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ERROR ESTIMATES OF THE TIME-SPLITTING METHODS

FOR THE NONLINEAR SCHRÖDINGER EQUATION WITH

SEMI-SMOOTH NONLINEARITY

WEIZHU BAO AND CHUSHAN WANG

Abstract. We establish error bounds of the Lie-Trotter time-splitting sine
pseudospectral method for the nonlinear Schrödinger equation (NLSE) with

semi-smooth nonlinearity f(ρ) = ρσ , where ρ = |ψ|2 is the density with ψ

the wave function and σ > 0 is the exponent of the semi-smooth nonlinearity.
Under the assumption of H2-solution of the NLSE, we prove error bounds

at O(τ
1
2
+σ + h1+2σ) and O(τ + h2) in L2-norm for 0 < σ ≤ 1

2
and σ ≥

1
2
, respectively, and an error bound at O(τ

1
2 + h) in H1-norm for σ ≥ 1

2
,

where h and τ are the mesh size and time step size, respectively. In addition,

when 1
2
< σ < 1 and under the assumption of H3-solution of the NLSE, we

show an error bound at O(τσ + h2σ) in H1-norm. Two key ingredients are

adopted in our proof: one is to adopt an unconditional L2-stability of the
numerical flow in order to avoid an a priori estimate of the numerical solution

for the case of 0 < σ ≤ 1
2
, and to establish an l∞-conditional H1-stability

to obtain the l∞-bound of the numerical solution by using the mathematical

induction and the error estimates for the case of σ ≥ 1
2
; and the other one is

to introduce a regularization technique to avoid the singularity of the semi-
smooth nonlinearity in obtaining improved local truncation errors. Finally,

numerical results are reported to demonstrate our error bounds.

1. Introduction

In this paper, we consider the following nonlinear Schrödinger equation (NLSE)

(1.1) i∂tψ(x, t) = −∆ψ(x, t)+V (x)ψ(x, t)+f(|ψ(x, t)|2)ψ(x, t), x ∈ Ω, t > 0,

with the initial data

(1.2) ψ(x, 0) = ψ0(x), x ∈ Ω,

and the homogeneous Dirichlet boundary condition

(1.3) ψ(x, t) = 0, x ∈ ∂Ω, t ≥ 0,

where t is time, x ∈ Rd (d = 1, 2, 3) is the spatial coordinate, ψ := ψ(x, t) is a
complex-valued wave function, and V := V (x) : Ω → R is a time-independent
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2 W. BAO AND C. WANG

real-valued potential. Here Ω = Πdi=1(ai, bi) ⊂ Rd is a bounded domain, and the
nonlinearity is given as

(1.4) f(ρ) = βρσ, ρ := |ψ|2 ≥ 0,

where β ∈ R is a given constant and σ > 0 is the exponent of the nonlinearity. The
NLSE (1.1) conserves the mass

(1.5) M(ψ(·, t)) =
∫
Ω

|ψ(x, t)|2dx ≡M(ψ0), t ≥ 0,

and the energy

(1.6)
E(ψ(·, t)) =

∫
Ω

[
|∇ψ(x, t)|2 + V (x)|ψ(x, t)|2 + F (|ψ(x, t)|2)

]
dx

≡ E(ψ0), t ≥ 0,

where the interaction energy density F (ρ) is given as

(1.7) F (ρ) =

∫ ρ

0

f(s)ds =
β

σ + 1
ρσ+1, ρ ≥ 0.

When σ = 1 in (1.4), i.e. f(ρ) = βρ and F (ρ) = β
2 ρ

2, (1.1) collapses to the well-
known nonlinear Schrödinger equation with cubic nonlinearity (or smooth nonlin-
earity), also known as the Gross-Pitaevskii equation (GPE), which has been widely
adopted for modeling and simulation in quantum mechanics, nonlinear optics, and
Bose-Einstein condensation [6, 23, 44]. Arising from different physics applications,
semi-smooth nonlinearity is introduced in the NLSE (1.1), i.e. σ is taken as a non-
integer in (1.4). Typical examples include, in the Schrödinger-Poisson-Xα model
with f(ρ) = −αρ1/d(α > 0) [14, 16], i.e. σ = 1

3 and σ = 1
2 in three dimensions

(3D) and two dimensions (2D), respectively; in the LHY correction (a next-order
correction of the ground state energy proposed by Lee, Huang and Yang in 1957
[32]) for a beyond-mean-field term which is widely adopted in modeling and simu-
lation for quantum droplets [29, 17, 4, 39, 27] with f(ρ) = ρ3/2 in 3D, i.e. σ = 3

2 ,

f(ρ) =
√
ρ in one dimension (1D), i.e. σ = 1

2 , and f(ρ) = ρ ln ρ in 2D; and in the

mean field model for Bose-Fermi mixture [24, 18], with f(ρ) = ρ2/3, i.e. σ = 2
3 . For

all the aforementioned nonlinearities (actually for all σ > 0 when d = 1, 2, 3), the
NLSE (1.1) is well-posed in H2 under suitable assumptions on V , e.g. V ∈ Lp with
p ≥ 1 and p > d/2 [30, 19]. However, to our best knowledge, there is no guarantee
of higher regularity to be propagated due to the low regularity of the semi-smooth
nonlinearity, which is similar to the case of the logarithmic Schrödinger equation
(LogSE) [9, 10, 11]. In fact, similar to the LogSE, the low regularity of the solution
of the NLSE with semi-smooth nonlinearity is mainly due to the low regularity of
the nonlinearity. We remark here that the potential V could also be a source of low
regularity of the solution, however, we will not consider the low regularity of V in
this paper but leave it as our future work.

For the cubic NLSE, i.e. σ = 1, many accurate and efficient numerical meth-
ods have been proposed and analyzed in the last two decades, including the finite
difference method [1, 7, 6, 3], the exponential wave integrator [8, 26, 20], the time-
splitting method [13, 15, 33, 22, 6, 34, 3], the finite element method [2, 42, 45, 46, 25],
etc. Recently, new low regularity integrators or resonance based Fourier integrators
are designed and analyzed for the cubic NLSE with low regularity initial data since
the important work by Ostermann and Schratz [36], followed by [31, 35, 41, 38, 37]
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and references therein for different dispersive partial differential equations. For all
these numerical methods, optimal error bounds were rigorously established under
different regularity assumptions of the cubic NLSE.

Most numerical methods for the cubic NLSE can be extended straightforwardly
to solve the NLSE (1.1) with non-integer σ > 0, e.g. semi-smooth nonlinearity
with 0 < σ < 1, which is different from the NLSE with singular nonlinearity, where
regularization may be needed [9, 10, 11, 12]. However, due to the low regularity of
solution of the NLSE (1.1) with semi-smooth nonlinearity and the low regularity of
the semi-smooth nonlinearity (1.4) in the NLSE (1.1) which causes order reduction
in local truncation errors and results in difficulties in obtaining stability estimates,
error analysis for different numerical methods applied to (1.1) with non-integer
σ > 0 is a very subtle and challenging question! For example, first order temporal
convergence of the finite difference method requires boundedness of the second-
order time derivative, which roughly requires the exact solution to be in H4, which
is beyond the regularity property of the NLSE (1.1) with semi-smooth nonlinearity.
In fact, based on our numerical experiments with a smooth initial datum ψ0(x) =

xe−x
2/2, it indicates that ψ(·, t) ̸∈ H4 for t > 0 and σ small! Since the time-splitting

methods usually need lower regularity requirements on the exact solution than the
finite difference methods, in this work, we consider the time-splitting method and
in particular the first-order Lie-Trotter splitting method due to the low regularity of
the semi-smooth nonlinearity and the low regularity of the exact solution of (1.1).

Error estimates of the time-splitting methods with different orders for the cubic
NLSE (i.e. σ = 1) have been well understood and we refer the readers to [33,
22, 34, 3] and references therein. However, for the NLSE with non-integer σ, only
limited results are established for the filtered Lie-Trotter splitting scheme which
requires a strong CFL-type time step size restriction τ = O(h2). In [28], first
order convergence in L2-norm is established for H2-solution and σ ≥ 1/2. Then
generalized in [21], half order convergence in L2-norm is established for H1-solution
and σ > 0. These convergence rates are optimal with respect to the regularity
assumptions on the exact solution. However, there are still some questions related
to error estimates to be addressed: (i) it is unclear whether higher convergence order
can be obtained for H2-solution when 0 < σ < 1/2; (ii) their results are established
for the filtered Lie-Trotter scheme, which is a semi-discretization scheme with a
specific strong CFL-type time step size restriction, and it loses mass conservation
and time symmetric property in the discretized level; and (iii) there is no optimal
error estimate in H1-norm, which is the natural norm of the NLSE.

The main aim of this paper is to establish error estimates of the time-splitting
sine pseudospectral (TSSP) method (2.13) for the NLSE (1.1) with semi-smooth
nonlinearity. We remark here that the TSSP is a fully discrete scheme and it
preserves many good properties of the original NLSE in the discretized level, in-
cluding mass conservation and time symmetry as well as dispersion relation. When
0 < σ ≤ 1

2 , under the assumption of H2-solution of the NLSE, we prove error

bounds at O(τ
1
2+σ + h1+2σ) in L2-norm without any CFL-type time step size re-

striction, which also fill the gap between the results in [28, 21]. When σ ≥ 1/2,
under the assumption of H2-solution again, we prove error bounds at O(τ+h2) and

O(τ
1
2 +h) in L2-norm and H1-norm, respectively, with a very mild CFL-type time

step size restriction, which generalize the result in [28] to the mass-conservative
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fully discrete scheme. In addition, when 1
2 < σ < 1 and under the assumption of

H3-solution, we show a new error bound at O(τσ + h2σ) in H1-norm.
The rest of the paper is organized as follows. In Section 2, we present the time-

splitting sine pseudospectral (TSSP) method, introduce a local regularization for
the semi-smooth nonlinearity to be used for obtaining improved local truncation
errors and state our main results. Section 3 is devoted to error estimates of the
TSSP method for 0 < σ ≤ 1/2 and Section 4 is devoted to error estimates for
σ ≥ 1/2. Numerical results are reported in Section 5 to confirm the error estimates.
Finally some conclusions are drawn in Section 6. Throughout the paper, we adopt
the standard Sobolev spaces as well as the corresponding norms, and denote by C
a generic positive constant independent of the mesh size h, time step τ , and by
C(α) a generic positive constant depending on α. The notation A ≲ B is used to
represent that there exists a generic constant C > 0, such that |A| ≤ CB.

2. Numerical methods and main results

2.1. The TSSP method. We shall use the Lie-Trotter splitting method for the
temporal discretization and use the sine pseudospectral method for the spatial
discretization. The operator splitting technique is based on the decomposition of
the flow of (1.1)

(2.1) ∂tψ = A(ψ) +B(ψ),

where

(2.2) A(ψ) = i∆ψ, B(ψ) = B1(ψ) +B2(ψ) := −iV ψ − if(|ψ|2)ψ,
into two sub-problems. The first one is

(2.3)

{
∂tψ(x, t) = A(ψ) = i∆ψ(x, t), x ∈ Ω, t > 0,

ψ(x, 0) = ψ0(x), x ∈ Ω,

which can be formally integrated exactly in time as

(2.4) ψ(·, t) = eit∆ψ0(·), t ≥ 0.

The second one is to solve

(2.5)

{
∂tψ(x, t) = B(ψ) = −iV (x)ψ(x, t)− if(|ψ(x, t)|2)ψ(x, t), x ∈ Ω, t > 0,

ψ(x, 0) = ψ0(x), x ∈ Ω,

which, by using the fact |ψ(x, t)| = |ψ0(x)| for t ≥ 0, can be integrated exactly in
time as

(2.6) ψ(x, t) = ΦtB(ψ0) := e−itV (x)ΦtB2
(ψ0(x)), x ∈ Ω, t ≥ 0,

where

(2.7) ΦtB2
(z) = ze−itf(|z|

2), z ∈ C, t ≥ 0.

In fact, in the second subproblem (2.5), the operator B(ψ) = −i(V + f(|ψ0|2))ψ
becomes a bounded linear operator.

Choose a time step size τ > 0, denote time steps as tk = kτ for k = 0, 1, ..., and
let ψ[k] := ψ[k](x) be the approximation of ψ(x, tk) for k ≥ 0. Then a first order
semi-discretization of the NLSE (1.1) via the Lie-Trotter splitting is given as:

(2.8) ψ[k+1] = eiτ∆ΦτB(ψ
[k]),

with ψ[0](x) = ψ0(x) for x ∈ Ω.
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Then we discretize (2.8) in space by the sine pseudospectral method to obtain
a full discretization for the NLSE (1.1). For simplicity of notations, here we only
present the spatial discretization in 1D (taking Ω = (a, b)), and the generalization
to higher dimensions is straightforward. Choose a mesh size h = (b− a)/N with N
being a positive integer and denote grid points as

xj = a+ jh, j = 0, 1, · · · , N.

Define the index sets

TN = {1, 2, · · · , N − 1}, T 0
N = {0, 1, · · · , N},

and denote

(2.9)
XN = span {sin(µl(x− a)) : l ∈ TN} , µl =

πl

b− a
,

YN =
{
v = (v0, v1, · · · , vN )T ∈ CN+1 : v0 = vN = 0

}
.

We define the lp(1 ≤ p ≤ ∞) norm on YN as

∥v∥lp =

hN−1∑
j=0

|vj |p
 1

p

, 1 ≤ p <∞, ∥v∥l∞ = max
0≤j≤N−1

|vj |, v ∈ YN .

We shall sometimes identify a function ϕ(·) ∈ C0(Ω) with a vector ϕ = (ϕ0, ϕ1, · · · ,
ϕN )T ∈ YN with ϕj = ϕ(xj) and then the discrete norm ∥ · ∥lp can also be defined
on XN . For v ∈ YN , we define the forward finite difference operator as

(2.10) (δ+x v)j = δ+x vj =
vj+1 − vj

h
, 0 ≤ j ≤ N − 1.

Let PN : L2(Ω) → XN be the standard L2 projection onto XN and IN : YN → XN

be the standard sine interpolation operator as

(2.11)

(PNv)(x) =
∑
l∈TN

v̂l sin(µl(x− a)),

(INw)(x) =
∑
l∈TN

w̃l sin(µl(x− a)),
x ∈ Ω = [a, b],

where v ∈ L2(Ω), w ∈ YN , and

(2.12)

v̂l =
2

b− a

∫ b

a

v(x) sin(µl(x− a))dx,

w̃l =
2

N

∑
j∈TN

wj sin(jπl/N),
l ∈ TN .

Let ψkj be the numerical approximations of ψ(xj , tk) for j ∈ T 0
N and k ≥ 0, and

denote ψk := (ψk0 , ψ
k
1 , . . . , ψ

k
N )T ∈ YN . Then the time-splitting sine pseudospectral

(TSSP) method for discretizing the NLSE (1.1) can be given for k ≥ 0 as

(2.13)

ψ
(1)
j = e−iτ(V (xj)+f(|ψk

j |
2))ψkj ,

ψk+1
j =

∑
l∈TN

e−iτµ
2
l (̃ψ(1))l sin(µl(xj − a)),

j ∈ T 0
N ,

where ψ0
j = ψ0(xj) for j ∈ T 0

N .
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Let Φτ : XN → XN be the numerical integrator defined as

(2.14) Φτ (ϕ) = eiτ∆INΦτB(ϕ), ϕ ∈ XN ,

where ΦτB is defined in (2.6). Then one has

(2.15)
INψ

k+1 = Φτ (INψ
k), k ≥ 0,

INψ
0 = INψ0.

Remark 2.1. In applications, the NLSE (1.1) can also be discretized by the Lie-
Trotter splitting via a different order as:

(2.16) ψ[k+1] = ΦτB(e
iτ∆ψ[k]), k ≥ 0.

Then a full discretization can be obtained straightforward by using the sine pseu-
dospectral method in space.

2.2. A local regularization for f(ρ) = βρσ (β ∈ R). When 0 < σ < 1 in (1.4),
f(ρ) is a semi-smooth function and it is not differentiable at ρ = 0. Here, we want
to regularize it to obtain higher order local error estimates later. Following the
regularization methods used in [11] for the logarithmic Schrödinger equation, we
regularize the semi-smooth nonlinearity f(ρ) only locally in a small region near
ρ = 0. Taking 0 < ε ≪ 1 as a regularization parameter, we approximate f(ρ)
locally in the region {ρ < ε2} by a polynomial and leave it unchanged in {ρ ≥ ε2},
i.e.

(2.17) fε(ρ) =

{
f(ρ), ρ ≥ ε2

ρQε(ρ), 0 ≤ ρ < ε2,

where Qε(ρ) is a polynomial with degree at most 3 such that

(2.18) fε ∈ C3([0,∞)).

Note that fε given by (2.17) is uniquely determined by the interpolation conditions
(2.18) and it satisfies fε(0) = f(0) = 0. Actually, the explicit formula of Qε(ρ) can
be given as

(2.19) Qε(ρ) = βε2σ−2
3∑
j=0

(
j − σ

j

)(
1− ρ

ε2

)j
, 0 ≤ ρ < ε2.

In fact, fε ∈ C3([0,∞)) can be regarded as a local regularization of the semi-
smooth nonlinearity f(ρ) ∈ C0([0,∞)), which has much better regularity near
ρ = 0. For fε, we have the following estimates.

Lemma 2.2. When 0 < σ < 1, we have

(2.20) |fε(ρ)|+ |ρf ′ε(ρ)| ≤ C1ρ
σ, ρ ≥ 0,

(2.21) |√ρf ′ε(ρ)|+ |ρ 3
2 f ′′ε (ρ)| ≤ C2


1

ε1−2σ
, 0 < σ ≤ 1

2
,

ρσ−
1
2 ,

1

2
< σ < 1,

, ρ ≥ 0,

and

(2.22) |f ′ε(ρ)|+ |ρf ′′ε (ρ)|+ |ρ2f ′′′ε (ρ)| ≤ C3

ε2−2σ
, ρ ≥ 0,

where C1, C2 and C3 depend exclusively on σ and β.
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Proof. When ρ ≥ ε2, by (2.17), we have f (k)(ρ) = f
(k)
ε (ρ) for 0 ≤ k ≤ 3, and

(2.20)–(2.22) follows immediately from f(ρ) = βρσ and 0 < ε < 1.
In the following, we assume that 0 ≤ ρ < ε2. From (2.19), we easily obtain that

(2.23) |Q(k)
ε (ρ)| ≲ ε2σ−2−2k, 0 ≤ ρ < ε2, 0 ≤ k ≤ 3.

From (2.17), using (2.23), one gets

(2.24) |fε(ρ)| ≤ ρ|Qε(ρ)| ≲ ρε2σ−2 = ρσ
( ρ
ε2

)1−σ
≤ ρσ.

Similarly, one has

(2.25) |ρf ′ε(ρ)| ≤ |ρ2Q′
ε(ρ)|+ |ρQε(ρ)| ≲

( ρ
ε2

+ 1
)
ρε2σ−2 ≤ 2ρσ,

which proves (2.20).
Recalling (2.17), using (2.23), one gets, when 0 < σ < 1,

(2.26a) |√ρf ′ε(ρ)| ≤ ρ
1
2

(
|Qε(ρ)|+ ρ|Qε′(ρ)|

)
≲ ε

(
ε2σ−2 + ε2ε2σ−4

)
≲ ε2σ−1,

|√ρf ′ε(ρ)| ≤ ρ
1
2

(
|Qε(ρ)|+ ρ|Qε′(ρ)|

)
≲ ρ

1
2 ε2σ−2

= ρσ−
1
2

( ρ
ε2

)1−σ
≤ ρσ−

1
2 .(2.26b)

Using (2.26a) when 0 < σ ≤ 1/2 and using (2.26b) when 1/2 < σ < 1, we obtain the

desired estimate for |√ρf ′ε(ρ)|. The estimate of |ρ 3
2 f ′′ε (ρ)| can be obtained similarly,

which completes the proof of (2.21).
For (2.22), using (2.23) again, one has

(2.27) |f ′ε(ρ)| ≤ |Qε(ρ)|+ ρ|Q′
ε(ρ)| ≲ ε2σ−2 + ε2ε2σ−4 ≲ ε2σ−2.

The estimate of |ρf ′′ε (ρ)| and |ρ2f ′′′ε (ρ)| can be obtained similarly, which completes
the proof of (2.22). □

Corollary 2.3. When 0 < σ ≤ 1/2, we have

∥fε(|v|2)v∥L2 ≤ C1(∥v∥L∞)∥v∥L2 , v ∈ L∞(Ω),(2.28)

∥fε(|v|2)v∥H1 ≤ C2(∥v∥L∞)∥v∥H1 , v ∈ H1(Ω) ∩ L∞(Ω),(2.29)

∥fε(|v|2)v∥H2 ≤ C3 (∥v∥H2)

ε1−2σ
, v ∈ H2(Ω).(2.30)

When 0 < σ < 1, we have

(2.31) ∥fε(|v|2)v∥H3 ≤ C4 (∥v∥H3)

ε2−2σ
, v ∈ H3(Ω).

Proof. By (2.20), one has

(2.32) ∥fε(|v|2)v∥L2 ≤ ∥fε(|v|2)∥L∞∥v∥L2 ≲ ∥v∥2σL∞∥v∥L2 ,

which proves (2.28).
By direct calculation, using (2.20), one gets∥∥∇ (
fε(|v|2)v

)∥∥
L2 =

∥∥fε(|v|2)∇v + f ′ε(|v|2)v(v∇v + v∇v)
∥∥
L2

≤
(
∥fε(|v|2)∥L∞ + ∥f ′ε(|v|2)v2∥L∞ + ∥f ′ε(|v|2)|v|2∥L∞

)
∥∇v∥L2

≲ ∥v∥2σL∞∥v∥H1 ,(2.33)

which shows (2.29).
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To show (2.30), we note that

∂jk(fε(|v|2)v) = ∂j
[
(fε(|v|2) + f ′ε(|v|2)|v|2)∂kv + f ′ε(|v|2)v2∂kv

]
= (2f ′ε(|v|2) + f ′′ε (|v|2)|v|2)∂j |v|2∂kv + (fε(|v|2) + f ′ε(|v|2)|v|2)∂jkv
+ f ′′ε (|v|2)v2∂j |v|2∂kv + 2f ′ε(|v|2)v∂jv∂kv + f ′ε(|v|2)v2∂jkv,(2.34)

where ∂j = ∂xj
and ∂jk = ∂xj

∂xk
for 1 ≤ j, k ≤ d. Here we adopt the notations x =

x1 (or x) when d = 1, x = (x1, x2)
T (or (x, y)T ) when d = 2, and x = (x1, x2, x3)

T

(or (x, y, z)T ) when d = 3. From Lemma 2.2, using (2.20) and (2.21) and noting
that |∂j |v|2| ≤ 2|v| |∂jv|, one gets∣∣∂jk(fε(|v|2)v)∣∣ ≲ (

f ′ε(|v|2)|v|+ f ′′ε (|v|2)|v|3
)
|∂jv| |∂kv|

+
(
fε(|v|2) + f ′ε(|v|2)|v|2

)
|∂jkv|

≲
|∂jv| |∂kv|
ε1−2σ

+ |v|2σ|∂jkv|,(2.35)

which, by using Hölder’s inequality and Sobolev embedding H2 ↪→ W 1,4 which
holds for d = 1, 2, 3, yields

(2.36) ∥∂jk(fε(|v|2)v)∥L2 ≲
∥∂jv∥L4∥∂kv∥L4

ε1−2σ
+ ∥v∥2σL∞∥∂jkv∥L2 ≤ C(∥v∥H2)

ε1−2σ
,

which implies (2.30).
Following Lemma 2.2, noting (2.35) and (2.36) and using (2.22), we can similarly

obtain (2.31) and the details are omitted here for brevity. □

Lemma 2.4. When 0 < σ < 1, we have

|f(ρ)− fε(ρ)| ≤ Cε2σ1ρ<ε2 , ρ ≥ 0.

Proof. Recalling (2.17), we have

(2.37) |f(ρ)− fε(ρ)| = 0, ρ ≥ ε2,

and, by (1.4) and (2.20),

(2.38) |f(ρ)− fε(ρ)| ≤ |f(ρ)|+ |fε(ρ)| ≲ ρσ ≤ ε2σ, 0 ≤ ρ < ε2,

which completes the proof. □

2.3. Main results. Let Tmax be the maximal existing time for the solution of the
NLSE (1.1) with (1.2) and (1.3) and take 0 < T < Tmax be a fixed time. Based on
the known existence and regularity results (see Remark 4.8.7 (iii) in [19] or Theorem
II in [30]) for the solution of (1.1), we make the assumption that the solution ψ
satisfies ψ ∈ C([0, T ];H1

0 (Ω) ∩H2(Ω)) ∩ C1([0, T ];L2(Ω)) such that

(A) ∥ψ∥L∞([0,T ];H2) + ∥∂tψ∥L∞([0,T ];L2) ≲ 1.

Note that the solution to (1.1) that satisfies (A) must be unique [25].
Define

(2.39) M2 := max
{
∥ψ∥L∞([0,T ];H2), ∥ψ∥L∞([0,T ];L∞), ∥V ∥H2

}
,

and assume the following time step size restriction (h < 1)

(B) τ ≲


1, d = 1,

1

| lnh|2
, d = 2,

h, d = 3.
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For the TSSP method (2.13), we can establish the following error estimates.

Theorem 2.5. When 0 < σ ≤ 1/2, under the assumptions V ∈ H2(Ω) and (A),
for 0 < τ < 1 and 0 < h < 1, we have

(2.40) ∥ψ(·, tk)− INψ
k∥L2 ≲ τ1/2+σ + h1+2σ, 0 ≤ k ≤ T

τ
.

Corollary 2.6. When d = 1 and 0 < σ ≤ 1/2, under the following much weaker
assumptions

V ∈ H1(Ω), ψ ∈ C([0, T ];H1
0 (Ω)),

we have for 0 < τ < 1 and 0 < h < 1,

(2.41) ∥ψ(·, tk)− INψ
k∥L2 ≲ τ1/2 + h, 0 ≤ k ≤ T

τ
.

Theorem 2.7. When σ ≥ 1/2, under the assumptions V ∈ H2(Ω) ∩ W 1,∞(Ω)
and (A), there exist τ0 > 0 and h0 > 0 sufficiently small and depending on M2,
∥V ∥W 1,∞ and T such that for τ ≤ τ0 and h ≤ h0 satisfying (B), we have

(2.42)
∥ψ(·, tk)− INψ

k∥L2 ≲ τ + h2, ∥ψk∥l∞ ≤ 1 +M2

∥ψ(·, tk)− INψ
k∥H1 ≲ τ

1
2 + h, 0 ≤ k ≤ T

τ
.

Moreover, when 1/2 < σ < 1, under the additional assumptions that V ∈ H3(Ω),
∇V ∈ H1

0 (Ω) and ψ ∈ C([0, T ];H3
∗ (Ω)) ∩ C1([0, T ];H1(Ω)), we have

(2.43) ∥ψ(·, tk)− INψ
k∥H1 ≲ τσ + h2σ, 0 ≤ k ≤ T

τ
,

where H3
∗ (Ω) := {ϕ ∈ H3(Ω) | ϕ(x)|∂Ω = ∆ϕ(x)|∂Ω = 0}.

Remark 2.8. When σ ≥ 1, under the same assumptions as those for (2.43), one can
obtain the following error bound for the TSSP method (2.13) as

∥ψ(·, tk)− INψ
k∥H1 ≲ τ + h2, 0 ≤ k ≤ T

τ
.

3. Proof of Theorem 2.5 for the case 0 < σ ≤ 1/2

Throughout this section, we assume that V ∈ H2(Ω), 0 < σ ≤ 1/2 and the
assumption (A).

3.1. Some estimates for the operator B. For the operator B defined in (2.2),
we have

Lemma 3.1. Let v ∈ H1(Ω) such that ∥v∥L∞ ≤M . When σ > 0, we have

∥B(v)∥L2 ≤ C1(M, ∥V ∥L∞)∥v∥L2 ,(3.1)

∥B(v)∥H1 ≤ ∥v∥H1

{
C2(M, ∥V ∥H1), d = 1,
C2(M, ∥V ∥W 1,4), d = 2, 3.

(3.2)

Proof. From the definition of B in (2.2), we have

(3.3) ∥B(v)∥L2 ≤ ∥V ∥L∞∥v∥L2 + C(∥v∥L∞)∥v∥L2 ,

which implies (3.1).
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Introduce a continuous function G : C → C as

(3.4) G(z) =

{
f ′(|z|2)z2 = βσ|z|2σ−2z2, z ̸= 0,

0, z = 0,
z ∈ C,

and note that f ′(|z|2)|z|2 = σf(|z|2) for z ∈ C. Further note that

(3.5) f(|z|2) + |G(z)| ≲ |z|2σ, z ∈ C, σ > 0.

Direct calculation yields

∇B(v) = −i
[
V∇v + v∇V + f(|v|2)∇v + f ′(|v|2)v(v∇v + v∇v)

]
= −i

[
V∇v + v∇V + (1 + σ)f(|v|2)∇v +G(v)∇v

]
,(3.6)

where G(v)(x) := G(v(x)) for x ∈ Ω. From (3.6), using Hölder’s inequality and
noticing (3.5), we obtain
(3.7)

∥∇B(v)∥L2 ≲ ∥V ∥L∞∥∇v∥L2 + ∥v∥2σL∞∥∇v∥L2 +

{
∥v∥L∞∥∇V ∥L2 , d = 1,
∥v∥L4∥∇V ∥L4 , d = 2, 3,

,

where different estimates are used for v∇V for d = 1 and d = 2, 3. Thus we have,
by Sobolev embedding H1 ↪→ L∞ when d = 1 and H1 ↪→ L4 when d = 2, 3,

∥∇B(v)∥L2 ≤ C(∥v∥L∞)∥v∥H1 + ∥v∥H1

{
C(∥V ∥H1), d = 1,
C(∥V ∥W 1,4), d = 2, 3,

which completes the proof. □

Lemma 3.2. Let v, w ∈ L∞(Ω) such that ∥v∥L∞ ≤ M and ∥w∥L∞ ≤ M . When
σ > 0, we have

∥B(v)−B(w)∥L2 ≤ C(M, ∥V ∥L∞)∥v − w∥L2 .

Proof. Recalling (2.2), we have

(3.8) ∥B(v)−B(w)∥L2 ≤ ∥V ∥L∞∥v − w∥L2 + ∥f(|v|2)v − f(|w|2)w∥L2 .

For any z1, z2 ∈ C, let zθ = (1− θ)z1 + θz2 and let γ(θ) = f(|zθ|2)zθ for 0 ≤ θ ≤ 1,
we have

(3.9) f(|z2|2)z2 − f(|z1|2)z1 = γ(1)− γ(0) =

∫ 1

0

γ′(θ)dθ.

Recalling (1.4) and (3.4), we have

(3.10) γ′(θ) = (1 + σ)f(|zθ|2)(z2 − z1) +G(zθ)(z2 − z1).

Plugging (3.10) into (3.9), noticing (3.5), we have

(3.11) |f(|z1|2)z1 − f(|z2|2)z2| ≤ sup
0≤θ≤1

|γ′(θ)| ≲ max{|z1|, |z2|}2σ|z1 − z2|.

Thus we have

(3.12) ∥f(|v|2)v − f(|w|2)w∥L2 ≤ C(max{∥v∥L∞ , ∥w∥L∞})∥v − w∥L2 ,

which plugged into (3.8) completes the proof. □
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Let dB(·)[·] be the Gâteaux derivative defined as

(3.13) dB(v)[w] := lim
ε→0

B(v + εw)−B(v)

ε
,

where the limit is taken for real ε, and we identify C with R2 to be consistent with
the complex valued setting (see also the appendix in [30]). Then we have

Lemma 3.3. Let v ∈ L∞(Ω) such that ∥v∥L∞ ≤M and w ∈ L2(Ω). When σ > 0,
we have

∥dB(v)[w]∥L2 ≤ C(M, ∥V ∥L∞)∥w∥L2 .

Proof. Plugging (2.2) into (3.13), we obtain (see (4.26) in [11])

dB(v)[w] = −iV w + dB2(v)[w]

= −i
[
V w + (1 + σ)f(|v|2)w +G(v)w

]
,(3.14)

where G is defined in (3.4). From (3.14), noting (3.5), we have

∥dB(v)[w]∥L2 ≤ ∥V ∥L∞∥w∥L2 + C(∥v∥L∞)∥w∥L2 ,

which concludes the proof. □

Lemma 3.4. When 0 < σ ≤ 1/2, we have

|ΦτB2
(z1)− ΦτB2

(z2)| ≤ (1 + Cτ) |z1 − z2|, z1, z2 ∈ C,

where ΦτB2
(z) = ze−iτf(|z|

2) in (2.7) and C = 2σ|β|min{|z1|, |z2|}2σ.

Proof. Without loss of generality, we assume that |z2| ≤ |z1|. If z2 = 0, the
conclusion follows immediately. In the following, we assume that z2 ̸= 0. Then, by
noting that |1− eiθ| ≤ |θ| for all θ ∈ R, we have

|ΦτB2
(z1)− ΦτB2

(z2)| = |z1e−iτf(|z1|
2) − z2e

−iτf(|z2|2)|

≤ |z1 − z2|+ |z2|
∣∣∣1− e−iτ(f(|z1|

2)−f(|z2|2))
∣∣∣

≤ |z1 − z2|+ τ |z2|
∣∣f(|z1|2)− f(|z2|2)

∣∣ .(3.15)

When 0 < σ ≤ 1/2, since 0 < |z2| ≤ |z1|, by the mean value theorem and the
definition of f in (1.4), we have∣∣f(|z1|2)− f(|z2|2)

∣∣ = |β|
∣∣|z1|2σ − |z2|2σ

∣∣
≤ 2σ|β||z1 − z2|

min{|z1|, |z2|}1−2σ
= 2σ|β| |z1 − z2|

|z2|1−2σ
.(3.16)

Plugging (3.16) into (3.15), we get the desired result immediately. □

3.2. Local truncation error. In this subsection, we shall prove the local trunca-
tion error estimates for the TSSP (2.13) in 1D, which can be directly generalized
to 2D and 3D. With the regularized function fε introduced in Section 2.2, we can
obtain σ sensitive estimates as follows.

Lemma 3.5. Let ϕ ∈ XN such that ∥ϕ∥H2 ≤M and let 0 < τ < 1 and 0 < h < 1.
Assume that V ∈ H2(Ω). When 0 < σ ≤ 1/2, we have

∥(I − eiτ∆)PNB(ϕ)∥L2 ≤ C1(M, ∥V ∥H2)τ1/2+σ,(3.17)

∥INB(ϕ)− PNB(ϕ)∥L2 ≤ C2(M, ∥V ∥H2)h1+2σ.(3.18)
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Proof. Recalling the standard estimates that (see, e.g., [43, 8, 10])

∥v − PNv∥L2 ≲ h2|v|H2 , ∥INv − PNv∥L2 ≲ h2|v|H2 ,(3.19)

∥v − eit∆v∥L2 ≲ t∥v∥H2 , v ∈ H1
0 (Ω) ∩H2(Ω),(3.20)

noting that H2(Ω) is an algebra when 1 ≤ d ≤ 3, we have
(3.21)
∥(I − eiτ∆)(V ϕ)∥L2 ≲ τ∥V ∥H2∥ϕ∥H2 , ∥(IN − PN )(V ϕ)∥L2 ≲ h2∥V ∥H2∥ϕ∥H2 .

According to (2.2), it remains to show (3.17) and (3.18) with f(|ϕ|2)ϕ replacing
B(ϕ). Using the regularized function fε defined in (2.17) with 0 < ε ≪ 1 and the
triangle inequality, we have

∥(I − eiτ∆)(f(|ϕ|2)ϕ)∥L2

≤ ∥(I − eiτ∆)(f(|ϕ|2)ϕ− fε(|ϕ|2)ϕ)∥L2 + ∥(I − eiτ∆)(fε(|ϕ|2)ϕ)∥L2 .(3.22)

From (3.22), using ∥(I − eiτ∆)v∥L2 ≤ 2∥v∥L2 for the first term and (3.20) for the
second term, we have

(3.23) ∥(I − eiτ∆)(f(|ϕ|2)ϕ)∥L2 ≲ ∥f(|ϕ|2)ϕ− fε(|ϕ|2)ϕ∥L2 + τ∥fε(|ϕ|2)ϕ∥H2 .

By Lemma 2.4 and (2.30), we have

∥f(|ϕ|2)ϕ− fε(|ϕ|2)ϕ∥L2 ≲ ε2σ∥ϕ1|ϕ|<ε∥L2 ≤ |Ω| 12 ε1+2σ,(3.24)

∥fε(|ϕ|2)ϕ∥H2 ≤ C(M)

ε1−2σ
.(3.25)

Plugging (3.24) and (3.25) into (3.23), we have

∥(I − eiτ∆)(f(|ϕ|2)ϕ)∥L2 ≤ C(M) inf
0<ε<1

(
ε1+2σ +

τ

ε1−2σ

)
≤ C(M)τ1/2+σ,

which combined with (3.21) yields (3.17).
Then we shall prove (3.18). Similar to (3.22) and (3.23), using the triangle

inequality, the L2-projection property of PN , (3.24), (3.19) and (2.30), we have

∥(IN − PN )(f(|ϕ|2)ϕ)∥L2

≤ ∥(IN − PN )(f(|ϕ|2)ϕ− fε(|ϕ|2)ϕ)∥L2 + ∥(IN − PN )(fε(|ϕ|2)ϕ)∥L2

≤ ∥IN (f(|ϕ|2)ϕ− fε(|ϕ|2)ϕ)∥L2 + ∥PN (f(|ϕ|2)ϕ− fε(|ϕ|2)ϕ)∥L2

+ h2∥fε(|ϕ|2)ϕ∥H2

≤ ∥IN (f(|ϕ|2)ϕ− fε(|ϕ|2)ϕ)∥L2 + |Ω| 12 ε1+2σ + h2
C(M)

ε1−2σ
.(3.26)

By Parseval’s identity,

(3.27) ∥INv∥L2 =

√√√√h

N−1∑
j=1

|v(xj)|2 ≤

√√√√h

N−1∑
j=1

∥v∥2l∞ ≤ |Ω| 12 ∥v∥l∞ , v ∈ C0(Ω),

which implies, by using Lemma 2.4 again,

∥IN (f(|ϕ|2)ϕ− fε(|ϕ|2)ϕ)∥L2 ≤ |Ω| 12 ∥(f(|ϕ|2)− fε(|ϕ|2))ϕ∥l∞

≤ |Ω| 12 ε2σ∥ϕ1|ϕ|<ε∥l∞ ≤ |Ω| 12 ε1+2σ.(3.28)
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Plugging (3.28) into (3.26), we have

∥(IN − PN )(f(|ϕ|2)ϕ)∥L2 ≤ C(M) inf
0<ε<1

(
ε1+2σ +

h2

ε1−2σ

)
≤ C(M)h1+2σ,

which completes the proof. □

Now we are able to show the local truncation error of the TSSP method.

Proposition 3.6 (local truncation error). Assume that V ∈ H2(Ω). Under the
assumption (A), for 0 ≤ k ≤ T/τ − 1, we have

∥PNψ(·, tk+1)− Φτ (PNψ(·, tk))∥L2(Ω) ≤ C(M2)τ
(
τ

1
2+σ + h1+2σ

)
.

Proof. For the simplicity of notations, we define v(t) = ψ(tk + t) := ψ(·, tk + t) for
0 ≤ t ≤ τ and v0 := v(0) = ψ(tk). By Sobolev embedding H2 ↪→ L∞, noting the
boundedness of eit∆ and PN , we have

∥eis∆v(t)∥L∞ ≲ ∥eis∆v(t)∥H2 = ∥v(t)∥H2 ≤M2,(3.29)

∥PNv(t)∥L∞ ≲ ∥PNv(t)∥H2 ≤ ∥v(t)∥H2 ≤M2, 0 ≤ s, t ≤ τ.(3.30)

By variation of constant formula (see (4.24)-(4.25) in [11])

ψ(tk+1) = eiτ∆v0 +

∫ τ

0

ei(τ−s)∆B(eis∆v0)ds

+

∫ τ

0

∫ s

0

ei(τ−s)∆dB(ei(s−σ)∆v(σ))[ei(s−σ)∆B(v(σ))]dσds,(3.31)

where dB(·)[·] is the Gâteaux derivative defined in (3.13). Applying PN on both
sides of (3.31), noting that eiτ∆ and PN commute [6], one gets

PNψ(tk+1) = eiτ∆PNv0 +

∫ τ

0

ei(τ−s)∆PNB(eis∆v0)ds

+

∫ τ

0

∫ s

0

ei(τ−s)∆PN

(
dB(ei(s−σ)∆v(σ))[ei(s−σ)∆B(v(σ))]

)
dσds.(3.32)

From (2.6), recalling that v0 = ψ(tk), we have

(3.33) Φτ (PNψ(tk)) = eiτ∆INΦτB(PNv0).

Applying the first-order Taylor expansion (see proof of Theorem 4.2 in [11])

(3.34) ΦτB(w) = w + τB(w) + τ2
∫ 1

0

(1− θ)dB(ΦθτB (w))[B(ΦθτB (w))]dθ

for w = PNv0 and plugging it into (3.33), we have

Φτ (PNψ(tk)) = eiτ∆PNv0 + τeiτ∆INB(PNv0)

+ τ2eiτ∆IN

(∫ 1

0

(1− θ)
(
dB(ΦθτB (PNv0))[B(ΦθτB (PNv0))]

)
dθ

)
.(3.35)

Subtracting (3.35) from (3.32), we have

(3.36) PNψ(tk+1)− Φτ (PNψ(tk)) = e1 − e2 + e3,
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where

e1 =

∫ τ

0

∫ s

0

ei(τ−s)∆PN

(
dB(ei(s−σ)∆v(σ))[ei(s−σ)∆B(v(σ))]

)
dσds,(3.37)

e2 = τ2eiτ∆IN

(∫ 1

0

(1− θ)
(
dB(ΦθτB (PNv0))[B(ΦθτB (PNv0))]

)
dθ

)
,(3.38)

e3 =

∫ τ

0

ei(τ−s)∆PNB(eis∆v0)ds− τeiτ∆INB(PNv0).(3.39)

Next, we shall first estimate e1 and e2. Noticing the property of eit∆ and PN ,
using Lemma 3.3 and (3.29), we have∥∥∥ei(τ−s)∆PN (

dB(ei(s−σ)∆v(σ))[ei(s−σ)∆B(v(σ))]
)∥∥∥

L2

≤ ∥dB(ei(s−σ)∆v(σ))[ei(s−σ)∆B(v(σ))]∥L2

≤ C(∥V ∥L∞ , ∥ei(s−σ)∆v(σ)∥L∞)∥ei(s−σ)∆B(v(σ))∥L2

≤ C(M2)∥B(v(σ))∥L2 .(3.40)

From (3.37), using (3.40) and (3.1), we get

∥e1∥L2 ≤
∫ τ

0

∫ s

0

∥∥∥ei(τ−s)∆PN (
dB(ei(s−σ)∆v(σ))[ei(s−σ)∆B(v(σ))]

)∥∥∥
L2

dσds

≤ C(M2)

∫ τ

0

∫ s

0

∥B(v(σ))∥L2dσds ≤ C(M2)τ
2 max
0≤σ≤τ

∥B(v(σ))∥L2

≤ C(M2)τ
2C(M2) max

0≤σ≤τ
∥v(σ)∥L2 ≤ C(M2)τ

2.(3.41)

From (2.6) and (2.2), using (3.30), one gets,

(3.42)
∥ΦθτB (PNv0)∥L∞ = ∥PNv0∥L∞ ≤ C(M2), 0 ≤ θ ≤ 1,

∥B(ΦθτB (PNv0))∥L∞ ≤ C(∥V ∥L∞ , ∥PNv0∥L∞)∥PNv0∥L∞ ≤ C(M2).

From (3.14), noticing (3.5), one easily gets

(3.43) ∥dB(w1)[w2]∥L∞ ≤ C(∥V ∥L∞ , ∥w1∥L∞)∥w2∥L∞ , w1, w2 ∈ L∞(Ω),

which combined with (3.27) and (3.42), yields the estimate for e2 in (3.38) as

∥e2∥L2 ≤ τ2
∥∥∥∥IN (∫ 1

0

(1− θ)
(
dB(ΦθτB (PNv0))[B(ΦθτB (PNv0))]

)
dθ

)∥∥∥∥
L2

≤ τ2|Ω| 12 max
0≤θ≤1

∥∥dB(ΦθτB (PNv0))[B(ΦθτB (PNv0))]
∥∥
l∞

≤ τ2|Ω| 12C
(
∥V ∥L∞ , ∥ΦθτB (PNv0)∥L∞

)
∥B(ΦθτB (PNv0))∥L∞

≤ C(M2)τ
2.(3.44)

Then we shall estimate e3 in (3.39), which can be written as

e3 =

∫ τ

0

[
ei(τ−s)∆PNB(eis∆v0)− eiτ∆INB(PNv0)

]
ds,

which yields

(3.45) ∥e3∥L2 ≤ τ max
0≤s≤τ

∥ei(τ−s)∆PNB(eis∆v0)− eiτ∆INB(PNv0)∥L2 .
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Using standard properties of eit∆ and PN , one gets

∥ei(τ−s)∆PNB(eis∆v0)− eiτ∆INB(PNv0)∥L2

= ∥PNB(eis∆v0)− eis∆INB(PNv0)∥L2

≤ ∥PNB(eis∆v0)− PNB(v0)∥L2 + ∥PNB(v0)− PNB(PNv0)∥L2

+ ∥PNB(PNv0)− eis∆PNB(PNv0)∥L2

+ ∥eis∆PNB(PNv0)− eis∆INB(PNv0)∥L2

≤ ∥B(eis∆v0)−B(v0)∥L2 + ∥B(v0)−B(PNv0)∥L2

+ ∥(I − eis∆)PNB(PNv0)∥L2 + ∥(PN − IN )B(PNv0)∥L2

=: ∥e13∥L2 + ∥e23∥L2 + ∥e33∥L2 + ∥e43∥L2 .(3.46)

For e13 and e
2
3 in (3.46), using Lemma 3.2, recalling (3.19), (3.20), (3.29), and (3.30),

we obtain

(3.47)
∥e13∥L2 = ∥B(eis∆v0)−B(v0)∥L2 ≤ C(M2)∥(I − eis∆)v0∥L2 ≤ C(M2)τ,

∥e23∥L2 = ∥B(v0)−B(PNv0)∥L2 ≤ C(M2)∥v0 − PNv0∥L2 ≤ C(M2)h
2.

For e33 and e43 in (3.46), using Lemma 3.5, we get

(3.48)
∥e33∥L2 = ∥(I − eis∆)PNB(PNv0)∥L2 ≤ C(M2)τ

1+2σ
2 ,

∥e43∥L2 = ∥(IN − PN )B(PNv0)∥L2 ≤ C(M2)h
1+2σ.

Plugging (3.47) and (3.48) into (3.46), and noticing (3.45), we get

(3.49) ∥e3∥L2 ≤ C(M2)τ
(
τ

1+2σ
2 + h1+2σ

)
.

Combing (3.41), (3.44), and (3.49), and noting (3.36), we get the desired result. □

Remark 3.7. The proof of Proposition 3.6 can be generalized to 2D and 3D di-
rectly. Moreover, in 1D, under much weaker assumption that V ∈ H1(Ω) and
ψ ∈ C([0, T ];H1

0 (Ω)), by using Sobolev embedding H1 ↪→ L∞ and the estimates
(see, e.g., [10, 11])

(3.50) ∥v − eit∆v∥L2 ≲
√
τ∥v∥H1 , ∥v − PNv∥L2 ≲ h|v|H1 , v ∈ H1

0 (Ω),

and following the proof of Proposition 3.6, we can obtain

(3.51) ∥PNψ(tk+1)− Φτ (PNψ(tk))∥L2(Ω) ≤ Cτ
(√
τ + h

)
,

where C depends on ∥V ∥H1 and ∥ψ∥L∞([0,T ];H1).

3.3. Unconditional L2-stability and proof of Theorem 2.5. We shall show
the unconditional L2-stability of the numerical flow by using Lemma 3.4. With
the estimate of the local truncation error and the unconditional L2-stability of the
numerical flow, we are able to obtain the error estimates.

Proposition 3.8 (unconditional L2-stability). Let v ∈ XN and w ∈ XN such that
min{∥v∥L∞ , ∥w∥L∞} ≤M . When 0 < σ ≤ 1/2, we have

∥Φτ (v)− Φτ (w)∥L2 ≤ (1 + C(M)τ)∥v − w∥L2 ,

where Φτ is defined in (2.14) and C(M) ∼M2σ.
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Proof. Recalling (2.14), noting that eiτ∆ preserves the L2 norm, one gets

∥Φτ (v)− Φτ (w)∥L2 = ∥eiτ∆INΦτB(v)− eiτ∆INΦτB(w)∥L2

= ∥INΦτB(v)− INΦτB(w)∥L2 .(3.52)

From (3.52), by (3.27) and Lemma 3.4, noting that IN is an identity on XN , and
recalling (2.6), we have

∥INΦτB(v)− INΦτB(w)∥2L2

= h

N−1∑
j=1

|ΦτB(v)(xj)− ΦτB(w)(xj)|2

= h

N−1∑
j=1

∣∣∣e−iτV (xj)ΦτB2
(v)(xj)− e−iτV (xj)ΦτB2

(w)(xj)
∣∣∣2

= h

N−1∑
j=1

∣∣ΦτB2
(v)(xj)− ΦτB2

(w)(xj)
∣∣2

≤ (1 + C(M)τ)2h

N−1∑
j=1

|v(xj)− w(xj)|2

= (1 + C(M)τ)2∥INv − INw∥2L2

= (1 + C(M)τ)2∥v − w∥2L2 .(3.53)

The proof is completed. □

Remark 3.9. In the error estimates, v and w in Proposition 3.8 are related to
the exact solution and the numerical solution, respectively. Hence, to control the
constant C(M) in Proposition 3.8, we can assume bound of the exact solution and
thus get rid of the a priori estimate of the numerical solution, which explains why
Proposition 3.8 is called the unconditional L2-stability.

Proof of Theorem 2.5. Under the assumption (A), using (3.19), one gets

(3.54) ∥ψ(·, tk)− PNψ(·, tk)∥L2 ≤ C(M2)h
2.

Hence, it suffices to estimate ek := INψ
k − PNψ(·, tk) ∈ XN for 0 ≤ k ≤ T/τ . By

(2.15), for 0 ≤ k ≤ T/τ − 1, one has

∥ek+1∥L2 = ∥INψk+1 − PNψ(·, tk+1)∥L2 = ∥Φτ (INψk)− PNψ(·, tk+1)∥L2

≤ ∥Φτ (INψk)− Φτ (PNψ(·, tk))∥L2 + ∥Φτ (PNψ(·, tk))− PNψ(·, tk+1)∥L2 .(3.55)

By Propositions 3.6 and 3.8, noting that ∥PNψ(·, tk)∥L∞ ≲ ∥PNψ(·, tk)∥H2 ≤
∥ψ(·, tk)∥H2 ≤M2, one has

∥ek∥L2(Ω) ≤ (1 + C(M2)τ)∥ek−1∥L2(Ω)+C(M2)τ
(
τ1/2+σ + h1+2σ

)
, 1 ≤ k ≤ T/τ.

It follows from the discrete Gronwall’s inequality and ∥e0∥L2 = ∥INψ0 − PNψ0∥ ≤
C(M2)h

2 that

∥ek∥L2(Ω) ≤ C(T,M2)
(
τ

1+2σ
2 + h1+2σ

)
, 0 ≤ k ≤ T/τ,

which completes the proof. □
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The proof of Corollary 2.6 follows the proof of Theorem 2.5 by replacing Propo-
sition 3.6 with (3.51) and we shall omit it for brevity.

4. Proof of Theorem 2.7 for the case σ ≥ 1/2

In this section, we assume that V ∈ H2(Ω) ∩W 1,∞(Ω), σ ≥ 1/2 and the as-
sumption (A). The assumption V ∈ W 1,∞(Ω) is only used in Proposition 4.8 and
can be obtained from V ∈ H2(Ω) in 1D or V ∈ H3(Ω) in 2D and 3D. Also, we
shall use the equivalent norm ∥∇ · ∥L2 on H1

0 (Ω) to avoid frequent use of Poincaré
inequality.

4.1. Some estimates for the operator B.

Lemma 4.1. Let v ∈ H2(Ω) such that ∥v∥H2 ≤M . When σ ≥ 1/2, we have

∥B(v)∥H2(Ω) ≤ C(M, ∥V ∥H2).

Proof. Recalling (2.2), noting that H2(Ω) is an algebra when 1 ≤ d ≤ 3, we have

(4.1) ∥B(v)∥H2 ≤ ∥V v∥H2 + ∥f(|v|2)v∥H2 ≤ ∥V ∥H2∥v∥H2 + ∥f(|v|2)v∥H2 .

When σ ≥ 1/2, recalling (1.4) and (3.4), by similar calculation as (2.34) and (2.35)
and noting (3.5) as well as

(4.2)
∣∣f ′(|z|2)z∣∣+∣∣f ′(|z|2)z∣∣+∣∣f ′′(|z|2)z3∣∣+∣∣f ′′(|z|2)z2z∣∣ ≲ |z|2σ−1, z ∈ C, σ ≥ 1

2
,

we have

(4.3)
∣∣∂jk(f(|v|2)v)∣∣ ≲ |v|2σ|∂jkv|+ |v|2σ−1|∂jv| |∂kv|,

which yields, by Sobolev embedding H2 ↪→W 1,4 for d = 1, 2, 3, that

(4.4) ∥∂jk(f(|v|2)v)∥L2 ≲ ∥v∥2σL∞∥∂jkv∥L2 + ∥v∥2σ−1
L∞ ∥∇v∥2L4 ≤ C(M).

Combing (4.4) and Lemma 3.1, noting (4.1), we obtain the desired result. □

Lemma 4.2. Let v, w ∈ H2(Ω) such that ∥v∥H2 ≤ M and ∥w∥H2 ≤ M . When
σ ≥ 1/2, we have

∥B(v)−B(w)∥H1 ≤ C(M, ∥V ∥W 1,4)∥v − w∥H1 .

Proof. From (3.6), one gets

(4.5)
∇ (B(v)−B(w)) = −i

[
∇(V (v − w)) + i(1 + σ)(f(|v|2)∇v − f(|w|2)∇w)

+G(v)∇v −G(w)∇w] .

Using Hölder’s inequality and Sobolev embedding H1 ↪→ L4 andW 1,4 ↪→ L∞ (both
hold for d = 1, 2, 3), we have

∥∇(V (v − w))∥L2 ≤ ∥∇V ∥L4∥v − w∥L4 + ∥V ∥L∞∥∇(v − w)∥L2

≲ ∥V ∥W 1,4∥v − w∥H1 .(4.6)

By (4.5), it remains to show that

∥f(|v|2)∇v − f(|w|2)∇w∥L2 ≤ C(M)∥v − w∥H1 ,(4.7)

∥G(v)∇v −G(w)∇w∥L2 ≤ C(M)∥v − w∥H1 .(4.8)
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When σ ≥ 1/2, following the proof of (3.11), we have, for z1, z2 ∈ C,

|f(|z1|2)− f(|z2|2)| ≲ max{|z1|, |z2|}2σ−1|z1 − z2|,(4.9)

|G(z1)−G(z2)| ≲ max{|z1|, |z2|}2σ−1|z1 − z2|.(4.10)

Using (4.9) and Sobolev embedding H1 ↪→ L4 and H2 ↪→ L∞, we have

∥f(|v|2)∇v − f(|w|2)∇w∥L2

≤ ∥f(|v|2)∇(v − w)∥L2 + ∥(f(|v|2)− f(|w|2))∇w∥L2

≤ C(∥v∥L∞)∥v − w∥H1 + C(max{∥v∥L∞ , ∥w∥L∞})∥(v − w)∇w∥L2

≤ C(M)∥v − w∥H1 + C(M)∥v − w∥L4∥∇w∥L4

≤ C(M)∥v − w∥H1 ,

which proves (4.7). Similarly, we can prove (4.8), which completes the proof. □

Lemma 4.3. Let v, w ∈ H1(Ω) ∩ L∞(Ω) such that ∥v∥L∞ + ∥v∥H1 ≤ M and
∥w∥L∞ + ∥w∥H1 ≤M . When σ ≥ 1/2, we have

∥dB(v)[w]∥H1 ≤ C(M, ∥V ∥W 1,4).

Proof. From (3.14), using (4.6), we have

∥dB(v)[w]∥H1 ≤ ∥V w∥H1 + (1 + σ)∥f(|v|2)w∥H1 + ∥G(v)w∥H1

≲ ∥V ∥W 1,4∥w∥H1 + ∥f(|v|2)w∥H1 + ∥G(v)w∥H1 .(4.11)

When σ ≥ 1/2, recalling (4.2), we have

∥f(|v|2)∥H1 = ∥f(|v|2)∥L2 + ∥∇f(|v|2)∥L2 ≲ ∥v∥2σL∞ + ∥f ′(|v|2)v∇v∥L2

≤ ∥v∥2σL∞ + ∥v∥2σ−1
L∞ ∥∇v∥L2 ≤ C(M).(4.12)

Similarly, one gets ∥G(v)∥H1 ≤ C(M). Then using

(4.13) ∥u1u2∥H1 ≤ ∥u1∥L∞∥u2∥H1 + ∥u2∥L∞∥u1∥H1 , u1, u2 ∈ H1(Ω) ∩ L∞(Ω),

and recalling (3.5), we have

∥f(|v|2)w∥H1 ≤ ∥f(|v|2)∥L∞∥w∥H1 + ∥w∥L∞∥f(|v|2)∥H1 ≤ C(M),(4.14)

∥G(v)w∥H1 ≤ ∥G(v)∥L∞∥w∥H1 + ∥w∥L∞∥G(v)∥H1 ≤ C(M).(4.15)

Plugging (4.14) and (4.15) into (4.11) yields the desired result. □

Lemma 4.4. Let v, w ∈ H2(Ω) such that ∥v∥H2 ≤ M and ∥w∥H2 ≤ M . If
|w(x)| ≤ C|v(x)| for all x ∈ Ω, when σ ≥ 1/2, we have

∥dB(v)[w]∥H2 ≤ C (M, ∥V ∥H2) .

Proof. The proof can be obtained similarly as the proof of Lemma 4.1 and we shall
omit it here for brevity. □

Lemma 4.5. Let 0 < τ < 1 and v ∈ XN such that ∥v∥L∞ ≤M and ∥v∥H2 ≤M1.
When σ > 0, we have

(4.16) ∥ΦτB(v)∥H1 ≤ (1 + C1(M, ∥V ∥W 1,4)τ) ∥v∥H1(Ω),

and when σ ≥ 1/2, we have

(4.17) ∥ΦτB(v)∥H2 ≤ C2(M1, ∥V ∥H2).
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Proof. Recalling that ΦτB(v) = ve−iτ(V+f(|v|2)) in (2.6), the proof of (4.16) and
(4.17) follows similarly from the proof of Lemma 3.1 and Lemma 4.1, respectively.

□

Lemma 4.6. Let z1, z2 ∈ C. When σ ≥ 1/2, one has

|ΦτB2
(z1)− ΦτB2

(z2)| ≤ (1 + Cτ)|z1 − z2|,

where ΦτB2
(z) = ze−iτf(|z|

2) in (2.7) and C ∼ max{|z1|, |z2|}2σ.

Proof. The proof follows from the proof of Lemma 3.4 by replacing (3.16) with
(4.9). □

4.2. Local truncation error.

Proposition 4.7 (local truncation error). Assume that 0 < τ < 1, 0 < h < 1,
V ∈ H2 and σ ≥ 1/2. Under the assumption (A), for 0 ≤ k ≤ T/τ − 1, we have

∥PNψ(·, tk+1)− Φτ (PNψ(·, tk))∥L2(Ω) ≤ C1(M2)τ
(
τ + h2

)
,(4.18)

∥PNψ(·, tk+1)− Φτ (PNψ(·, tk))∥H1(Ω) ≤ C2(M2)τ
(
τ

1
2 + h

)
.(4.19)

Proof. Following the notations in the proof of Proposition 3.6, we let v(t) = ψ(·, tk+
t) for 0 ≤ t ≤ τ and v0 := v(0) = ψ(·, tk). When σ ≥ 1/2, (3.29) and (3.30) are
also valid and we have the same error decomposition (3.36). When σ ≥ 1/2, the L2

estimate (4.18) follows from the proof of Proposition 3.6 by replacing (3.48) with

(4.20)
∥e33∥L2 ≲ τ∥PNB(PNv0)∥H2 ≤ τ∥B(PNv0)∥H2 ≤ C(M2)τ,

∥e43∥L2 ≲ h2∥B(PNv0)∥H2 ≤ C(M2)h
2,

where (3.20), (3.19) and Lemma 4.1 are used.
In the following, we shall show (4.19). Using Sobolev embedding H2 ↪→ L∞, the

isometry property of eit∆ and Lemmas 3.1 and 4.1, one gets

(4.21)
∥ei(s−σ)∆B(v(σ))∥H1 = ∥B(v(σ))∥H1 ≤ C(M2),

∥ei(s−σ)∆B(v(σ))∥L∞ ≲ ∥ei(s−σ)∆B(v(σ))∥H2 = ∥B(v(σ))∥H2 ≤ C(M2).

Recalling the boundedness of eit∆ and PN , using Lemma 4.3, noticing (3.29) and
(4.21), we have∥∥∥ei(τ−s)∆PN (

dB(ei(s−σ)∆v(σ))[ei(s−σ)∆B(v(σ))]
)∥∥∥

H1

≤ ∥dB(ei(s−σ)∆v(σ))[ei(s−σ)∆B(v(σ))]∥H1

≤ C(∥V ∥W 1,4 , ∥ei(s−σ)∆v(σ)∥L∞∩H1 , ∥ei(s−σ)∆B(v(σ))∥L∞∩H1)

≤ C(M2),(4.22)

which yields, for e1 in (3.37),

∥e1∥H1 ≤
∫ τ

0

∫ s

0

∥∥∥ei(τ−s)∆PN (
dB(ei(s−σ)∆v(σ))[ei(s−σ)∆B(v(σ))]

)∥∥∥
H1

dσds

≤ C(M2)τ
2.(4.23)

For e2 in (3.38), using the estimate for ϕ ∈ H1
0 (Ω) ∩H2(Ω),

(4.24) ∥INϕ∥H1 ≤ ∥ϕ∥H1 + ∥ϕ− INϕ∥H1 ≲ ∥ϕ∥H1 + h|ϕ|H2 ≲ ∥ϕ∥H2 ,
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one gets

∥e2∥H1 = τ2
∥∥∥∥IN (∫ 1

0

(1− θ)
(
dB(ΦθτB (PNv0))[B(ΦθτB (PNv0))]

)
dθ

)∥∥∥∥
H1

≲ τ2∥dB(ΦθτB (PNv0))[B(ΦθτB (PNv0))]∥H2 .(4.25)

From (4.25), noting that

(4.26)
∣∣[B(ΦθτB (PNv0))

]
(x)

∣∣ ≲ ∣∣ΦθτB (PNv0)(x)
∣∣ = (PNv0)(x), x ∈ Ω,

and using Lemma 4.4, we have

(4.27) ∥e2∥H1 ≤ C(M2)τ
2.

Then we shall estimate e3 in (3.39). Similar to (3.45) and (3.46), it suffices to

bound the H1-norm of the four terms ej3(1 ≤ j ≤ 4) defined in (3.46). Using the
standard estimates (see, e.g., [43, 10]),

∥ϕ− PNϕ∥H1 ≲ h|ϕ|H2 , ∥INϕ− PNϕ∥H1 ≲ h|ϕ|H2 ,(4.28)

∥ϕ− eit∆ϕ∥H1 ≲
√
t∥ϕ∥H2 , ϕ ∈ H1

0 (Ω) ∩H2(Ω),(4.29)

and Lemmas 4.1 and 4.2, we have

∥e13∥H1 ≤ C(M2)∥eis∆v0 − v0∥H1 ≤ C(M2)
√
τ∥v0∥H2 ≤ C(M2)

√
τ ,

∥e23∥H1 ≤ C(M2)∥v0 − PNv0∥H1 ≤ C(M2)h∥v0∥H2 ≤ C(M2)h,
(4.30)

∥e33∥H1 ≲
√
τ∥PNB(PNv0)∥H2 ≤

√
τ∥B(PNv0)∥H2 ≤ C(M2)

√
τ ,

∥e43∥H1 ≲ h∥B(PNv0)∥H2 ≤ C(M2)h,
(4.31)

which yields immediately

(4.32) ∥e3∥H1 ≤ C(M2)τ
(√
τ + h

)
.

Combining (4.23), (4.27), and (4.32), we obtain (4.19), which completes the proof.
□

4.3. l∞-conditional L2- and H1-stability.

Proposition 4.8 (l∞-conditional stability). Let 0 < τ < 1 and v, w ∈ XN such
that ∥v∥l∞ ≤M , ∥w∥l∞ ≤M and ∥v∥H2 ≤M1. When σ ≥ 1/2, we have

∥Φτ (v)− Φτ (w)∥L2 ≤ (1 + C1(M)τ)∥v − w∥L2 ,(4.33)

∥Φτ (v)− Φτ (w)∥H1 ≤ (1 + C2(M,M1, ∥V ∥W 1,∞)τ)∥v − w∥H1 ,(4.34)

Proof. The L2-stability (4.33) can be obtained from (3.53) by using Lemma 4.6
instead of Lemma 3.4. In the following, we show the H1-stability (4.34). By (2.6)
and the isometry property of eiτ∆, (4.34) reduces to

(4.35) ∥INΦτB(v)− INΦτB(w)∥H1 ≤ (1 + C(M,M1, ∥V ∥W 1,∞)τ)∥v − w∥H1 .

The proof is based on the following well-known equivalence relation (see, e.g.,
Lemma 3.2 in [8]): with δ+x defined in (2.10),

(4.36) ∥δ+x ϕ∥l2 ≤ ∥∇INϕ∥L2 ≤ π

2
∥δ+x ϕ∥l2 , ϕ ∈ XN ,

which implies,

∥INΦτB(v)− INΦτB(w)∥H1 ≤ ∥v − w∥H1 + ∥IN (ΦτB(v)− v)− IN (ΦτB(w)− w)∥H1

≤ ∥v − w∥H1 + C∥δ+x (ΦτB(v)− v)− δ+x (Φ
τ
B(w)− w)∥l2 .(4.37)
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We define

vθj = (1− θ)vj + θvj+1, wθj = (1− θ)wj + θwj+1,

V θj = (1− θ)V (xj) + θV (xj+1), 0 ≤ θ ≤ 1, j = 0, · · · , N − 1.

By some elementary calculations, recalling (3.4) and f ′(|z|2)|z|2 = σf(|z|2), one
gets, for 0 ≤ j ≤ N − 1,

δ+x (Φ
τ
B(v)− v)j = δ+x

(
v(e−iτ(V+f(|v|2)) − 1)

)
j

=
1

h

∫ 1

0

d

dθ

(
vθj (e

−iτ(V θ
j +f(|vθj |

2)) − 1)
)
dθ

=

∫ 1

0

[
δ+x vj(e

−iτ(V θ
j +f(|vθj |

2)) − 1)− iτe−iτV
θ
j vθj δ

+
x V (xj)e

−iτf(|vθj |
2)

−iτe−iτV
θ
j (σf(|vθj |2)δ+x vj +G(vθj )δ

+
x vj)e

−iτf(|vθj |
2)
]
dθ.(4.38)

Similarly, for 0 ≤ j ≤ N − 1,

δ+x (Φ
τ
B(w)− w)j

=

∫ 1

0

[
δ+x wj(e

−iτ(V θ
j +f(|wθ

j |
2)) − 1)− iτe−iτV

θ
j wθj δ

+
x V (xj)e

−iτf(|wθ
j |

2)

−iτe−iτV
θ
j (σf(|wθj |2)δ+x wj +G(wθj )δ

+
x wj)e

−iτf(|wθ
j |

2)
]
dθ.(4.39)

We define the function e ∈ YN with

ej = vj − wj , j = 0, · · · , N.

Subtracting (4.39) from (4.38), for 0 ≤ j ≤ N − 1, we have∣∣δ+x (ΦτB(v)− v)j − δ+x (Φ
τ
B(w)− w)j

∣∣
≤

∫ 1

0

[∣∣∣δ+x vj(e−iτ(V θ
j +f(|vθj |

2)) − 1)− δ+x wj(e
−iτ(V θ

j +f(|wθ
j |

2)) − 1)
∣∣∣

+ τ
∣∣δ+x V (xj)

∣∣ ∣∣∣vθj e−iτf(|vθj |2) − wθj e
−iτf(|wθ

j |
2)
∣∣∣

+ στ
∣∣∣δ+x vjf(|vθj |2)e−iτf(|vθj |2) − δ+x wjf(|wθj |2)e−iτf(|w

θ
j |

2)
∣∣∣

+τ
∣∣∣δ+x vjG(vθj )e−iτf(|vθj |2) − δ+x wjG(w

θ
j )e

−iτf(|wθ
j |

2)
∣∣∣] dθ

=:

∫ 1

0

(
J1
j + J2

j + J3
j + J4

j

)
dθ.(4.40)

For J1
j , by (4.9), one gets

J1
j ≤

∣∣δ+x vj∣∣ ∣∣∣e−iτ(V θ
j +f(|vθj |

2)) − e−iτ(V
θ
j +f(|wθ

j |
2))

∣∣∣
+
∣∣δ+x vj − δ+x wj

∣∣ ∣∣∣e−iτ(V θ
j +f(|wθ

j |
2)) − 1

∣∣∣
≤ τ

∣∣δ+x vj∣∣ ∣∣f(|vθj |2)− f(|wθj |2)
∣∣+ τ

∣∣V θj + f(|wθj |2)
∣∣ ∣∣δ+x vj − δ+x wj

∣∣
≤ C(M)τ

∣∣δ+x vj∣∣ (|ej |+ |ej+1|) + C(M, ∥V ∥L∞)τ |δ+x ej |.(4.41)
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For J2
j , recalling (2.7), by Lemma 4.6 and 0 < τ < 1, one gets

J2
j = τ

∣∣δ+x V (xj)
∣∣ ∣∣ΦτB2

(vθj )− ΦτB2
(wθj )

∣∣
≤ τ

∣∣δ+x V (xj)
∣∣ (1 + C(M)τ)(|ej |+ |ej+1|)

≤ C(M)τ
∣∣δ+x V (xj)

∣∣ (|ej |+ |ej+1|).(4.42)

For J3
j , by (4.9) and 0 < τ < 1, one gets

J3
j ≲ τ

∣∣δ+x vj∣∣ ∣∣∣f(|vθj |2)e−iτf(|vθj |2) − f(|wθj |2)e−iτf(|w
θ
j |

2)
∣∣∣

+ τ
∣∣δ+x vj − δ+x wj

∣∣ ∣∣∣f(|wθj |2)e−iτf(|wθ
j |

2)
∣∣∣

≤ τ
∣∣δ+x vj∣∣ (∣∣f(|vθj |2)− f(|wθj |2)

∣∣+ |f(|wθj |2)|
∣∣∣e−iτf(|vθj |2) − e−iτf(|w

θ
j |

2)
∣∣∣)

+ τC(M)
∣∣δ+x vj − δ+x wj

∣∣
≤ τ

∣∣δ+x vj∣∣C(M)(1 + τ)|vθj − wθj |+ τC(M)
∣∣δ+x vj − δ+x wj

∣∣
≤ C(M)τ

∣∣δ+x vj∣∣ (|ej |+ |ej+1|) + C(M)τ
∣∣δ+x ej∣∣ .(4.43)

Similar to (4.43), using (4.10) instead of (4.9), one gets, for J4
j ,

(4.44) J4
j ≤ C(M)τ

∣∣δ+x vj∣∣ (|ej |+ |ej+1|) + C(M)τ
∣∣δ+x ej∣∣ .

Plugging (4.41)–(4.44) into (4.40), we have∣∣δ+x (ΦτB(v)− v)j − δ+x (Φ
τ
B(w)− w)j

∣∣
≤ C(M)τ

(∣∣δ+x V (xj)
∣∣+ ∣∣δ+x vj∣∣) (|ej |+ |ej+1|) + C(M, ∥V ∥L∞)τ

∣∣δ+x ej∣∣ ,
which yields

∥δ+x (ΦτB(v)− v)− δ+x (Φ
τ
B(w)− w)∥2l2

= h

N−1∑
j=0

∣∣δ+x (ΦτB(v)− v)j − δ+x (Φ
τ
B(w)− w)j

∣∣2
≤ C(M)τ2h

N−1∑
j=0

(∣∣δ+x V (xj)
∣∣2 + ∣∣δ+x vj∣∣2) (|ej |2 + |ej+1|2)

+ C(M, ∥V ∥L∞)τ2h

N−1∑
j=0

∣∣δ+x ej∣∣2
≤ C(M)τ2

∥∇V ∥2L∞∥e∥2l2 + h

N−1∑
j=0

∣∣δ+x vj∣∣2 (|ej |2 + |ej+1|2)


+ C(M, ∥V ∥L∞)τ2∥δ+x e∥2l2 .(4.45)

When d = 1, one has |δ+x vj | ≤ ∥∇v∥L∞ ≤ C(M1), which yields directly that

(4.46) h

N−1∑
j=0

∣∣δ+x vj∣∣2 (|ej |2 + |ej+1|2) ≤ C(M1)∥e∥2l2 .

However, (4.46) cannot be directly generalized to 2D and 3D without assuming
higher regularity on v. Here, we present an alternative approach that can be gener-
alized to 2D and 3D (see also Remark 4.9). Using the discrete Gagliardo-Nirenberg
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inequality ((2.4) in [1] or (3.3) in [7]) and the discrete Poincaré inequality ((3.3) in
[7]), we have

(4.47) ∥ϕ∥l4 ≲ ∥ϕ∥
3
4

l2∥δ
+
x ϕ∥

1
4

l2 ≲ ∥δ+x ϕ∥l2 , ϕ ∈ YN ,

which implies, by first applying Hölder’s inequality in (4.46),

(4.48) h

N−1∑
j=0

∣∣δ+x vj∣∣2 (|ej |2 + |ej+1|2) ≲ ∥δ+x v∥2l4∥e∥2l4 ≲ ∥δ+x v∥2l4∥δ+x e∥2l2 .

Using the following discrete version of the Sobolev embedding H2 ↪→ W 1,4 (see
(3.3) in [7] and also the appendix)

(4.49) ∥δ+x ϕ∥l4 ≲ ∥ϕ∥H2 , ϕ ∈ XN ,

we get ∥δ+x v∥l4 ≲ ∥v∥H2 ≤M1, which plugged into (4.48) yields from (4.45)

∥δ+x (ΦτB(v)− v)− δ+x (Φ
τ
B(w)− w)∥2l2

≤ C(M,M1, ∥V ∥W 1,∞)
(
∥e∥2l2 + ∥δ+x e∥2l2

)
.(4.50)

From (4.50), using the discrete Poincaré inequality and (3.27) and (4.36), we have

∥δ+x (ΦτB(v)− v)− δ+x (Φ
τ
B(w)− w)∥2l2 ≤ C(M,M1, ∥V ∥W 1,∞)∥δ+x e∥2l2

≤ C(M,M1, ∥V ∥W 1,∞)∥∇INe∥2L2 ,(4.51)

which plugged into (4.37) yields (4.35), and completes the proof. □

Remark 4.9. The 2D case follows exactly (4.47)–(4.49). The proof of (4.49) in 2D
proceeds similarly to our proof in 1D in the appendix by following the proof of (3.3)
in [7] with additional attention paid to the boundary terms. The 3D case follows
(4.47)–(4.49) with slight modification: using Hölder’s inequality with index (3/2, 3)
in (4.48). Then the discrete version of H1 ↪→ L6 and H2 ↪→W 1,3 in 3D are needed.
The proof of the first one can be found in [40] while the proof of the second one will
follow the proof of (4.49) in 2D, which is the reason why we modify the estimates
in 3D.

4.4. Proof of (2.42) in Theorem 2.7. With Propositions 4.7 and 4.8, we are
able to obtain (2.42).

Proof of (2.42) in Theorem 2.7. Following the proof of Theorem 2.7, we only need
to estimate ek = INψ

k −PNψ(·, tk) for 0 ≤ k ≤ T/τ . We shall first prove the error
estimate in H1 norm by the standard argument of the mathematical induction.
Replacing ∥ · ∥L2 with ∥ · ∥H1 in (3.55), one has for 0 ≤ k ≤ T/τ − 1,

∥ek+1∥H1 ≤ ∥Φτ (INψk)− Φτ (PNψ(·, tk))∥H1

+ ∥Φτ (PNψ(·, tk))− PNψ(·, tk+1)∥H1 .(4.52)

When k = 0, by (4.28), one gets

∥e0∥H1 = ∥INψ0 − PNψ0∥H1 ≲ h∥ψ0∥H2 ≤ C(M2)h, ∥ψ0∥l∞ ≤ ∥ψ0∥L∞ ≤ 1 +M2.

We assume that for 0 ≤ k ≤ m ≤ T/τ − 1,

(4.53) ∥ek∥H1 ≲ τ
1
2 + h, ∥ψk∥l∞ ≤ 1 +M2.
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We shall prove (4.53) for m + 1. From (4.52), using (4.19) and (4.34), and noting
the assumption (4.53), we have

(4.54) ∥em+1∥H1 ≤ (1 + C1τ)∥em∥H1 + C2τ
(
τ

1
2 + h

)
,

where C1 and C2 are the constants in (4.19) and (4.34) respectively, which de-
pend exclusively on M2 and ∥V ∥W 1,∞ . From (4.54), standard discrete Gronwall’s
inequality yields

(4.55) ∥em+1∥H1 ≤ 2eC0TC1

(
τ

1
2 + h

)
.

Recalling that ek = INψ
k − PNψ(tk) and ∥ψ(·, tk)∥L∞ ≤ M2, using the inverse

inequality ∥ϕ∥L∞ ≲ h−1/2∥ϕ∥L2 , ϕ ∈ XN [43], we have

∥ψm+1∥l∞ = ∥INψm+1∥l∞ ≤ ∥em+1∥l∞ + ∥PNψ(·, tm+1)∥l∞

≤ ∥em+1∥l∞ + ∥ψ(·, tm+1)− PNψ(·, tm+1)∥l∞ + ∥ψ(·, tm+1)∥l∞

≤ ∥em+1∥l∞ + h−
1
2 ∥ψ(·, tm+1)− PNψ(·, tm+1)∥L2 +M2.

Hence, for τ ≤ τ0 and h ≤ h0 with τ0 > 0 and h0 > 0 depending on M2 and T , by
Sobolev embedding H1 ↪→ L∞ in 1D, and (3.19) and (4.55), we have

(4.56) ∥ψm+1∥l∞ ≤ C∥em+1∥H1 + Ch2−1/2 +M2 ≤ 1 +M2.

Combining (4.55) and (4.56) proves (4.53) for k = m+1 and thus for all 0 ≤ k ≤ T/τ
by mathematical induction. With the l∞-bound of the numerical solution, the L2

estimate of ek follows the proof of Theorem 2.5 by using (4.18) and (4.33), which
completes the proof of (2.42). □

Remark 4.10. In 2D and 3D, we no longer have H1 ↪→ L∞. To obtain the l∞-bound
of ψm+1 in (4.56), we use the discrete Sobolev inequalities as in [5, 7, 8]

∥v∥l∞ ≤ C| lnh| ∥INv∥H1 , ∥w∥l∞ ≤ Ch−1/2∥INw∥H1 ,

where v and w are 2D and 3D mesh functions with zero at the boundary, respec-
tively, and the interpolation operator IN can be defined similarly in 2D and 3D as in
1D. Thus by requiring that the time step size τ satisfies the additional assumption
(B), we can control the l∞-norm of the numerical solution.

4.5. Proof of (2.43) in Theorem 2.7. In the following, we assume that 1/2 <
σ < 1, V ∈ H3(Ω), ∇V ∈ H1

0 (Ω), ψ ∈ C([0, T ];H3
∗ (Ω)) ∩ C1([0, T ];H1(Ω)) and let

(4.57) M3 := max
{
∥ψ∥L∞([0,T ];H3), ∥ψ∥L∞([0,T ];L∞), ∥V ∥H3

}
.

We first show an analogous result of Lemma 3.5.

Lemma 4.11. Let ϕ ∈ XN such that ∥ϕ∥H3 ≤M and let 0 < τ < 1 and 0 < h < 1.
Assume that V ∈ H3(Ω) and ∇V ∈ H1

0 (Ω). When 1/2 < σ < 1, we have

∥(I − eiτ∆)PNB(ϕ)∥H1 ≤ C1(M, ∥V ∥H3)τσ,(4.58)

∥INB(ϕ)− PNB(ϕ)∥H1 ≤ C2(M, ∥V ∥H3)h2σ.(4.59)

Proof. Similar to (3.21), noting that V ϕ ∈ H3
∗ (Ω), we have

(4.60)
∥(I − eiτ∆)(V ϕ)∥H1 ≲ τ∥V ∥H3∥ϕ∥H3 ,

∥(IN − PN )(V ϕ)∥H1 ≲ h2∥V ∥H3∥ϕ∥H3 .
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Following (3.22) and (3.23) with ∥ · ∥H1 replacing ∥ · ∥L2 and using (2.31), we have

(4.61) ∥(I − eiτ∆)(f(|ϕ|2)ϕ)∥H1 ≤ 2∥f(|ϕ|2)ϕ− fε(|ϕ|2)ϕ∥H1 + C(M)
τ

ε2−2σ
.

By direct calculation, recalling (3.4), one gets

∇[f(|ϕ|2)ϕ− fε(|ϕ|2)ϕ] = (f(|ϕ|2)− fε(|ϕ|2))∇ϕ
+ (f ′(|ϕ|2)|ϕ|2 − f ′ε(|ϕ|2)|ϕ|2)∇ϕ+ (G(ϕ)− f ′ε(|ϕ|2)ϕ2)∇ϕ.(4.62)

Noting that f ′(|z|2)|z|2 = f ′ε(|z|2)|z|2, G(z) = f ′ε(|z|2)z2 when |z| ≥ ε and f ′(|z|2)|z|2+
f ′ε(|z|2)|z|2 + |G(z)|+ |f ′ε(|z|2)z2| ≲ ε2σ when |z| < ε, one gets∣∣f ′(|z|2)|z|2 − f ′ε(|z|2)|z|2

∣∣ ≲ ε2σ1|z|<ε,
∣∣G(z)− f ′ε(|z|2)z2

∣∣ ≲ ε2σ1|z|<ε, z ∈ C,

which together with Lemma 2.4 applied to (4.62) yields

(4.63) ∥∇[f(|ϕ|2)ϕ− fε(|ϕ|2)ϕ]∥L2 ≲ ε2σ∥∇ϕ1|ϕ|<ε∥L2 ≤ ε2σ∥ϕ∥H1 .

Plugging (4.63) into (4.61), we have

∥(I − eiτ∆)(f(|ϕ|2)ϕ)∥H1 ≤ C(M) inf
0<ε<1

(
ε2σ +

τ

ε2−2σ

)
≤ C(M)τσ,

which combined with (4.60) yields (4.58).
Then we shall show (4.28). Following (3.26) with ∥ · ∥H1 replacing ∥ · ∥L2 , using

the standard estimates of PN , and (2.31) and (4.63), one gets

∥(IN − PN )(f(|ϕ|2)ϕ)∥H1

≤ ∥IN (f(|ϕ|2)ϕ− fε(|ϕ|2)ϕ)∥H1 + ε2σ∥ϕ∥H1 + h2
C(M)

ε2−2σ
.(4.64)

Using (4.36), one gets

(4.65) ∥∇IN (f(|ϕ|2)ϕ− fε(|ϕ|2)ϕ)∥L2 ≲ ∥δ+x (f(|ϕ|2)ϕ− fε(|ϕ|2)ϕ)∥l2 .

Let ϕθj = (1 − θ)ϕj + θϕj+1 for 0 ≤ θ ≤ 1 and 0 ≤ j ≤ N − 1, direct calculation
gives

δ+x
(
f(|ϕj |2)ϕj − fε(|ϕj |2)ϕj

)
=

1

h

∫ 1

0

d

dθ

(
f(|ϕθj |2)ϕθj − fε(|ϕθj |2)ϕθj

)
dθ

=

∫ 1

0

[((
f(|ϕθj |2) + f ′(|ϕθj |2)|ϕθj |2

)
−

(
fε(|ϕθj |2) + f ′ε(|ϕθj |2)|ϕθj |2

))
δ+x ϕj

+(G(ϕθj )− f ′ε(|ϕθj |2)(ϕθj )2)δ+x ϕj
]
dθ,(4.66)

which implies, similar to the way we obtain (4.63) from (4.62),

(4.67)
∣∣δ+x (f(|ϕj |2)ϕj − fε(|ϕj |2)ϕj)

∣∣ ≲ ε2σ|δ+x ϕj |.

From (4.65), using (4.67) and recalling (4.36) and ϕ ∈ XN , we obtain

(4.68) ∥∇IN (f(|ϕ|2)ϕ− fε(|ϕ|2)ϕ)∥L2 ≲ ε2σ∥δ+x ϕ∥l2 ≤ ε2σ∥∇ϕ∥L2 ,

which plugged into (4.64) yields

∥(IN − PN )(f(|ϕ|2)ϕ)∥H1 ≤ C(M) inf
0<ε<1

(
ε2σ +

h2

ε2−2σ

)
≤ C(M)h2σ,

which combined with (4.60) yields (4.59) and completes the proof. □
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Proposition 4.12 (local truncation error). Assume that V ∈ H3(Ω), ∇V ∈
H1

0 (Ω), ψ ∈ C([0, T ];H3
∗ (Ω)) ∩ C1([0, T ];H1(Ω)) and 1/2 < σ < 1. For 0 ≤

k ≤ T/τ − 1, we have

∥PNψ(·, tk+1)− Φτ (PNψ(·, tk))∥H1(Ω) ≤ C(M3)τ
(
τσ + h2σ

)
.

Proof. Following the proof of Proposition 4.7, we only need to modify the esti-
mate (4.30) and (4.31), which can be easily done by using the assumption ψ ∈
C([0, T ];H3), Lemma 4.11, and the standard estimates of the operators IN − PN ,
I − PN and I − eiτ∆. □

Proof of (2.43) in Theorem 2.7. Using Proposition 4.12 and (4.34) in (4.52), and
noting the l∞-bound of the numerical solution in (2.42), then (2.43) follows from
the discrete Gronwall’s inequality immediately. □

5. Numerical results

In this section, we present some numerical examples for the NLSE (1.1) with
0 < σ < 1 in 1D to confirm our error estimates. Since we are mainly interested in
the semi-smooth nonlinearity, we choose V (x) ≡ 0, and consider the following two
initial set-ups:

Type I: We consider the smooth initial datum

(5.1) ψ0(x) = xe−
x2

2 , x ∈ Ω = (−16, 16).

Type II: We consider the initial datum in H2(Ω) as in [31]

(5.2)

ψ0 =
ϕ(1)

∥ϕ(1)∥L2

, ϕ(1)(x) =
∑
l∈TN

ϕ̃
(1)
l sin(µl(x− a)), x ∈ Ω = (−1, 1),

ϕ̃
(1)
l =

ϕ̃l
|µl|2.5

, ϕ̃l =

{
rand(−1, 1) + i rand(−1, 1), l even,

0, l odd,
l ∈ TN .

where rand(−1, 1) returns a uniformly distributed random number between
−1 and 1.

Note that both Types I and II initial data are chosen as odd functions to demon-
strate the influence of the semi-smoothness of f at the origin since with an odd
initial datum, the exact solution satisfies ψ(0, t) ≡ 0 for all t ≥ 0. In Figure 5.1 (a),
we plot the density of the wave functions at t = 1 with different σ = 0.1, 0.25, 0.5, 1
and β = −10 for the Type I initial datum. We observe that the solution of the
smooth case (σ = 1) lies between the solution of the case σ = 0.1 and σ = 0.5,
and is close to the solution of the case σ = 0.25. In Figure 5.1 (b), we plot the
relative errors of the energy divided by τ up to t = 8 for σ = 0.1 and different
τ = 0.05, 0.01, 0.002. We see that the relative error of the energy is at O(τ) with
fixed mesh size h.

In the following, we shall test the errors of the TSSP in L2- and H1-norms. We
fix d = 1, T = 1 and β = −1. The NLSE (1.1) is then solved by the TSSP method
on the domain Ω with Type I and Type II initial setups for different σ > 0. The
‘exact’ solution is obtained numerically by the Strang splitting sine pseudospectral
method with a very fine mesh size he = 2−9 and a small time step size τe = 10−6.
In our numerical experiments below, when testing the temporal convergence, we
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0 1 2 3 4 5 6 7 8

10-5

10-2

Figure 5.1. (a) density |ψ(x, 1)|2 with different σ > 0 and (b)
relative errors of the energy divided by τ up to t = 8 with σ = 0.1
for the Type I initial datum (5.1) with β = −10.

always fix the mesh size h = he. To quantify the error, we introduce the following
error functions:

ekL2 = ∥ψ(·, tk)− INψ
k∥L2 , ekH1 = ∥ψ(·, tk)− INψ

k∥H1 , 0 ≤ k ≤ n := T/τ.

Figure 5.2 exhibits the temporal and spatial errors in L2-norm of the TSSP
(2.13) for the NLSE (1.1) with Type I initial datum and different 0 < σ ≤ 1/2.
Figure 5.2 (a) shows that the temporal convergence is first order in L2-norm for all
the four σ, and Figure 5.2 (b) shows the spatial convergence is almost third order
in L2-norm, which is also increasing with σ. These results are better than our error
estimates in Theorem 2.5 and suggest that first order temporal convergence in L2-
norm may hold for any σ > 0 and the spatial convergence may be of higher order.
Similar results are also observed in our numerical experiments in 2D. However,
we remark that it is impossible to obtain the optimal temporal convergence rates
and the higher order spatial convergence rates by simply improving the local error
estimates in Proposition 3.6, indicating that there must exist error cancellation
between different steps, which require new techniques and in-depth analysis to
handle. Also, we can observe similar temporal errors as in Figure 5.2 (a) for the
Type II initial datum.

Figure 5.3 plots the temporal and spatial errors in L2- and H1-norm of the
TSSP (2.13) for the NLSE (1.1) with Type II H2 initial datum and fixed σ = 0.5.
Figure 5.3 (a) shows that the temporal convergence is first order in L2-norm and



28 W. BAO AND C. WANG
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Figure 5.2. Temporal errors (a) and spatial errors (b) in L2-norm
for σ = 0.1, 0.2, 0.3, 0.4 with Type I initial datum (5.1).

half order in H1-norm, and Figure 5.3 (b) shows the spatial convergence is second
order in L2-norm and first order in H1-norm. These results correspond with our
error estimates (2.42) in Theorem 2.7 very well.

10-4 10-3 10-2

10-4

10-2

10-3 10-2

10-5

10-2

Figure 5.3. Temporal errors (a) and spatial errors (b) in L2-norm
and H1-norm for σ = 0.5 with Type II initial data (5.2).

Figure 5.4 displays the temporal and spatial errors in H1-norm of the TSSP
(2.13) for the NLSE (1.1) with Type I smooth initial datum and different 0 < σ < 1.
Figure 5.4 (a) shows that the temporal convergence in H1-norm increases from half
order to first order as σ increase from 0 to 1/2 and remains first order when σ ≥ 1/2.
Figure 5.4 (b) shows the spatial convergence is almost 2.5 order in H1-norm and is
increasing with σ. Similar to the observation of Figure 5.2, these results are better
than our error estimates (2.43) in Theorem 2.7 and suggest that first order temporal
convergence in H1-norm may hold for any σ ≥ 1/2. We would like to comment
that the order reduction in H1-norm for 0 < σ < 1/2 is indeed resulted from the
semi-smoothness of the nonlinearity instead of the regularity of the exact solution.
Actually, we numerically checked that with the Type I smooth initial datum, the
exact solution is roughly in H3.5+2σ.
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Figure 5.4. Temporal errors (a) and spatial errors (b) in H1-
norm for σ = 0.1, 0.25, 0.5, 0.75 with Type I initial datum (5.1).

6. Conclusion

Error bounds of the Lie-Trotter splitting sine pseudospectral method for the non-
linear Schrödinger equation (NLSE) with semi-smooth nonlinearity f(ρ) = ρσ(σ >

0) were established. For 0 < σ ≤ 1
2 , we prove error bounds at O(τ

1
2+σ + h1+2σ)

in L2-norm without any CFL-type time step size restrictions, where τ > 0 and
h > 0 are the time step size and mesh size respectively. For σ ≥ 1

2 , error bounds

at O(τ + h2) in L2-norm and at O(τ
1
2 + h) in H1-norm are proved with mild time

step size restrictions. In addition, when 1
2 < σ < 1 and under the assumption of

H3-solution of the NLSE, we show an error bound at O(τσ + h2σ) in H1-norm.
Numerical results are reported to demonstrate our error estimates.

Appendix

Proof of (4.49). We shall present the proof in 1D, and one can easily generalize it
to higher dimensions. By triangle inequality, recalling that ϕj = ϕ(xj) for j ∈ T 0

N ,

∥δ+x ϕ∥4l4 = h

N−1∑
j=0

|δ+x ϕj |4 = h

N−1∑
j=0

|(δ+x ϕj)2 − (δ+x ϕ0)
2 + (δ+x ϕ0)

2||δ+x ϕj |2

≤ h

N−1∑
j=0

|(δ+x ϕj)2 − (δ+x ϕ0)
2||δ+x ϕj |2 + h

N−1∑
j=0

|δ+x ϕ0|2|δ+x ϕj |2

= h

N−1∑
j=0

∣∣∣∣∣
j−1∑
l=0

(δ+x ϕl+1)
2 − (δ+x ϕl)

2

∣∣∣∣∣ |δ+x ϕj |2 + |δ+x ϕ0|2∥δ+x ϕ∥2l2 =: K1 +K2.(6.1)

We have separated the boundary terms K2 from K1. We start with the estimate of
K1, which is standard and can be obtained from the proof of the second inequality
of (3.3) in [7]. We show it here for the convenience of the reader. Define the central
difference operator δ2x as

(6.2) δ2xvj :=
vj+1 − 2vj + vj−1

h2
=
δ+x vj − δ+x vj−1

h
, 1 ≤ j ≤ N − 1, v ∈ YN .
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For K1 defined in (6.1), using triangle inequality and Cauchy inequality, we get

K1 ≤ h

N−1∑
j=0

N−2∑
l=0

|δ+x ϕl+1 + δ+x ϕl||δ+x ϕl+1 − δ+x ϕl||δ+x ϕj |2

≤ h

N−1∑
j=0

|δ+x ϕj |2
√√√√N−2∑

l=0

|δ+x ϕl+1 + δ+x ϕl|2

√√√√N−2∑
l=0

|δ+x ϕl+1 − δ+x ϕl|2

≲ ∥δ+x ϕ∥2l2

√√√√h

N−1∑
l=0

|δ+x ϕl|2

√√√√h

N−1∑
l=1

|δ2xϕl|2 = ∥δ+x ϕ∥3l2

√√√√h

N−1∑
l=1

|δ2xϕl|2.(6.3)

Since ϕ ∈ XN , we have

(6.4) ϕj = ϕ(xj) =

N−1∑
l=1

ϕ̂l sin(µl(xj − a)) =

N−1∑
l=1

ϕ̂l sin(µljh), 0 ≤ j ≤ N,

which implies, by recalling (6.2),

(6.5) δ2xϕj =
ϕj+1 − 2ϕj + ϕj−1

h2
= −

N−1∑
l=1

µ2
l ϕ̂l |sinc(µlh/2)|

2
sin(µljh),

where sinc(x) = sin(x)/x for x ∈ R with sinc(0) = 1. By Parseval’s identity, noting
(6.5) and | sinc(x)| ≤ 1 for x ∈ R, we get (similar to the proof of (4.36))

(6.6) h

N−1∑
j=1

|δ2xϕj |2 =
Nh

2

N−1∑
l=1

µ4
l

∣∣∣ϕ̂l∣∣∣2 |sinc(µlh/2)|4 ≤ Nh

2

N−1∑
l=1

µ4
l

∣∣∣ϕ̂l∣∣∣2 ≤ ∥ϕ∥2H2 .

Plugging (6.6) into (6.3) and using (4.36), we have

(6.7) K1 ≲ ∥ϕ∥H2∥ϕ∥3H1 ≤ ∥ϕ∥4H2 .

For K2 in (6.1), recalling (6.4) and | sinc(x)| ≤ 1 for x ∈ R, and noting that∑∞
l=1 |µl|−2 <∞, we have, by Cauchy inequality,

|δ+x ϕ0| =
∣∣∣∣ϕ1h

∣∣∣∣ =
∣∣∣∣∣
N−1∑
l=1

µlϕ̂l sinc(µlh)

∣∣∣∣∣ ≤
√√√√N−1∑

l=1

|µl|4|ϕ̂l|2

√√√√N−1∑
l=1

|µl|−2 ≲ ∥ϕ∥H2 ,

which implies, by using (4.36) again,

(6.8) K2 = |δ+x ϕ0|2∥δ+x ϕ∥2l2 ≲ ∥ϕ∥2H2∥∇ϕ∥2H1 ≤ ∥ϕ∥4H2 .

Plugging (6.7) and (6.8) into (6.1) yields the desired result. □
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