, as function of the parameter
sample size p. (b) Separation of contributions to the runtime per time step of the reduced model due to basis
evolution (5.2b) (dashed lines) and coefficients evolution (5.2a) (continuous line).
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The choice and the number p∗ of subsamples has also an effect on the accuracy of the reduced
order approximation. In the following test, we numerically study the convergence of the algorithm for
different numbers of sampling points and for different parameter domains. In particular, we compare the
performances of the algorithm when the parameter η = (α, σ) belongs to the domain Γ ∈ {Γ1,Γ2}, where
Γ2 = [0.02, 0.07]× [0.7, 1.1] and Γ1 = [0.03, 0.06]× [0.8, 1] is the domain considered above. Although the
length of the 1D parameter intervals used to define Γ1 and Γ2 might not appear very different, what
matters for the numerical approximation is the reducibility of the solution as a function of the parameter,
that is the approximability of the parameter-to-solution map. To gauge the reducibility of the solution
under variation of the parameter we perform a qualitative (Figure 10) and a quantitative assessment
(Figure 11). More in details, analogously to Section 6.2, we consider p = 300 parameter samples in the
domain Γ. In Figure 10 we report the initial distribution of position (plot (a)) and velocity (plot (b))
and the time evolution of the electrostatic energy (plot (c)) for different samples of the parameters in
Γ2. Comparing with Figure 2, where Γ = Γ1, we observe a greater variability of all quantities, with a
variation of the maximum and minimum values of the electrostatic energy of one order of magnitude at
time t = 20.
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Figure 10: LD: (a)− (b) Initial position and velocity distributions for selected values of the parameter ηi in Γ2,h.
(c) Exponential time decay of the electrostatic energy E(Xi

τ ; ηi) obtained from the full model solution, for selected
values of ηi in Γ2,h.

The increased complexity is also certified by the decay of the singular values of the global and local
snapshots matrix, as shown in Figure 11: the singular values decay more slowly for Γ = Γ2 compared to
the case Γ = Γ1, see Figure 2. In particular, looking at Figure 11(b) (zoomed box), we can see that, for
the local snapshots matrix, the fourth singular value reaches the value of around 10−4 for Γ = Γ1, while
it is equal to 10−2 for Γ = Γ2.
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Figure 11: LD: Singular values of the global snapshots matrices SX and SV compared to the singular values of
the local matrices Sτ

X and Sτ
V for Γ = Γ2.

We study the evolution of the error for the two intervals of parameters as a function of the number
of sampling points p∗. We select the size 2n of the reduced space so that the errors when p = p∗ are
comparable in magnitude in the two cases: This entails taking n = 4 for Γ = Γ1 and n = 8 for Γ = Γ2.
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The fact that Γ2 requires a larger reduced space to achieve an accuracy comparable to the one obtained
for Γ1 is expected, given the lower reducibility of the problem (see Figure 11). All hyper-parameters (i.e.
N , d, nDEIM, kDEIM, etc.) are set as above, T = 5 and ∆t = 0.0025.

We report the errors in the particles’ position and velocity in Figure 12 for the case Γ = Γ1 and in
Figure 13 for the case Γ = Γ2. The black dashed line represents the target error: since for this study
storing all required quantities for p = p∗ is demanding on computer memory we consider p∗ = 56 as
reference value. No difference in the error was recorded for values of p∗ greater than 56. Notice also that
p∗ ≥ n is necessary condition for the invertibility of S(Z) = ZZ⊤ + J⊤

2nZZ
⊤J2n.

It can be observed that, as expected, the error improves as the number of sampling points p∗ increases.
However, for values larger than a certain p∗, approximately p∗ = 20 for Γ = Γ1 and p∗ = 28 for
Γ = Γ2, the error does not improve any longer. The reason for this behavior is that, because of the
local low-rank structure of the solution, only a subset of the parameters is significant to describe the
solution-to-parameter map at a given time and the proposed algorithm is able to select those parameters.
Moreover, for values larger than a certain p∗, the error introduced by the other approximations is
dominating.

Finally, by comparing the behavior of the errors for the two parameter ranges Γ1 and Γ2, it can be
observed that the number p∗ of sampling points required to achieve a certain accuracy is, as expected,
larger for larger parameter domains (more precisely for less reducible solutions). It can also be observed
that not all parameters p are required to achieve the target error, suggesting that the algorithm reaches
the fixed accuracy at a reduced computational cost compared to evolving the reduced basis for p∗ = p.
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Figure 12: LD: Evolution of the relative errors in position (a) and velocity (b) for different choices of p∗ and
n = 4 for the parameter interval Γ1 = [0.03, 0.06]× [0.8, 1].
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Figure 13: LD: Evolution of the relative errors in position (a) and velocity (b) for different choices of p∗ and
n = 8 for the parameter interval Γ2 = [0.02, 0.07]× [0.7, 1.1].
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6.3 Nonlinear Landau damping of 1D Langmuir waves
For larger initial perturbation amplitudes, the linear theory does not hold and, after an initial shearing
in phase space, leading to Landau damping, the damping is halted, and strong particle-trapping vortices
are formed, leading to a growth of the potential energy of the system [38]. To simulate this scenario,
starting from the same initial condition (6.6) and periodic domain Ωx :=

(
0, 2πk

)
of the previous test,

we take the parameter η = (α, σ) in the domain Γ = [0.46, 0.5]× [0.96, 1] and consider p = 300 different
realizations. In Figure 14, we report the behavior of the initial velocity and position distributions along
with the evolution in time of the electric field energy.

The full order simulations are conducted using Nx = 64 degrees of freedom for the discretization of
the Laplacian operator, and N = 105 particles for the approximation of the distribution function. We
consider the time interval T = (0, 40], with ∆t = 0.002 and the numerical time integrators described in
Section 5.
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Figure 14: NLD: (a)− (b) Initial position and velocity distributions for selected values of the parameter in Γh. (c)
Exponential time decay of the electrostatic energy E(Xi

τ ; ηi) obtained from the full model solution, for selected
values of ηi in Γh. Since not all parameters in Γh are reported, the black lines in each subplot are used to mark
the region where the plotted quantity is contained, for any value of the parameter in Γh.

The decay of the singular values of the global and local snapshot matrices, defined in (6.3) and (6.2),
is shown in Figure (15). Compared to the linear Landau damping, the nonlinear test case is unsuitable for
reduction with a global reduced basis approach both in terms of particles position and velocity. Regarding
reducibility via a local basis in time, we note that although the problem is more challenging than the
weak Landau damping, the normalized singular values of Sτ

X and Sτ
V reach 3.9 · 10−4 and 2.2 × 10−3,

respectively, at the sixth singular value, making the problem amenable to local reduction.
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Figure 15: NLD: Singular values of the global snapshots matrices SX and SV compared to the maximum and
time average (in τ) of the singular values of the local matrices Sτ

X and Sτ
V .

Similar conclusions are drawn from the behavior of the numerical rank, shown in Figure (16) as a
function of time, from which we also note that the problem becomes significantly more complex in the
final part of the time interval considered, corresponding to the formation of the particle attractor vortices
and as the nonlinear contribution to the dynamics of the particles becomes dominant.
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Figure 16: NLD: Numerical rank of Sτ
X in (a) and Sτ

V in (b), as a function of τ . Different colors are associated
with different values of the threshold, according to the legend.

To reduce this test problem, we consider a symplectic dynamical basis of dimension 2n = 6 and the
same number d = 32 of DEIM interpolatory indices as used for the weak Landau damping. In addition, a
subset of p∗ = 8 parameters, taken according to Section (4.1), is considered for the efficient evolution of
the basis. The relative errors for the different choices of the T + 1 DMD samples and frequency kDEIM
are shown in Figure 17: the error does not deteriorate over time for any of the chosen hyper-parameters,
and the increase of kDEIM only marginally impacts the performances of the reduced model.
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Figure 17: NLD: Evolution of the position (a) and velocity (b) relative errors, as defined in (6.4), for different
choices of p∗ and T . These errors are compared to the target values given by the position component εTarget

rel,X and
the velocity component εTarget

rel,V of the relative projection errors defined in (6.5). The target reduced basis has
dimension 6 and is computed, for each time step, using the Complex SVD algorithm, as discussed in Section 6.1.

In Figure 18, we plot the distribution function fh(t, x, v; η) reconstructed from the macro-particles for
the parameter η = (0.4912, 0.9889). The numerical solution of the approximate reduced model is in good
agreement with the full model solution, and the various dynamical stages, from the initial shearing to the
development of the two particle-trapping vortices, are correctly captured. Furthermore, although tiny
artifacts in the vortex structure can be observed in the case of hyper-parameters T = 3 and kDEIM = 3
at t = 40, this is not the case for the choice T = 5 and kDEIM = 1.
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Figure 18: NLD: Numerical distribution function for η = (0.4912, 09889) at different times obtained from (a) the
full order model; (b) the dynamical reduced model with T = 3 and kDEIM = 3; and (c) the dynamical reduced
model with T = 5 and kDEIM = 1. Starting from the perturbed Maxwellian distribution, particles with different
energies oscillate with different frequencies leading to the typical filamentation that starts developing at t = 13.33.
Two trapping vortices, centered at opposite phase velocities, form at t = 26.66 and fully develop at t = 40.

To better understand the macroscopic effects of the order reduction on the numerical solution, we
consider, in Figure 19, the evolution of the electric field energy for different realizations of the parameter.
The reduced model solution gives accurate results, both in terms of the amplitude and frequency of the
peaks. As a further analysis, in Figure 21, we report the exponential damping rate of E(Xi

r,τ ; ηi), which is
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obtained during the initial phase of Landau damping, and the exponential growth rate of E(Xi
r,τ ; ηi) that

characterizes the subsequent formation of particle-trapping vortices in phase space. For ηi = (0.5, 1), the
values obtained are around −0.287 and 0.078, which is in agreement with the literature, cf. for example
[32, Table 3].

As a general remark, from the analysis of Figures 19 and 21, we can see that the reduced model
solution slightly underestimates the growth rate of the electric field energy for values of the parameter σ
greater than 0.98.

We show in Figure 20 the peaks of E(Xi
r,τ ) that have been fitted for the calculations of the damping

and growth rates.
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Figure 19: NLD: Evolution of the electric field energy E(· ; ηi). The energy is evaluated at the positions Xi
τ

computed using the high-fidelity solver and at the positions Xi
r,τ computed using the reduced model, for different

values ηi of the parameter.
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Figure 20: NLD: Peaks of the electric field energy E(Xi
r,τ ; ηi) selected for the computation of the exponential

damping and growth rates.
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Figure 21: NLD: Contour plots of the damping rate ((a), (c), (e)) and growth rate ((b),(d), (f)) of the electric
field energy E(Xi

r,τ ; ηi) for the solution of the reduced model, with different values of kDEIM and T , and for the
solution obtained with the high-fidelity solver

.

In Figure 22, we compare the running times of the full order solver and the reduced order solver.
For this numerical simulation, the choice of the hyper-parameters T and kDEIM has a mild impact on
the computational cost required to advance the reduced state of a single time step. Once the cost to
integrate the evolution of the coefficients has exceeded the cost to integrate the basis equation, the most
computationally expensive choice of hyper-parameters (i.e., T = 5 and kDEIM = 1) is only around 1.35
times more demanding than the computationally cheapest choice (i.e., T = 3 and kDEIM = 3). This
result is in agreement with the analysis of the arithmetic complexity of the reduction algorithm presented
in Section 4.3: for large p, the dominant cost has order O(pn2) +O(Nxrτp) +O(pdn) +O(pdc), which
depends on the hyper-parameters only via the number rτ of retained DMD eigenvalues. Although the
value rτ might be different for different choices of the the number T of DMD samples, this does not
significantly affect the computational cost of the algorithm.
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Figure 22: NLD: (a) Comparison of the runtime per time step (in seconds) between the full order solver and the
dynamical reduced basis approach for different hyper-parameter configurations, as a function of the parameter
sample size p. (b) Separation of contributions to the runtime per time step of the reduced model due to basis
evolution (5.2b) (dashed lines) and coefficient evolution (5.2a) (continuous line).

6.4 Two-stream instability
The two-stream instability is a well-known instability in plasma physics generated by two counterstreaming
beams, where the kinetic energy of particles excites a plasma wave and, consequently, transfers to electric
potential energy [2]. In this study, we focus on the temporal interval that includes the first two stages
in which the evolution of electric field energy is distinct, namely the initial, short transient stage, and
the subsequent growth stage. For the latter stage, the dynamics is defined by the interplay between
harmonics characterized by different growth rates. We consider the spatial domain Ωx := (0, 2πk ) with
periodic boundary conditions. The initial velocity distribution is given by

fv(v; η) =
1

2
√
2πσ

exp

(
− (v − v0)

2

2σ2

)
+

1

2
√
2πσ

exp

(
− (v + v0)

2

2σ2

)
, (6.10)

where v0 = 3 is the initial velocity displacement in phase space. The wavenumber k of the perturbation is
set to 0.2, and the parameter η = (α, σ) varies in the domain Γ = [0.009, 0.011]× [0.98, 1.02] discretized
using p = 300 samples. Figures 23(a)-(b) show the initial parametric distributions of position and
velocity. The evolution of the electric energy is shown in Figure 23(c). We note that the ratio between
the maximum and the minimum of E(Xi

r,τ ; ηi) under variations of the parameter ηi, is slightly larger
than 2, indicating a certain variability of the solution in the range of parameters considered.
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Figure 23: TSI: (a)− (b) Initial position and velocity distributions for selected values of the parameter in Γh. (c)
Exponential time decay of the electrostatic energy E(Xi

τ ; ηi) obtained from the full model solution, for selected
values of ηi in Γh. Since not all parameters in Γh are reported, the black lines in each subplot are used to mark
the region where the plotted quantity is contained, for any value of the parameter in Γh.
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The distribution function f(t, x, v; η) is approximated with N = 1.5·105 computational macro-particles,
and Nx = 64 piecewise linear functions have been adopted to discretize the Poisson equation. We solve
the discrete systems (5.2) and (5.3) with a time step ∆t = 0.0025 over the temporal domain T = (0, 20].

Compared to previous tests, there is a dissimilarity between the decays of the singular values of the
snapshots matrices for positions and velocities, as shown in Figure 24. The decay of the singular values
of the SX and Sτ

X is rather fast, and the singular values of the global snapshot matrix become smaller
than 10−3 after the fourteen-th singular value. On the contrary, the decay of the singular values of
the snapshots matrices associated with the particles velocity suggests that a local basis might be more
effective in approximating the evolution of the particles velocity.
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Figure 24: TSI: Singular values of the global snapshots matrices SX and SV compared to the maximum and time
average of the singular values of the local trajectories matrices Sτ

X and Sτ
V . We study position (a) and velocity

(b) variables separately. The singular values are normalized using the largest singular value for each case.

A similar conclusion can be drawn from the evolution of the numerical ranks of Sτ
X and Sτ

V , shown
in Figures 25(a)-(b). In Figure 25(c), we also report the numerical rank of the self-consistent electric
potential Φ(Xτ

i ) obtained from the full model at different time instants tτ . It can be observed that
the electric potential is low-rank throughout the simulation, which justifies the use of hyper-reduction
strategies, in our case provided by the DMD-DEIM approach, to accelerate the computation of the
nonlinearity in the Vlasov–Poisson equation. This speed up is ensured on the entire time interval since
the numerical rank remains, on average, constant over time. We observe that, in principle, the rank
of the hyper-reduced approximation provided by DMD and DEIM can change over time. As a general
consideration, although the electric potential depends on the particles’ positions, there seems to be no
straightforward connection between the reducibility properties of the sets {Xτ

i }τ and {Φ(Xτ
i )}τ .
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Figure 25: TSI: Numerical rank of Sτ
X in (a) and Sτ

V in (b), as a function of τ . Different colors are associated
with different values of the threshold, according to the legend. In (c) is reported the evolution of the numerical
rank of the electric potential obtained from the full model.

In Figure 26, the evolution of the errors in the positions and velocities of the particles are reported:
the approximability properties of the dynamical approach is not affected by the choice of the number
T of the DMD samples and the frequency kDEIM of full updates of the DEIM indices. The dominant
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component of the error is the projection error. The growth in the error can be explained by the increase
in time of the rank of the full model solution. This conclusion is supported by the same growth rate and
the small difference between the relative error for the proposed approach and the relative projection error
committed using an optimal ortho-symplectic basis of dimension 2n for both positions and velocities. We
also stress that the error scales for the two components are different, as to be expected from the trend of
singular values, and the greater accuracy in approximating the position is not affected by the velocity
error.
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Figure 26: TSI: Evolution of the position (a) and velocity (b) relative errors, as defined in (6.4), for different
choices of kDEIM and T . These errors are compared to the target values given by the position component εTarget

rel,X

and the velocity component εTarget
rel,V of the relative projection errors defined in (6.5). The target reduced basis has

dimension 4 and is computed, for each time step, using the Complex SVD algorithm, as described in Section 6.1.

To study the convergence properties of the proposed scheme in terms of the reduced basis size 2n, we
consider the same test case but in the parametric domain Γ = [0.0075, 0.0125]× [0.98, 1.02] and with a
larger number N = 5 · 105 of macro-particles. Increasing the size of the parametric domain produces
an increase in the rank of the initial datum, while increasing the number of macro-particles reduces the
statistical noise in the numerical rank that plagues particle simulations. As expected, Figure 27 shows a
decrease of the error between the reduced and the full order solution as the size n of the dynamical reduced
basis is increased. The numerical rank of the full model solution, shown in Figure 25, and the error
evolution in Figures 26 and 27 suggest that enlarging the reduced basis U over time to increase the rank
of the reduced model solution may improve the accuracy. Although a structure-preserving rank-adaptive
algorithm has been proposed in [26], its direct application to the Vlasov–Poisson DMD-DEIM reduced
model (4.15) would require the solution of a linear system of dimension proportional to the number of
particles, to determine a candidate vector for the expansion of U . This cost would limit the computational
speed-up obtained in the reduced model when compared to the full order model. The exploration of
rank-adaptive algorithms for this case provides a possible direction of future investigation.
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Figure 27: TSI: Evolution of the position (a) and velocity (b) relative errors, as defined in (6.4), for different
choices of the reduced basis dimension 2n. The values of the hyper-parameters kDEIM and T are both set to 3.

The evolution of the electric energy (2.8) is shown in Figure 28: the behavior of the electric energy
obtained from the approximate reduced model almost coincides with the full model except for slight
mismatches in the amplitude of the oscillations during the transient phase.
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Figure 28: TSI: Evolution of the electric field energy E(· ; ηi). The energy is evaluated at the positions Xi
τ

computed using the high-fidelity solver and at the positions Xi
r,τ computed using the reduced model, for different

values ηi of the parameter.

Similarly to the two numerical tests on the Landau damping, the proposed dynamical model order
reduction method outperforms, in terms of efficiency, the full order solver, with speed-ups reaching 340
for p = 105 parameters, as shown in Figure 29.
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Figure 29: TSI: (a) Comparison of the runtime per time step (in seconds) between the full order solver and the
dynamical reduced basis approach for different hyper-parameter configurations, as function of the parameter
sample size p. (b) Separation of contributions to the runtime per time step of the reduced model due to basis
evolution (5.2b) (dashed lines) and coefficients evolution (5.2a) (continuous line).

To numerically show the effectiveness of our proposed hyper-reduction algorithm in highly nonlinear
regimes, we have tested the method for times larger than t = 20 as follows. Until time t = 30 the error of
the reduced solution behaves as in Figure 27, with no significant increase in the interval [20, 30]. After
time t = 30 a reduced basis of size 2n ≤ 8 is no longer large enough to capture the dynamics with the
required level of accuracy. We have considered as initial data for the algorithm (U0, Z0) obtained from
complex SVD of the matrix R(30) := [W (30, η1)| . . . |W (30, ηp)] ∈ Vp

2N ⊂ R2N×p. that collects the full
order solution at t = 30 for all parameters in Γh. These initial data allow reduced spaces of higher
dimensions. In Figure 30 we report the results for 2n ∈ {12, 18, 24} in the case T = 3, p∗ = 8, and
kDEIM = 3. The change of the rank of the approximation due to the re-inizialization of the problem at
time t = 30 ensures the required accuracy. A small deterioration over time can be ascribed to the fact
that the complexity of the solution in terms of numerical rank increases.
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Figure 30: TSI: Evolution of the position (a) and velocity (b) relative errors for different choices of the reduced
basis dimension 2n, with initial condition defined in the regime of highly nonlinear dynamics.

This test shows that the efficient treatment of the nonlinear operators proposed in this work has
significant advantages over solving the full order model and the proposed method is able to capture the
low-dimensional feature of the dynamics whenever the reducibility properties of the solution space are
not considerably changing over time. As mentioned above, a combination with rank-adaptivity could
further improve the proposed method whenever the rank of the solution undergoes significant variation
during the evolution.
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7 Concluding remarks
We proposed reduced order models of parametric particle-based kinetic plasma problems. High resolution
simulations of such problems may require a high number of particles and thus can become computationally
intractable in multi-query scenarios. Moreover, the lack of global-in-time reducibility of kinetic plasma
models makes it hard for traditional reduced order models to provide accurate approximations at a
competitive computational cost. We developed a dynamical approach to tackle this issue for problems
that possess local low-rank structures. The proposed method combines dynamical low-rank approximation
where the reduced space changes in time with adaptive hyper-reduction techniques to efficiently deal with
the nonlinear operators. The resulting DMD-DEIM reduced dynamical system retains the Hamiltonian
structure of the full model and, whenever the problem solution is locally low-rank, is able to provide
accurate approximations that can be evaluated efficiently thanks to low-dimensional approximation
spaces. Moreover, a considerable reduction in the computational runtime of the algorithm is achieved by
decoupling the operations having a cost dependent on the number of particles from those that depend on
the parameters. Several benchmark plasma models have been used to numerically assess the performances
of the proposed method in dynamical regimes where the full order solution is locally low-rank.

The study of the more general case of solution sets with poor reducibility properties with respect to
both time and parameter is left for future investigation. This might include the development of efficient
error estimators to dynamically adapt the rank of the reduced order solution, and the combination of
the proposed dynamical approach with localized MOR techniques. Future work might also include the
derivation of partitioned Runge–Kutta schemes that can ensure the preservation of the Hamiltonian
(at least when this is a lower degree polynomial), and the study of parameter sampling to speedup the
computation of the reduced basis.
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