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A KIT FOR LINEAR FORMS IN THREE LOGARITHMS

MAURICE MIGNOTTE AND PAUL VOUTIER, WITH AN APPENDIX BY MICHEL LAURENT

Abstract. We provide a technique to obtain explicit bounds for problems that can be reduced
to linear forms in three complex logarithms of algebraic numbers. This technique can produce
bounds significantly better than general results on lower bounds for linear forms in logarithms.
We give worked examples to demonstrate both the use of our technique and the improvements
it provides. Publicly shared code is also available.

1. Introduction

1.1. Background. Many problems in number theory can be reduced to linear forms in the log-
arithms of algebraic numbers which have a very small absolute value (exponentially small in the
coefficients of the linear form) (see [8] for a broad selection of examples). So, lower bounds for
these linear forms that exceed the upper bounds and with all the constants involved being explicit
reduce such problems to a finite amount of computation. For example, it is in this way (along
with the use of reduction techniques as in [30] and [7] to handle the remaining computation) that
the solution of Thue equations is now routine, included as a function in PARI/GP [23] and other
mathematical software.

Lower bounds for linear forms in two or three logarithms have proven to have especially broad
and important applications. In the case of linear forms in three logarithms, such applications
include Baker’s solution [2] of the conjecture of Gauss that there are only nine imaginary quadratic
fields with class number 1; Tijdeman’s proof [29] that there are at most finitely many solutions
of Catalan’s equation; and the result of Shorey & Stewart [28], and independently Pethő [24],
that there are only finitely many perfect powers in any binary recurrence sequence. The use of
effectively computable lower bounds for linear forms in three logarithms gives rise to effectively
computable upper bounds for each of these problems.

In this paper, we present a method, our “kit”, that can be used to get good upper bounds on
quantities associated to such problems. The present paper has its origins in earlier versions of
our kit due to the first author in [9] and [10]. In fact, [9] and [10] provide good examples of how
somewhat weaker versions of our kit were used to solve completely some important number theory
problems.

Our method is the method of interpolation determinants introduced by Michel Laurent in [15],
[16] and [17]. In the case of three logarithms, this method was used by C.D. Bennett et al. [4].
But the present paper brings some progress when compared to [4]: we treat the general case of
algebraic numbers (not only multiplicatively independent rational integers, as in [4]) and many
important technical details have been improved, including new zero lemmas.

Our aim, suggested by the title “A kit. . . ”, is to explain how to obtain results for problems that
reduce to the study of linear forms in three logarithms of algebraic numbers.
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2 MAURICE MIGNOTTE AND PAUL VOUTIER

1.2. Steps of the kit. The process contains five steps.

(1) obtain an upper bound for a linear form in logs associated with our problem.

(2) combining the upper bound in step (1) with a general estimate of Matveev, we obtain an upper
bound, B1, for the maximum of the absolute values of the coefficients of the linear form.

(3) supposing the linear form in three logs is non-degenerate, we use the upper bound B1 to obtain
a second upper bound, B2. If B2 is smaller than B1 we proceed to step (4).

(4) supposing the linear form in three logs is degenerate, we consider it as a linear form in two
logarithms and we apply the results of Laurent [19] to this linear form, along with the upper bound
B1, to get a third upper bound B3.
At this point the quantity we have bounded above by min {B1,max {B2, B3}}.
(5) repeat steps (3) and (4) as often as desired to make the upper bound as small as possible.

In our experience, there is very little further improvement after 3 iterations (see the tables at
the end of each example subsection in Section 6 for details).

1.3. Uses for the kit. Our kit is most suited to the case when at least one of the algebraic numbers
in the linear form is a variable. If all three are fixed algebraic numbers, it is much better to first
use Matveev’s result stated below and then apply a reduction technique like the LLL-algorithm
[21] or variants of the Baker-Davenport reduction technique [3], like that of Dujella-Pethő [12].

1.4. Numerical results. In the first example in Section 6, we are able to reduce the upper bound
on the quantity p from about 2 · 1012 obtained by Matveev’s result to 18 · 106. In the second
example there, we do even better, reducing the upper bound on p from about 3 · 1013 to 25 · 106.
In our experience, these are typical of the improvements that can be expected from our kit.

To help readers use the kit, code written in Pari, along with examples for how to use it, is
available from the authors at https://github.com/PV-314/lfl3-kit. We encourage readers to
use this code for their applications of the kit, using the examples and documentation as a guide.
This code has now been applied to previously published uses of the kit ([5, 6, 9, 10] – the code
for these is available in the above github repository) and several new problems shared with us by
researchers. Support is available from the second author and we warmly welcome questions and
suggestions from users.

Another feature of our work, and the above code, is the quality of the results. It is reasonable
to believe that the degenerate case should play no part in Theorem 2.1 below and that only (2.8)
should matter (see the proofs in Chapter 7 of [31], for example). In the case of “imaginary” linear
forms in logs (see their definition at the start of Section 3 below) we are able to attain such optimal
bounds with our code above, while for “real” linear forms in logs, our code produces bounds that
are at most 50% larger than the optimal bounds.

1.5. Future work. We highlight here three areas where further work would lead to significant im-
provements in the results, as well as being of considerable theoretical interest for other diophantine
and transcendence problems.

(1) Adopting Waldschmidt’s approach for the degenerate case. See Remark 3.14 for more infor-
mation. This could reduce the bounds by a factor of approximately 1.5, but more importantly
simplify the statement of Theorem 2.1, eliminating the need for conditions (2.9) and (2.10).

(2) Improving the multiplicity estimates in Lemma 3.6. Calculations suggest that the estimate
there should be roughly Θ (2K, |I|) instead of Θ (K, |I|). The main term on the left-hand side of

https://github.com/PV-314/lfl3-kit
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(2.8) would then become KL, rather than KL/2. This would improve the bounds obtained by a
factor of roughly 5.

(3) Improving the zero estimate in Proposition 3.11. Conjecturally, the constants on the right-hand
sides of (3.17)–(3.19) should all be 1. The most important of these inequalities for our work is
(3.19). Replacing 3K2L by K2L would lead to a further reduction by a factor of roughly 2 in the
bounds obtained.

1.6. Structure of this article. In Section 2, we first provide some conventions and notations
that will be used throughout this paper and then present our main result for linear forms in three
logs in Theorem 2.1. Section 3 contains the lemmas required to prove it, along with Matveev’s
result which we use in step (2). Section 4 contains the proof of Theorem 2.1.

Section 5 provides information on the choice of the parameters in Theorem 2.1. This simplifies
the use of Theorem 2.1, reducing the selection of the required parameters to the choice of four
parameters. The best choice of these four parameters can be found by a quick and easy brute force
search.

To demonstrate both the usage of our kit and its benefits, we provide two examples in Section 6,
revisiting the linear forms in [9] and [10]. We obtain significant improvements in both examples.
The second example also corrects the use of the kit in [10].

Lastly, we include a zero estimate due to Michel Laurent in Appendix A. This is the unpublished
zero estimate [18] used in [10], as well as in an earlier version of this paper. In fact, Laurent’s
result was responsible for the original kit, as it allowed improvements over [4]. It is also applicable
more generally than our situation here, so it will be of interest to other researchers of diophantine
and transcendence problems.

1.7. Acknowledgements. Foremost, our thanks go to Michel Waldschmidt. He first proposed
investigating linear forms in three logarithms to the second author nearly 30 years ago. Since
then, he has been very supportive and encouraging to both authors in many ways. Similarly,
Michel Laurent has been very generous to this project and to both authors over the years. Damien
Roy and Patrice Philippon thoughtfully answered our many questions about zero estimates. Mike
Bennett and Yann Bugeaud also deserve our thanks as they were instrumental in bringing both
authors together to complete this work. Lastly, we thank the referee for their very careful reading
of our paper and their helpful comments.

2. Results

2.1. Conventions. We start by presenting the type of linear forms in three logarithms that we
shall study. We consider three distinct non-zero algebraic numbers α1, α2 and α3, positive rational
integers b1, b2, b3 with gcd (b1, b2, b3) = 1, and the linear form

(2.1) Λ = b1 logα1 + b2 logα2 − b3 logα3 6= 0.

We restrict our study to the following two cases:

• the real case: α1, α2 and α3 are real numbers greater than 1, and the logarithms of
the αi’s are all real and positive. Furthermore, we assume that α1, α2 and α3 are multi-
plicatively independent over Q. Of course, then the logαj ’s are Q-linearly independent.
For many applications, this last assumption holds, so in practice this should cause little
restriction.

• the imaginary case: α1, α2 and α3 are complex numbers 6= 1 of modulus one, and
the logarithms of the αi are arbitrary determinations of the logarithm (then any of these
determinations is purely imaginary). Similar to the previous case, here we will assume
that at least two of these α’s are multiplicatively independent over Q and the third one,
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if not multiplicatively independent of the other two, is a root of unity. We shall see later
(see Lemma 3.16) that in this case, the logαj ’s are again Q–linearly independent. Once
again, in practical examples, this last condition holds.

In practice, these restrictions do not cause any inconvenience since

|Λ| ≥ max {|Re(Λ)| , |Im(Λ)|} .
After possibly rearranging the terms and possibly replacing some logarithms by their negatives

in the imaginary case, we may assume that

b3 |logα3| = b1 |logα1|+ b2 |logα2| ± |Λ| .
Notice that this introduces an important assymmetry between the roles of the coefficients b1,

b2 and b3.

Like the authors of [4], we use Laurent’s method (see [15, 16]), and consider a suitable interpo-
lation determinant, ∆. However, our interpolation determinant differs from the one in [4] (which
was also used in [9, 10]). We follow the construction of Waldschmidt in Section 7.4 of [31]. In
examples, this change improves the bounds we obtain by a factor of roughly 4–5.

2.2. Notation. We collect here some of the notation that we will use throughout this paper.
N will denote the set of non-negative rational integers.
• K, L, R, S, T are positive rational integers with K ≥ 3 and L ≥ 5.
• Put N = K(K + 1)L/2 and we assume that RST ≥ N .
• Let i be an index from 1 to N such that (ki,mi, ℓi) runs through all triples of integers with

ki ≥ 0, mi ≥ 0, ki+mi ≤ K−1 and 0 ≤ ℓi ≤ L−1. So each 0 ≤ ki ≤ K−1 occurs (K − ki)L times,
and similarly each mi occurs (K −mi)L times, and each number 0, . . . , L− 1 occurs K(K +1)/2
times as an ℓi.

This is the main difference with the construction in [4], where the conditions 0 ≤ ki,mi ≤ K−1
are used instead.

• Put

(2.2) g =
1

4
− N

12RST
, G1 =

NLR

2
g, G2 =

NLS

2
g, G3 =

NLT

2
g.

• With d1 = gcd (b1, b3) and d2 = gcd (b2, b3), put

(2.3) b1 = d1b
′
1, b2 = d2b

′′
2 , b3 = d1b

′
3 = d2b

′′
3 , β1 = b1/b3 = b′1/b

′
3, β2 = b2/b3 = b′′2/b

′′
3 .

• Let

(2.4) λi = ℓi −
L− 1

2
, η0 =

R− 1

2
+ β1

T − 1

2
, ζ0 =

S − 1

2
+ β2

T − 1

2
.

• Let

(2.5) b = (b′3η0) (b
′′
3ζ0)

(
K−1∏

k=1

(k!)K−k

)− 12
K(K−1)(K+1)

.

Similar to the b in Théorème 1 of [20], this quantity arises naturally in our proof – see the end of
the proof of Proposition 3.7.

The expression involving the product of factorials here is also different from that in [4], due to
our different construction.

• Now we define the interpolation determinant that we shall use to prove our results,

(2.6) ∆ = det

((
rjb

′
3 + tjb

′
1

ki

)(
sjb

′′
3 + tjb

′′
2

mi

)
α
ℓirj
1 α

ℓisj
2 α

ℓitj
3

)
,
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where 1 ≤ i, j ≤ N , rj , sj and tj are non-negative integers less than R, S and T , respectively, such
that (rj , sj , tj) runs over N distinct triples.

• Lastly, with rj , sj and tj as above in the definition of our interpolation determinant, we let

M1 =
L− 1

2

N∑

j=1

rj , M2 =
L− 1

2

N∑

j=1

sj , M3 =
L− 1

2

N∑

j=1

tj .

Here, and throughout, by αβ , we mean exp (β logα) for any complex numbers α and β with
α 6= 0 and some determination of the logarithm.

2.3. Main Theorem. With the above conventions and notation, we can present our main result.

Theorem 2.1. Let α1, α2 and α3 be three distinct non-zero algebraic numbers which, along with
their logarithms, satisfy one of the two conditions at the start of this section. Also let b1, b2, b3
and Λ be as there. Assume that

0 < |Λ| < 2π/w,

where w is the maximal order of a root of unity belonging to the number field Q (α1, α2, α3)
1.

Let R1, R2, R3, S1, S2, S3, T1, T2, T3 be positive rational integers with

(2.7) R > R1 +R2 +R3, S > S1 + S2 + S3 and T > T1 + T2 + T3.

Let ρ ≥ 2 be a real number. Suppose that

(2.8)

(
KL

2
+
L

2
− 0.37K − 2

)
log ρ ≥ (D+1) logN + gL (a1R+ a2S + a3T ) +

2D(K − 1) log b

3
.

where

ai ≥ ρ |logαi| − log |αi|+ 2D h (αi) for i = 1, 2, 3.

Put V =
√
(R1 + 1) (S1 + 1) (T1 + 1). If, for some positive real number χ,

(R1 + 1) (S1 + 1) (T1 + 1) > Kmax {R1 + S1 + 1, S1 + T1 + 1, R1 + T1 + 1, χV} ,(2.9)

Card
{
αr
1α

s
2α

t
3 : 0 ≤ r ≤ R1, 0 ≤ s ≤ S1, 0 ≤ t ≤ T1

}
> L,(2.10)

Card
{
αr
1α

s
2α

t
3 : 0 ≤ r ≤ R2, 0 ≤ s ≤ S2, 0 ≤ t ≤ T2

}
> 2KL,(2.11)

(R2 + 1) (S2 + 1) (T2 + 1) > K2 and(2.12)

(R3 + 1) (S3 + 1) (T3 + 1) > 3K2L(2.13)

all hold, then either

Λ′ := |Λ| · LTe
LT |Λ|/(2b3)

2 |b3|
> ρ−KL

or at least one of the following conditions (2.14) or (2.15) holds:

(2.14) |b1| ≤ max {R1, R2} and |b2| ≤ max {S1, S2} and |b3| ≤ max {T1, T2} ,

(2.15) there exist u1, u2, u3 ∈ Z such that u1b1 + u2b2 + u3b3 = 0, with gcd (u1, u2, u3) = 1,

|u1| ≤
(S1 + 1)(T1 + 1)

M−max{S1, T1}
, |u2| ≤

(R1 + 1)(T1 + 1)

M−max{R1, T1}
and |u3| ≤

(R1 + 1)(S1 + 1)

M−max{R1, S1}
,

where M = max {R1 + S1 + 1, S1 + T1 + 1, R1 + T1 + 1, χV}.
1 If D is the degree of this number field, then ϕ(w) ≤ D, where ϕ is the Euler totient function. Using [27,

Theorem 15] and some calculation for small w, we see that ϕ(w) ≥ (w/2)0.63, which implies w < 2D1.6. Hence
0 < |Λ| < 2π/w is satisfied if 0 < |Λ| ≤ πD−1.6 and then Λ 6∈ iπQ. Obviously, Λ 6∈ iπQ is also satisfied when Λ is
real and non-zero.
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3. Preliminaries

3.1. Matveev’s theorem for three logarithms. We will need the special case of three loga-
rithms of the theorem of E. M. Matveev. So we quote his result in this case here.

Theorem 3.1 (Matveev). Let α1, α2 and α3 be three distinct non-zero algebraic numbers, let
logα1, logα2 and logα3 be Q–linearly independent logarithms of these algebraic numbers and let
b1, b2 and b3 be rational integers with b1 6= 0. Put

Λ = b1 logα1 + b2 logα2 + b3 logα3.

Let

D = [Q (α1, α2, α3) : Q] and χ = [R (α1, α2, α3) : R] .

Let A1, A2 and A3 be positive real numbers, which satisfy

Aj ≥ max {D h (αj) , |logαj |} (1 ≤ j ≤ 3),

where h is the absolute logarithmic Weil height.
Assume that

B ≥ max {|bj|Aj/A1 : 1 ≤ j ≤ 3} .
Also define

C1 =
5 · 165
6χ

e3(7 + 2χ)

(
3e

2

)χ (
26.25 + log

(
D2 log(eD)

))
.

Then

log |Λ| > −C1D
2A1A2A3 log (1.5eDB log(eD)) .

Proof. This is a very slight simplification of Theorem 2.1 of [22] applied with n = 3. Our only
change is to note that |bj|Aj/A1 ≥ 1 for j = 1, so the outer max in Matveev’s inequality B ≥
max {1,max {|bj|Aj/A1 : 1 ≤ j ≤ 3}} is not needed. �

It is because the logαj ’s are Q–linearly independent in both of the cases that we present in
Subsection 2.1 that we can use Theorem 2.1 of [22] in this work.

Note that it is also possible to use the results of Aleksentsev [1] in place of Matveev’s result.
This would give a slightly smaller upper bound in Step (2), but make no difference to the final
results obtained from the kit.

3.2. Some combinatorial inequalities. This subsection contains some results used in the esti-
mates of the interpolation determinant.

Lemma 3.2. Let K, L, N , R, S, T , G1 and M1 be as above. Put

ℓn =

⌊
2(n− 1)

K(K + 1)

⌋
, 1 ≤ n ≤ N,

and (r1, . . . , rN ) ∈ {0, 1, . . . , R− 1}N . Suppose that for each r ∈ {0, 1, . . . , R− 1} there are at most
ST indices j such that rj = r. Then

∣∣∣∣∣

N∑

n=1

ℓnrn −M1

∣∣∣∣∣ ≤ G1.

Proof. Apply Lemme 4 in [20] with K there set to K(K + 1)/2. �
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As in [4, Section 1.3] or [31, p. 192], for (k,m) ∈ N2, we put ‖(k,m)‖ = k +m. And for any
I,K0 ∈ N, we put

(3.1) Θ (K0, I) = min {‖ (k1,m1) ‖+ · · ·+ ‖ (kI ,mI) ‖} ,
where the minimum is taken over all the sets of I pairs (k1,m1), . . . , (kI ,mI) ∈ N2 which are
pairwise distinct and satisfy m1, . . . , mI ≤ K0. Then, we have

Lemma 3.3. Let K0 and I be positive integers with I ≥ K0 (K0 + 1) /2. Then

Θ(K0, I) ≥
(

I2

2(K0 + 1)

)(
1 +

(K0 − 1)(K0 + 1)

I
− K0(K0 + 2)(K0 + 1)2

12I2

)
.

Remark. This is an improvement of the Lemma 1.4 of [4]. If I ≡ 0 mod (K0 + 1) and K0 even,
then this result is best possible. In the worst cases, the difference between the left and right sides
is at most roughly K0/8.

Proof. We follow more or less the proof of Lemma 1.4 of [4], the main difference being the intro-
duction of the term r in the expression for I below.

The smallest value for the sum ‖ (k1,m1) ‖ + · · · + ‖ (kI ,mI) ‖ is reached when we choose suc-
cessively, for each integer n = 0, 1, . . . all the points in the domain

Dn =
{
(k,m) ∈ N2 : m ≤ K0 and k +m = n

}
,

and stop when the total number of points is I. Moreover,

Card (Dn) =

{
n+ 1, if n ≤ K0,

K0 + 1, if n ≥ K0.

Hence, for A ≥ K0, the number of points in D0 ∪ · · · ∪DA−1 is

K0−1∑

n=0

(n+ 1) +

A−1∑

n=K0

(K0 + 1) =
K0 (K0 + 1)

2
+ (A−K0) (K0 + 1) =

(
A− K0

2

)
(K0 + 1).

Letting A be the largest integer such that Card (D0 ∪ · · · ∪DA−1) ≤ I, we can write

I =

(
A− K0

2

)
(K0 + 1) + r with 0 ≤ r ≤ K0,

provided that I ≥ K0 (K0 + 1) /2. Then

Θ (K0, I) =

K0−1∑

n=0

n(n+ 1) +
A−1∑

n=K0

n(K0 + 1) + rA.

Here

K0−1∑

n=0

n(n+ 1) +

A−1∑

n=K0

n(K0 + 1)

=
(K0 − 1)K0(2K0 − 1)

6
+

(K0 − 1)K0

2
+
K0 + 1

2
(A(A − 1)−K0(K0 − 1))

=
(K0 − 1)K0(2K0 + 2)

6
+
K0 + 1

2
A(A− 1)− (K0 − 1)K0(K0 + 1)

2

=
K0 + 1

2

(
A(A − 1)− K0(K0 − 1)

3

)
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and we get

(3.2) Θ (K0, I) =
K0 + 1

2

(
A(A− 1)− K0(K0 − 1)

3

)
+ rA.

We can write

A =
K0

2
+

I − r

K0 + 1
.

So using (3.2) and then this expression for A in terms of r, we have

∂Θ

∂r
=
K0 + 1

2
(2A− 1)

∂A

∂r
+A+ r

∂A

∂r
= −2A− 1

2
+A− r

K0 + 1
=

1

2
− r

K0 + 1
,

which shows that the minimum of Θ is reached either for r = 0 or r = K0. It is easy to verify
that Θ takes the same value for r = 0 and r = K0 + 1 (which is indeed out of the range of r), this
implies that the minimum is reached for r = 0. It follows that

2Θ(K0, I)

K0 + 1
≥
(
K0

2
+

I

K0 + 1

)(
K0

2
+

I

K0 + 1
− 1

)
− K0(K0 − 1)

3

=
K2

0

4
+

I2

(K0 + 1)2
+

K0I

K0 + 1
− K0

2
− I

K0 + 1
− K2

0

3
+
K0

3

=
I2

(K0 + 1)2
+

(K0 − 1)I

K0 + 1
− K2

0

12
− K0

6

=

(
I

K0 + 1

)2(
1 +

(K0 − 1)(K0 + 1)

I
− K0(K0 + 2)(K0 + 1)2

12I2

)
.

This proves the lemma. �

Lemma 3.4. Let K, L and N be as in Subsection 2.2 with the additional assumptions that K ≥ 3
and L ≥ 5. Also let 0 ≤ I ≤ N be an integer and Θ(K0, I) be as defined in (3.1). Then

KL(N − I) + Θ (K − 1, I) ≥ N2

2K

(
1 +

2

L
− 6

KL
− 1

3L2

)
.

Proof. Suppose that I ≤ N/2. Then

KL(N − I) ≥ KLN

2
=

N2

K + 1
=

3

2

N2

2K
,

since K ≥ 3. Since L ≥ 5, we have 1 + 2/L − 6/(KL) − 1/
(
3L2

)
< 1 + 2/L < 3/2. Since

Θ(K − 1, I) ≥ 0, the result follows in this case.
We now consider I > N/2. This and L ≥ 5 implies that I ≥ (5/4)K2, so we can apply

Lemma 3.3 with K0 = K − 1 to get

KL(N − I) + Θ(K − 1, I) ≥ KL(N − I) +
I2

2K

(
1 +

(K − 2)K

I
− (K − 1)(K + 1)K2

12I2

)
.

The derivative of the right-hand side with respect to I is

2I − 2K2L+K2 − 2K

2K
.

This is linear in I and the coefficient of I is positive, so once the derivative is positive, it remains
positive for all larger values of I. It equals 0 at I = K2L−K2/2 +K. We can write

K2L−K2/2 +K = K(K + 1)L/2 +
(
K2/2−K/2

)
(L− 1) +K/2.
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ForK ≥ 2, we haveK2/2−K/2 ≥ 1 and since L ≥ 1, we have
(
K2/2−K/2

)
(L−1)+K/2 ≥ 1/2.

So this critical value of I is larger than N . Hence the minimum value of the above lower bound
for KL(N − I) + Θ(K − 1, I) occurs at I = N . Thus

KL(N − I) + Θ(K − 1, I) ≥ N2

2K

(
1 +

2

L
− 6

KL
− 1

3L2

)
+

2K + 18L

3K(K + 1)L2
,

where the equality was obtained by using Maple. This implies that the lemma holds for all I. �

Lemma 3.5. (a) Let K > 1 be an integer, then

(3.3) log

(
K−1∏

k=1

(k!)K−k

)12/(K(K−1)(K+1))

≥ 2 log(K)− 11/3.

(b) With b, d1, d2, K, R, S and T as defined in Subsection 2.2, we have

log b ≤ log
(R− 1)b3 + (T − 1)b1

2d1
+ log

(S − 1)b2 + (T − 1)b3
2d2

− 2 log(K) + 11/3.

Proof. Our proof is a variant of the proof of Lemme 8 of [20], which itself is based on the proof of
Lemma 9 in [17].

From the inequality k! ≥ (k/e)k, we have

K−1∑

k=0

(K − k) log(k!) ≥
K−1∑

k=1

(K − k)k(log(k)− 1)

=
K−1∑

k=1

(K − k)k log(k)−
K−1∑

k=0

(K − k)k.

The last term is easily shown to be K(K + 1)(K − 1)/6, so that

K−1∑

k=1

(K − k) log k! ≥
K−1∑

k=1

k(K − k) log k − K(K + 1)(K − 1)

6
.

We now estimate the remaining sum, which we break into two sums:

K

K−1∑

k=1

k log k −
K−1∑

k=1

k2 log k.

We use the Euler-Maclaurin summation formula to estimate these sums. We shall use the
formulation of the Euler-Maclaurin summation formula in equation (7.2.4) p. 303 of [11] with
r = 1:

f(1) + · · ·+ f(n) =

∫ n

1

f(x)dx +
f(1) + f(n)

2
+
f ′(n) + f ′(1)

12
+R1,

where

R1 ≤ 1

2π2

∫ n

1

∣∣∣f (3)(x)
∣∣∣ dx.

From this point onward in the proof, we use Maple extensively to perform the integrations and
algebraic manipulations.
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In this way, with n = K−1 and f(n) = x log(x), we have f ′(x) = log(x)+1 and f (3)(x) = −x−2,

so 1/
(
2π2
) ∫ K−1

1
x−2dx = (K − 2)/

(
2π2(K − 1)

)
and

K−1∑

k=1

k log k ≥
∫ K−1

1

x log(x)dx +
(K − 1) log(K − 1)

2
+

log(K − 1) + 2

12
− 1

2π2
.

With n = K − 1 and f(n) = x2 log(x), we have f ′(x) = 2x log(x) + x and f (3)(x) = 2x−1, so

1/
(
2π2
) ∫ K−1

1
2x−1dx = log(K − 1)/π2 and

K−1∑

k=1

k2 log k ≤
∫ K−1

1

x2 log(x)dx+
(K − 1)2 log(K − 1)

2
+
2(K − 1) log(K − 1) +K

12
+

log(K − 1)

2π2
.

Combining these two estimates, along with

∫ K−1

1

x log(x)dx =
log(K − 1)

2
K2 − K2

4
−K log(K − 1) +

K

2
+

log(K − 1)

2

and
∫ K−1

1

x2 log(x)dx =
log(K − 1)

3
K3−K

3

9
−log(K−1)K2+

K2

3
+log(K−1)K−K

3
− log(K − 1)

3
+
2

9
,

we obtain

K−1∑

k=1

k(K−k) log k ≥ log(K − 1)K3

6
−11K3

36
+
K2

6
− log(K − 1)K

12
+

(
7

12
− 1

2π2

)
K− log(K − 1)

2π2
−2

9
.

Subtracting (2 log(K)− 11/3)K(K − 1)(K + 1)/12, we obtain

(3.4)
log(1− 1/K)

6
K3 +

K2

6
+

log
(
K2/(K − 1)

)

12
K +

(
5

18
− 1

2π2

)
K − log(K − 1)

2π2
− 2

9
.

From the series expansion of log(1−x), we find that log(1−1/K) > −1/K−1/
(
2K2

)
−2/

(
3K3

)

for K ≥ 2, so (3.4) is larger than

log(K)

12
K +

(
7

36
− 1

2π2

)
K − log(K − 1)

2π2
− 1

3

for K ≥ 2.
This expression is positive for K ≥ 3, since 3/12 > 1/

(
2π2
)
and

(
7
36 − 1

2π2

)
> 1/3. So part (a)

holds for K ≥ 3.
Part (a) also holds forK = 2, since the left-hand side of (3.3) is 0 forK = 2, while the right-hand

side is −2.28 . . ..

(b) Using the definitions of b, η0, ζ0, β1 and β3, we have

b =

(
b′3
R− 1

2
+ b′1

T − 1

2

)(
b′′3
S − 1

2
+ b′′2

T − 1

2

)(K−1∏

k=1

k!

)− 12
K(K−1)(K+1)

.

Applying the relationships in (2.3), part (b) follows immediately. �
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3.3. An upper bound for |∆|. In this subsection, we prove the result below, Proposition 3.7,
an upper bound for |∆| (also see [9, Proposition 12.5]). We start with an estimate for the zero
multiplicity of a certain function, the determinant of a particular matrix, at x = 0. We closely
follow Section 7.2 of [31].

Let K and N be positive integers, η1, . . . , ηN , ζ1, . . . , ζN elements of C, f1, . . . , fN analytic
functions in C, θ1 and θ2 non-zero complex numbers and p1, . . . , pN polynomials in C [z1, z2] of
total degree at most K. We define, for 1 ≤ i ≤ N ,

φi (z1, z2) = pi (z1, z2) fi (θ1z1 + θ2z2) .

Let I be a subset of {1, . . . , N}. We define an N ×N matrix with entries

ΦI(x)i,j =

{
φi (xηj , xζj) , if i ∈ I,
δi,jφi (xηj , xζj) , if i 6∈ I,

where δi,j are complex numbers and let ΨI(x) = det (ΦI(x)).

Lemma 3.6. The function ΨI(x) has a zero at x = 0 of multiplicity at least Θ(K, |I|), where |I|
is the number of elements in I.
Proof. This is Lemma 7.2 of [31] in the case of n = 2, since the total degree of each of the
polynomials, p1, . . . , pN is at most K. �

Returning to our specific situation here, let K, L, N , R, S and T , along with the rj ’s, sj ’s and
tj ’s be as defined in Subsection 2.2.

Recalling our definition of the λi’s in (2.4), we have

N∑

i=1

λi =
K(K + 1)

2

L−1∑

i=0

(i− (L− 1)/2) = 0

and the following slight variation of equation (2.1) in [4] (our Λ′ is slightly different from theirs)

(3.5) α
λirj
1 α

λisj
2 α

λitj
3 = α

λi(rj+tjβ1)
1 α

λi(sj+tjβ2)
2 eλitjΛ/b3 = α

λi(rj+tjβ1)
1 α

λi(sj+tjβ2)
2 (1 + θi,jΛ

′),

where

θi,j =
eλitjΛ/b3 − 1

Λ′

and

(3.6) Λ′ = |Λ| · LTe
LT |Λ|/(2b3)

2b3
.

Let

(3.7) φi(η, ζ) =
b′3

kib′′3
mi

ki!mi!
ηkiζmiαλiη

1 αλiζ
2 ,

for any i = 1, . . . , N , and

ΦI(x)i,j =

{
φi (xηj , xζj) , if i ∈ I,
θi,jφi (xηj , xζj) , if i 6∈ I,

for any subset I of N = {1, . . . , N} and j = 1, . . . , N .

In our notation before Lemma 3.6, here we put pi (z1, z2) =
b′3

kib′′3
mi

ki!mi!
zki

1 z
mi

2 , fi(z) = exp (λiz)

and θi,j = δi,j . Hence we can write αλiz1
1 αλiz2

2 = exp (λi (log (α1) z1 + log (α2) z2)) = fi (θ1z1 + θ2z2)
with θ1 = log (α1) and θ2 = log (α2).

We put MI = (ΦI(1)i,j), ΨI(x) = det (ΦI(x)i,j),

(3.8) ∆I = ΨI(1)
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and
JI = ordx=0 (ΨI(x)) .

Proposition 3.7. Suppose K and L are two integers satisfying K ≥ 3 and L ≥ 5. If

(3.9) Λ′ < ρ−KL

holds for some real number ρ ≥ 2, then

log |∆| <
3∑

i=1

Mi log |αi|+ ρ

3∑

i=1

Gi |logαi|+ log(N !) +N log 2 +
N(K − 1)

3
log b

− N2

2K

(
1− 2

3L
− 2

3KL
− 1

3L2
− 16

3K2L

)
log ρ+ 0.001.

Proof. We start by proving that |θi,j | ≤ 1.
Since b3, L and |Λ| are all positive, 0 ≤ tj ≤ T , and |λi| ≤ L/2, we have

|θi,j | ≤
ex − 1

xex
where x =

LT |Λ|
2b3

> 0.

Observe that (ex − 1) / (xex) is a decreasing function for x > 0, since its derivative is (1 + x− ex) /
(
x2ex

)
.

By L’Hôpital’s rule, we find that limx→0+ (ex − 1) / (xex) = limx→0+ (1 + x)
−1

= 1. Hence,

|θi,j | ≤ 1.

Let
ηj = rj + tjβ1 − η0 and ζj = sj + tjβ2 − ζ0,

so |ηj | ≤ η0 and |ζj | ≤ ζ0. Since,
(
rjb

′
3 + tjb

′
1

ki

)
=

(
b′3 (ηj + η0)

ki

)
=
b′3

ki

ki!
ηj

ki + terms in ηj of degree less than ki,

and similarly for
(
sjb

′′

3 +tjb
′′

2
mi

)
, using the multilinearity of determinants we obtain the formula

∆ = det

(
b′3

kib′′3
mi

ki!mi!
ηj

kiζj
miα1

ℓirjα2
ℓisjα3

ℓitj

)
.

Combining this with (3.5), along with the definitions of λi, M1, M2 and M3, it follows that

∆ = α1
M1α2

M2α3
M3 det

(
b′3

kib′′3
mi

ki!mi!
ηki

j ζ
mi

j α
λi(rj+tjβ1)
1 α

λi(sj+tjβ2)
2 (1 + Λ′θi,j)

)
.

Since
∑

i λi = 0, we deduce from this and the definitions of ηj and ζj that

∆ = αM1
1 αM2

2 αM3
3 det

(
b′3

kib′′3
mi

ki!mi!
ηj

kiζj
miα

λiηj

1 α
λiζj
2 (1 + Λ′θi,j)

)
.

Expanding this determinant, we obtain

(3.10) ∆ = α1
M1α2

M2α3
M3

∑

I⊆N

(Λ′)N−|I|∆I ,

where I runs over all subsets of N = {1, . . . , N} and ∆I is defined in (3.8).
From Schwarz’ Lemma (see, for example, Lemma 2.3 on page 37 of [31]), we have

(3.11) |ΨI(1)| ≤ ρ−JI · max
|x|=ρ

|ΨI(x)| ,

recalling that JI = ordx=0 (ΨI(x)).
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Since |θi,j | ≤ 1, expanding the determinant ΨI shows that

|ΨI(x)| ≤ N ! max
σ∈S(N )

∣∣∣∣∣

N∏

i=1

φi
(
xησ(i), xζσ(i)

)
∣∣∣∣∣ ,

where S(N ) is the group of all permutations of N . For any σ ∈ S(N ) and any x satisfying |x| ≤ ρ,
we also have

∣∣∣∣∣

N∏

i=1

φi
(
xησ(i), xζσ(i)

)
∣∣∣∣∣ ≤

b′3

∑
kib′′3

∑
mi

∏
ki!
∏
mi!

(ρη0)
∑

ki (ρζ0)
∑

mi

∣∣∣α
∑

λiησ(i)x
1

∣∣∣ ·
∣∣∣α

∑
λiζσ(i)x

2

∣∣∣ ,

since |ηj | ≤ η0 and |ζj | ≤ ζ0.
Note that all the sums and products on right-hand side are for i = 1, . . . , N . This will also be

the case for all sums and products that follow which have i as the index, but without explicit lower
and upper bounds on i.

Since |exp(z)| ≤ exp (|z|), it follows that

max
|x|=ρ

|ΨI(x)| ≤N !
b′3

∑
kib′′3

∑
mi

∏
ki!
∏
mi!

(ρη0)
∑

ki (ρζ0)
∑

mi(3.12)

× max
σ∈S(N )

exp
{
ρ
(∣∣∣
∑

λiησ(i)

∣∣∣ |logα1|+
∣∣∣
∑

λiζσ(i)

∣∣∣ |logα2|
)}

.

Using the relation
∑N

i=1 λi = 0, we get

N∑

i=1

λiησ(i) =

N∑

i=1

λi
(
rσ(i) + tσ(i)β1

)

=
N∑

i=1

(
ℓi −

L− 1

2

)
rσ(i) + β1

N∑

i=1

(
ℓi −

L− 1

2

)
tσ(i)

=

N∑

i=1

ℓirσ(i) −M1 + β1

N∑

i=1

ℓitσ(i) − β1M3.

Thus, from Lemma 3.2,
∣∣∣∣∣

N∑

i=1

λiησ(i)

∣∣∣∣∣ ≤ G1 + β1G3.

In a similar way,
∣∣∣∣∣

N∑

i=1

λiζσ(i)

∣∣∣∣∣ ≤ G2 + β2G3.

Recalling that b3 |logα3| = b1 |logα1|+ b2 |logα2| ± |Λ|, it follows that

exp
{
ρ
(∣∣∣
∑

λiησ(i)

∣∣∣ |logα1|+
∣∣∣
∑

λiζσ(i)

∣∣∣ |logα2|
)}

(3.13)

≤ exp {ρ ((G1 + β1G3) |logα1|+ (G2 + β2G3) |logα2|)}

≤ exp

{
ρ

(
G1 |logα1|+G2 |logα2|+G3

(
|logα3|+

|Λ|
b3

))}
.
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Recalling (3.9) and applying the definitions for the quantities that arise, we have

ρG3
|Λ|
b3

= ρg
NLT

b3

|Λ|
2

=
ρgK(K + 1)L

2

Λ′

eLT |Λ|/(2b3)
≤ ρgK(K + 1)LΛ′

2
≤ ρK(K + 1)LΛ′

8

<
ρK(K + 1)L

8ρKL
.

By looking at the partial derivatives of this last expression with respect to ρ, K and L, we see
that it is a non-increasing function in each of these provided that KL log(ρ) ≥ 2 and KL ≥ 1.
These conditions hold for K ≥ 3, L ≥ 5 and ρ ≥ 2. For K = 3, L = 5 and ρ = 2, we find that
ρK2L/

(
4ρKL

)
< 0.0005. Hence

(3.14) ρG3
|Λ|
b3

< 0.001.

Combining, (3.10), (3.11), (3.12), (3.13) and (3.14), we find that condition (3.9) implies the
upper bound

log |∆| <
3∑

i=1

Mi log |αi|+ ρ

3∑

i=1

Gi |logαi|+ log(N !) +N log(2) + log(ρ)
∑

i

(ki +mi)

+ log

(
(b′3η0)

∑
ki

∏
ki!

(b′′3ζ0)
∑

mi

∏
mi!

max
I⊆N

|Λ′|N−|I|

ρJI

)
+ 0.001.

Under condition (3.9), we have

(3.15)
|Λ′|N−|I|

ρJI

≤ ρ−KL(N−|I|)−JI

(note that if N = |I|, then we need ≤ here, rather than the < in (3.9)).
From Lemma 3.6, we obtain JI ≥ Θ(K − 1, |I|). Note that our matrix is not of exactly the

same form as used in Lemma 3.6, as we have functions in the entries, ΨI(x)i,j when i 6∈ I, rather
than complex numbers. But since the φi’s are the product of polynomials and analytic functions
we can write them as power series (some possibly truncated). Since ΨI(x) is a determinant, it is
multilinear, these entries cannot reduce JI (see the proof of Lemma 7.2 of [31] for more details).

So applying equation (3.15), Lemma 3.4 and using the relations

N∑

i=1

(ki +mi) = L

K−1∑

k=0

(
K−1−k∑

m=0

k +m

)
= L

K−1∑

k=0

(K − 1 + k)(K − k)

2
=
KL(K + 1)(K − 1)

3

=
2N(K − 1)

3
,
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we obtain

log(ρ)
∑

i

(ki +mi) + log

(
max
I⊆N

|Λ′|N−|I|

ρJI

)

≤ log(ρ)

(
2N(K − 1)

3
−KL(N − |I|) − JI

)

≤ log(ρ)

(
2N(K − 1)

3
−KL(N − |I|) −Θ(K − 1, |I|)

)

≤ log(ρ)

(
2N(K − 1)

3
− N2

2K

(
1 +

2

L
− 6

KL
− 1

3L2

))

= − log(ρ)
N2

2K

(
1− 2

3L
− 2

3KL
− 1

3L2
− 16

3K2L

)
.

Also note that

(3.16)
N∑

i=1

ki = L
K−1∑

k=0

(K − k)k =
K(K − 1)(K + 1)L

6
=
N(K − 1)

3
.

So using the definition of b in (2.5), we see that

bN(K−1)/3 = (b′3η0)
N(K−1)/3

(b′′3ζ0)
N(K−1)/3

(
K−1∏

k=1

(k!)K−k

)−2L

=
(b′3η0)

∑
ki

∏
ki!

(b′′3ζ0)
∑

mi

∏
mi!

.

This completes the proof of the proposition. �

3.4. A lower bound for |∆|. Liouville’s inequality is the key tool that we need to obtain a lower
bound for |∆|. The version of Liouville inequality that we use is the same as in [20] (p. 298–299)
(also see Exercises 3.3(a) and 3.5 on pages 106–107 of [31]).

Lemma 3.8. Let α1, α2 and α3 be non-zero algebraic numbers and a polynomial f ∈ Z [X1, X2, X3]
such that f (α1, α2, α3) 6= 0, then

|f (α1, α2, α3)| ≥ |f |−D+1 (α∗
1)

d1 (α∗
2)

d2 (α∗
3)

d3 × exp {−D (d1 h (α1) + d2 h (α2) + d3 h (α3))} ,

where D = [Q (α1, α2, α3) : Q]
/
[R (α1, α2, α3) : R],

di = degXi
f, i = 1, 2, 3, |f | = max {|f (z1, z2, z3)| : |zi| ≤ 1, i = 1, 2, 3} ,

and h(α) is the absolute logarithmic height of the algebraic number α, and α∗ = max{1, |α|}.

Using Lemma 3.8, we get the following lemma – also see Proposition 12.6 in [9].

Proposition 3.9. If ∆ 6= 0, then

log |∆| ≥ − D − 1

2
N log(N) +

3∑

i=1

(Mi +Gi) log |αi| − 2D
3∑

i=1

Gi h (αi)

− D − 1

3
(K − 1)N log(b).
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Proof. From (2.6), we have ∆ = P (α1, α2, α3) where P ∈ Z [X1, X2, X3] is given by

P (X1, X2, X3) =
∑

σ∈SN

sg(σ)

(
N∏

i=1

(
rσ(i)b

′
3 + tσ(i)b

′
1

ki

)(
sσ(i)b

′′
3 + tσ(i)b

′′
2

mi

))
X

nr,σ

1 X
ns,σ

2 X
nt,σ

3 ,

where sg(σ) is the signature of the permutation, σ,

nr,σ =

N∑

i=1

ℓirσ(i), ns,σ =

N∑

i=1

ℓisσ(i) and nt,σ =

N∑

i=1

ℓitσ(i).

By Lemma 3.2, ∣∣degXi
P −Mi

∣∣ ≤ Gi, for i = 1, 2, 3.

Let
Vi = ⌊Mi +Gi⌋, Ui = ⌈Mi −Gi⌉, i = 1, 2, 3,

then
∆ = αV1

1 αV2
2 αV3

3 P̃
(
α−1
1 , α−1

2 , α−1
3

)
,

where
degXi

P̃ ≤ Vi − Ui, i = 1, 2, 3.

By our Liouville estimate

log
∣∣∣P̃
(
α−1
1 , α−1

2 , α−1
3

)∣∣∣ ≥ −(D − 1) log
∣∣∣P̃
∣∣∣−D

3∑

i=1

(Vi − Ui) h (αi) ,

recalling from our assumptions at the start of Section 2 that |αi| ≥ 1, and hence
(
α−1
i

)∗
= 1, for

i = 1, 2, 3.

Now we have to find an upper bound for
∣∣∣P̃
∣∣∣ (or for |P |, which is equal to

∣∣∣P̃
∣∣∣). By the

multilinearity of the determinant, for all η, ζ ∈ C,

P (z1, z2, z3) = det

(
(rjb

′
3 + tjb

′
1 − η)

ki

ki!

(sjb
′′
3 + tjb

′′
2 − ζ)

mi

mi!
z
ℓirj
1 z

ℓisj
2 z

ℓitj
3

)
.

Choose

η =
(R − 1)b′3 + (T − 1)b′1

2
, ζ =

(S − 1)b′′3 + (T − 1)b′′2
2

.

Notice that, for 1 ≤ j ≤ N ,

|rjb′3 + tjb
′
1 − η|ki ≤

(
(R− 1)b3 + (T − 1)b1

2d1

)ki

, |sjb′′3 + tjb
′′
2 − ζ|ki ≤

(
(S − 1)b3 + (T − 1)b2

2d2

)mi

and recall from (3.16) that
N∑

i=1

ki =

N∑

i=1

mi =
N(K − 1)

3
.

So Hadamard’s inequality implies

|P | ≤NN/2

(
(R − 1)b3 + (T − 1)b1

2d1

)(K−1)N/3(
(S − 1)b3 + (T − 1)b2

2d2

)(K−1)N/3

×
(

N∏

i=1

ki!

)−1( N∏

i=1

mi!

)−1

.

Recalling the definition of b, we get

|P | ≤ NN/2b(K−1)N/3.
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Collecting all the above estimates, we find

log |∆| ≥ −(D − 1)

(
log
(
NN/2

)
+

(K − 1)N

3
log b

)
−D

3∑

i=1

(Vi − Ui) h (αi) +

3∑

i=1

Vi log |αi| .

The inequalities D h (αi) ≥ log |αi| ≥ 0 imply

Vi log |αi| − D (Vi − Ui) h (αi) ≥ (Mi +Gi) log |αi| − 2DGi h (αi)

and the result follows. �

3.5. Synthesis. Here we combine the upper and lower bounds for |∆| that we obtained in the two
previous subsections.

Proposition 3.10. With the previous notation, if K ≥ 3, L ≥ 5, ρ ≥ 2, and if ∆ 6= 0 then

Λ′ ≥ ρ−KL

provided that
(
KL

2
+
L

2
− 0.37K − 2

)
log ρ ≥ (D + 1) logN + gL (a1R+ a2S + a3T ) +

2D(K − 1)

3
log b,

where the ai are positive real numbers which satisfy

ai ≥ ρ |logαi| − log |αi|+ 2D h (αi) for i = 1, 2, 3.

Proof. Under the hypotheses of the Propositions 3.7 and 3.9 (which include the hypothesis that
Λ′ < ρ−KL from (3.9)), we get

− D − 1

2
N log(N) +

3∑

i=1

(Mi +Gi) log |αi| − 2D
3∑

i=1

Gi h (αi)−
D − 1

3
(K − 1)N log(b)

<

3∑

i=1

Mi log |αi|+ ρ

3∑

i=1

Gi |logαi|+ log(N !) +N log 2 +
N

3
(K − 1) log b

− N2

2K

(
1− 2

3L
− 2

3KL
− 1

3L2
− 16

3K2L

)
log ρ+ 0.001.

After combining like terms, we obtain

N2

2K

(
1− 2

3L
− 2

3KL
− 1

3L2
− 16

3K2L

)
log ρ

<
D − 1

2
N logN +

3∑

i=1

Gi (ρ |logαi| − log |αi|+ 2D h (αi)) + log(N !) +N log(2) +
K − 1

3
DN log(b) + 0.001.

Applying N ! < N(N/e)N (which holds for N ≥ 7), then dividing both sides by N/2, it follows
that (

KL

2
+
L

2
−
(
1

3
+

1

6L

)
K − 2

3
− 3

K
− 1

6L
− 8

3K2

)
log ρ

<(D + 1) logN + (2/N)

3∑

i=1

Gi (ρ |logαi| − log |αi|+ 2D h (αi)) +
2 log(N)

N
− 2 log(e/2)

+
2(K − 1)D

3
log(b) + 0.002/N.
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For K ≥ 3 and L ≥ 5, we have 1/3+ 1/(6L) = 0.366 . . . and 2/3+ 3/K + 1/(6L) + 8/
(
3K2

)
=

1.9962 . . ., we have

(
KL

2
+
L

2
− 0.37K − 2

)
log ρ <(D + 1) logN + (2/N)

3∑

i=1

Gi (ρ |logαi| − log |αi|+ 2D h (αi))

+
2 log(N)

N
− 2 log(e/2) +

2(K − 1)D
3

log(b) + 0.002/N.

The proof now follows from 2 log(N)/N−2 log(e/2)+0.002/N < 0 for N ≥ 6 and the definitions
of the Gi’s in (2.2) and applying the contrapositive to show that the assumption that Λ′ < p−KL

does not hold. �

3.6. A zero lemma. To use Proposition 3.9, we need to find conditions under which our de-
terminant ∆ is non-zero, a so-called zero lemma. We use a zero lemma due to N. Gouillon (see
[14, Théorème 2.1], which is a refinement of Théorème 1 of [13]. In fact, in our formulation be-
low, we state Gouillon’s result not just for C, as he does, but for any algebraically closed field of
characteristic zero – there are no changes required to his proof. Also Gouillon’s result applies to
multiplicities. We ignore multiplicities of the zeroes here.

Let K be an algebraically closed field of characteristic zero and let d0 and d1 be two non-negative

integers which are not both zero. We denote by G the group Kd0 × (K×)
d1 The group law on G

will be written additively, hence its neutral element is denoted by 0G. When Σ1, . . . ,Σn are finite
subsets of G, we define

Σ1 + · · ·+Σn = {σ1 + · · ·+ σn : σ1 ∈ Σ1, . . . , σn ∈ Σn} .

Proposition 3.11. Suppose that K and L are positive integers and that Σ1, Σ2 and Σ3 are non-
empty finite subsets of K2 ×K× such that

(3.17)

{
Card {λx1 + µx2 : ∃y ∈ K× with (x1, x2, y) ∈ Σ1} > K, ∀(λ, µ) ∈ K2 \ {(0, 0)},
Card

{
y : ∃ (x1, x2) ∈ K2 with (x1, x2, y) ∈ Σ1

}
> L,

(3.18)

{
Card {(λx1 + µx2, y) : (x1, x2, y) ∈ Σ2} > 2KL, ∀(λ, µ) ∈ K2 \ {(0, 0)},
Card {(x1, x2) : ∃y ∈ K× with (x1, x2, y) ∈ Σ2} > K2,

and

(3.19) Card (Σ3) > 3K2L.

Then the only polynomial P ∈ K [X1, X2, Y ] of total degree at most K in X1 and X2 and of
degree at most L in Y which is zero on the set Σ1 +Σ2 +Σ3 is the zero polynomial.

The proof of this proposition is based on the following generalisation of a special case of a result
due to Gouillon.

Lemma 3.12. Let K and L be positive integers, K be an algebraically closed field of characteristic
zero and Σ1,Σ2,Σ3 be non-empty finite subsets of K2 ×K×.

Suppose that the following conditions are satisfied.
(1) For j = 1 and j = 2 and for all K-subspaces, W , of K2 of dimension at most 2− j, we have

Card

(
Σj + (W ×K×)

W ×K×

)
> Kj.
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(2) For each of j = 1, j = 2 and j = 3 and for all K-subspaces, W , of K2 of dimension at most
3− j, we have

Card

(
Σj + (W × {1})

W × {1}

)
> jKj−1L.

Then the only polynomial P ∈ K [X1, X2, Y ] of total degree at most K in X1 and X2 and of
degree at most L in Y which is zero on the set Σ1 +Σ2 +Σ3 is the zero polynomial.

Proof. This is based on Théorème 2.1 in [14] in the special case of m = 2 and T1 = · · · = Tm+1 = 0.
The only difference is that he stated and proved his result only for C in place of our K. However,
his proof only requires that the field be algebraically closed and of characteristic 0, rather than
requiring any additional properties of C.

We have taken his T1 = · · · = Tm+1 = 0 since we are only concerned with the zeroes themselves,
not their multiplicities. Also we have used the notation of Waldschmidt [31], which is itself based
on the notation of Philippon [26], instead of Gouillon’s similar, but not identical, notation. �

Proof of Proposition 3.11. We only show that case j = 1 of Gouillon’s condition (1) follows from
the conditions in our proposition (the first part of condition (3.17) of our proposition, in particular),
as the proofs of the others are very similar.

In this case, there exists a K-subspace, W , of K2 of dimension either 0 or 1.
If the dimension of W is 0, then

(3.20) Card

(
Σ1 + (W ×K×)

W ×K×

)
= Card

{
(x1, x2) : ∃y ∈ K× with (x1, x2, y) ∈ Σ1

}
.

This is because (x1, x2, y)+({(0, 0)} ×K×) = (x1, x2, 1)+({(0, 0)} ×K×) for any (x1, x2, y) ∈ Σ1

and each coset, (x1, x2, 1) + ({(0, 0)} ×K×), is distinct.
The first part of our condition (3.17) implies that the cardinality in (3.20) exceeds K.
If the dimension of W is 1, then this subspace is

{
(x1, x2) ∈ K2 : λx1 + µx2 = 0

}

for some (λ, µ) ∈ K2\{(0, 0)}.
For any (λ, µ) ∈ K2\{(0, 0)}, there is a bijection between this set and the set in the first part of

condition (3.17) of our proposition (note that all (x1, x2, y) ∈ Σ1 with x1 and x2 fixed map to the
same element in the set in Gouillon’s condition (1) with j = 1). So the first part of condition (3.17)
of our proposition ensures that Gouillon’s condition (1) holds for j = 1.

Continuing in a very similar way, we can show that the conditions in our proposition imply that
Gouillon’s conditions hold. Hence our conclusion follows from his result. �

Remark. Equation (3.20) illustrates how the sets on the left-hand sides of (3.17)–(3.19) in Propo-
sition 3.11 arise. They are related to sets of classes of the form (Σi +H) /H for various algebraic
subgroups, H , of K2×K×. Such algebraic subgroups, H , are the obstruction subgroups introduced
to the study of zero estimates and multiplicity estimates by Philippon [26].

Also note that any algebraic subgroup of the product of an additive group by a multiplicative
group is a product of a subgroup of the additive group and a subgroup of the multiplicative group.

Remark 3.13. For j = 1, 2, 3, we shall consider finite sets Σj defined by

(3.21) Σj =
{(
r + tβ1, s+ tβ2, α

r
1α

s
2α

t
3

)
: 0 ≤ r ≤ Rj , 0 ≤ s ≤ Sj , 0 ≤ t ≤ Tj

}
,

where Rj , Sj and Tj are positive integers, β1 = b1/b3 = b′1/b
′
3 and β2 = b2/b3 = b′′2/b

′′
3 are as in

(2.3). This choice corresponds to the entries of the arithmetical matrix used in the definition of ∆
in (2.6).
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3.7. Degeneracies. If the conditions in our zero lemma do not all hold, then there will be a linear
dependence relation over Q that the bi’s in our linear form satisfy (see conditions (2.14) and (C2)
in Theorem 2.1). We refer to such cases as degeneracies and present results in this subsection for
how we handle them.

Remark 3.14. Note that there is an alternative approach due to Waldschmidt for handling the
degenerate case (see the discussion at the end of Section 7.1 of [31, pp. 191–192]). This alternative

approach is more efficient in its dependence on b (log2(b) rather than log8/3(b) as in Subsection 5.3).
This would considerably simplify our treatment of the degenerate case as well as the statement of
Theorem 2.1. Our attempts to apply it have yielded larger constants, and hence weaker results.
But Waldschmidt’s approach certainly warrants further efforts.

Concerning the group, C2 × C×, the following elementary lemma is important.

Lemma 3.15. The following conditions are equivalent.
(a) The map

ψ : Z3 → C2 × C×, (r, s, t) 7→
(
r + β1t, s+ β3t, α

r
1α

s
2α

t
3

)

is not one-to-one (not injective).
(b) There exists some positive integer m such that

αmb3
3 = αmb1

1 αmb2
2 .

(c) The number Λ = b1 logα1 + b2 logα2 − b3 logα3 belongs to the set iπQ.

Proof. Clearly, without loss of generality, we may assume that gcd (b1, b2, b3) = 1.
Recall our notation from (2.3) with d1 = gcd (b1, b3) and d2 = gcd (b2, b3). Since gcd (b1, b2, b3) =

1, we have gcd (d1, d2) = 1. Thus

b3 = d1d2b̃3 (say), b′3 = d2b̃3, b′′3 = d1b̃3.

After these preliminaries, we prove the implication (a) ⇒ (b). Suppose that the map ψ is not
injective. Then there exist rational integers r, s, t, not all zero, such that

ψ(r, s, t) = (0, 0, 1).

That is,

r + tβ1 = 0, s+ tβ2 = 0, αr
1α

s
2α

t
3 = 1.

The first relation implies r = −kb′1 for some rational integer, k. In fact, we have k = t/b′3.

Thus t = kb′3 = kd2b̃3. Similarly, from the second relation we have s = −ℓb′′2 , where ℓ = t/b′′3 , so

t = ℓb′′3 = ℓd1b̃3, for some rational integer ℓ. In particular, kd2 = ℓd1, hence there exists m ∈ Z
such that k = md1 and ℓ = md2. Thus

r = −mb1, s = −mb2 and t = mb3.

Since at least one of r, s and t is non-zero, it follows that m 6= 0. Thus the third relation gives

αmb3
3 = αmb1

1 αmb3
3 ,

as wanted.
Clearly, (b) implies (c).
To show that (c) implies (a), we suppose that (c) holds, i.e. that mΛ belongs to 2iπZ for some

positive rational integer m. Then it is clear that ψ (mb1,mb2,−mb3) = (0, 0, 1), proving that the
map ψ is not injective. �
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Lemma 3.16. If α1, α2 and α3 are non-zero complex numbers such that (for example) α1 and α2

are multiplicatively independent and α3 6= 1 is a root of unity, and if logαj is any determination
of the logarithm of αj for j = 1, 2, 3, then the numbers logα1, logα2 and logα3 are linearly
independent over the rationals.

Furthermore, if b1, b2 and b3 are rational integers with at least one of b1 and b2 non-zero, then
the number b1 logα1 + b2 logα2 + b3 logα3 does not belong to the set iπQ.

Proof. Suppose that

Λ = b1 logα1 + b2 logα2 − b3 logα3 = 0

where b1, b2 and b3 are rational integers not all equal to zero. Then αb3
3 = αb1

1 α
b2
2 . Assume

that αd
3 = 1 with d > 1, then αdb2

2 = α−db1
1 , which implies b1 = b2 = 0 since α1 and α2 are

multiplicatively independent. Since we assumed that b1, b2 and b3 are not all equal to zero, it
follows that b3 6= 0 and so Λ = b3 logα3 6= 0, since α3 6= 1. This contradiction proves the first
claim.

Noting that logα3 = 2πim/n with n ∤ m, the second claim follows from the first one. �

The following very elementary lemma will be useful when investigating conditions (3.17) and
(3.18) of Proposition 3.11.

Lemma 3.17. Suppose that b1, b2 and b3 are positive rational integers which are coprime. Let R,
S and T be positive integers and consider the set

Σ̃ = {(r + tb1/b3, s+ tb2/b3) : 0 ≤ r ≤ R, 0 ≤ s ≤ S, 0 ≤ t ≤ T } .
Then

Card Σ̃ = (R+ 1)(S + 1)(T + 1)

unless

b1 ≤ R and b2 ≤ S and b3 ≤ T.

Proof. With the same notation as above, suppose that the map

ψ : {(r, s, t) : 0 ≤ r ≤ R, 0 ≤ s ≤ S, 0 ≤ t ≤ T } → Σ̃, (r, s, t) 7→ (r + β1t, s+ β2t)

is not injective. Then there exist two different triples of rational integers (r, s, t) and (r′, s′, t′),
with 0 ≤ r, r′ ≤ R, 0 ≤ s, s′ ≤ S and 0 ≤ t, t′ ≤ T such that ψ(r, s, t) = ψ(r′, s′, t′). That is,

(r − r′) + (t− t′)β1 = 0 and (s− s′) + (t− t′)β3 = 0.

As in the proof that (a) implies (b) for Lemma 3.15, these two relations imply that

r − r′ = mb1, s− s′ = mb2, s− s′ = −mb3.
Thus −R ≤ mb1 ≤ R, −S ≤ mb2 ≤ S and −T ≤ mb3 ≤ T . Since m is non-zero and the bi’s are

positive, the conclusion follows. �

The first subcondition of condition (3.17) in Proposition 3.11 is the most difficult to handle. For
it, we will need the following lemmas, in particular, Lemma 3.21. These lemmas also bring some
extra information to Proposition 3.1.1 of [4] (also see [31, Ex 6.4, pp. 184–185]).

Lemma 3.18. Let A, B, C, D, X > 0, Y > 0 and Z > 0 be rational integers with gcd(A,B,C) = 1
and ABC 6= 0. Put

Σ =
{
(x, y, z) ∈ Z3 : 0 ≤ x ≤ X, 0 ≤ y ≤ Y, 0 ≤ z ≤ Z

}

and

M = Card {(x, y, z) ∈ Σ : Ax+By + Cz = D} .
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(a) We have

M ≤
(
1 +

⌊
X

α

⌋)(
1 +

⌊
Y

|C|/α

⌋)
and M ≤

(
1 +

⌊
X

α

⌋)(
1 +

⌊
Z

|B|/α

⌋)
,

where
α = gcd(B,C).

(b) If we suppose that

M ≥ max {X + Y + 1, Y + Z + 1, Z +X + 1}
then

|A| ≤ (Y + 1)(Z + 1)

M −max{Y, Z} , |B| ≤ (X + 1)(Z + 1)

M −max{X,Z} and |C| ≤ (X + 1)(Y + 1)

M −max{X,Y } .

Remark 3.19. When we apply part (b) of this lemma, we will assume that M is (possibly) even
larger. Let V = ((X + 1)(Y + 1)(Z + 1))1/2 and suppose that χ is a positive real number. We will
assume that

M ≥ max {X + Y + 1, Y + Z + 1, Z +X + 1, χV} .
Proof. (a) Define

Π =
{
(x, y, z) ∈ C3 : Ax+By + Cz = D

}
.

If the image by the map (x, y, z) 7→ Ax+By+Cz of a point (x, y, z) ∈ Z3 belongs to the plane
Π, then

Ax ≡ D (mod α),

where A and α are coprime since gcd(A,B,C) = 1. This shows that the number of such x which
satisfy 0 ≤ x ≤ X is at most 1 + ⌊X/α⌋.

Now let x be fixed, with 0 ≤ x ≤ X , and such that the images of two distinct elements (x, y, z)
and (x, y′, z′) of Σ also belong to Π. Then

B(y′ − y) = C(z − z′),

where we suppose (as we may) that y is minimal (then y′ > y). Hence there exists a positive
integer k such that

y′ − y = k(|C|/α) and z − z′ = ±k(|B|/α).
It follows that, for x fixed, the number of (x, y, z) ∈ Σ whose image belongs to Π is at most

1 + ⌊Y/(|C|/α)⌋. Hence

(3.22) M ≤
(
1 +

⌊
X

α

⌋)(
1 +

⌊
Y

|C|/α

⌋)
,

which proves the first upper bound for M in part (a) of the lemma.
The proof of the second upper bound for M is the same, except for fixed values of x, we bound

the number of possible z-coordinates rather than the number of possible y-coordinates.

(b) We start with the upper bound for |C|.
For ξ ≥ 1, put

f(ξ) =

(
1 +

X

ξ

)(
1 +

ξY

|C|

)
.

From equation (3.22), it follows that

M ≤ f(α).

Clearly, 1 ≤ α ≤ C. Since f ′′(ξ) = 2X/ξ3 > 0, it follows that f(ξ) is convex and so

M ≤ f(α) ≤ max {f(1), f(C)} .
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If

M ≤ f(1) = 1 +
XY

|C| +X +
Y

|C| , then |C| ≤ Y (X + 1)

M − (X + 1)
.

If

M ≤ f(C) = 1 +
XY

|C| +
X

|C| + Y, then |C| ≤ X(Y + 1)

M − (Y + 1)
.

Suppose finally that

M ≥ max{X + Y + 1, Y + Z + 1, Z +X + 1}.
Since M −X ≥ Y + 1, we can write

Y (X + 1)

M − (X + 1)
=

XY + Y

(M −X)(1− 1/(M −X))
=
XY + Y

M −X

(
1 +

1

M −X
+

1

(M −X)2
+ · · ·

)

≤ XY + Y

M −X

(
1 +

1

Y + 1
+

1

(Y + 1)2
+ · · ·

)

=
XY + Y

M −X

Y + 1

Y
=

(X + 1)(Y + 1)

M −X
.

Similarly,

X(Y + 1)

M − (Y + 1)
≤ (X + 1)(Y + 1)

M − Y
.

Thus, we always have

|C| ≤ (X + 1)(Y + 1)

M −max{X,Y } .

The upper bounds for |A| and |B| are proved in the same way. �

Lemma 3.20. Let B, C, D, X > 0, Y > 0 and Z > 0 be rational integers with gcd(B,C) = 1
and BC 6= 0.

Put

Σ =
{
(x, y, z) ∈ Z3 : 0 ≤ x ≤ X, 0 ≤ y ≤ Y, 0 ≤ z ≤ Z

}

and

M = Card {(x, y, z) ∈ Σ : By + Cz = D} .
(a) We have

M ≤ (X + 1)

(
1 +

⌊
Y

|C|

⌋)
and M ≤ (X + 1)

(
1 +

⌊
Z

|B|

⌋)
.

(b) Moreover, if we suppose that

M ≥ max{X + Y + 1, X + Z + 1},
then

|B| ≤ (X + 1)(Z + 1)

M −X
and |C| ≤ (X + 1)(Y + 1)

M −X
.

Remark. As with Lemma 3.18(b) and noted in Remark 3.19, when we apply part (b) of this lemma,
we will assume that M is (possibly) even larger. Let V = ((X + 1)(Y + 1)(Z +1))1/2 and suppose
that χ is a positive real number. We will assume that

M ≥ max {X + Y + 1, Y + Z + 1, Z +X + 1, χV} .
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Proof. The proof is similar to that of Lemma 3.18, but simpler.
(a) Define the plane

Π =
{
(x, y, z) ∈ C3 : By + Cz = D

}

and consider the map (x, y, z) 7→ By + Cz defined on C3.
Let x be fixed with 0 ≤ x ≤ X and such that the images of two distinct points (x, y, z) and

(x, y′, z′) in Σ belong to Π. Then

B(y′ − y) = C(z − z′),

where we suppose (as we may) that y is minimal (then y′ > y). Hence there exists a positive
integer k such that

y′ − y = k|C| and z − z′ = ±k|B|.
Since y′ − y = C(z − z′)/B and gcd(B,C) = 1, it must be the case that B|(z− z′). This is why

k is an integer.
It follows that, for x fixed, the number of (x, y, z) ∈ Σ whose image belongs to Π is at most

1 + ⌊Y/|C|⌋. Hence

(3.23) M ≤ (1 +X)

(
1 +

⌊
Y

|C|

⌋)
,

which proves the first upper bound for M in the lemma.
The proof of the second upper bound for M is the same, except for fixed values of x, we bound

the number of possible z-coordinates rather than the number of possible y-coordinates.

(b) We turn now to the upper bounds for |B| and |C|, starting with the upper bound for |C|.
From equation (3.23), it follows that

M ≤ (1 +X)

(
1 +

Y

|C|

)
.

Thus

|C| ≤ Y (1 +X)

M − 1−X
.

Suppose now

M ≥ max{X + Y + 1, X + Z + 1}.
As we saw in the proof of Lemma 3.18, M ≥ X + Y + 1 implies that

|C| ≤ Y (1 +X)

M − 1−X
≤ (X + 1)(Y + 1)

M −X
,

as required.
The remaining upper bound for |B| at the end of the lemma is proved in the same way. �

Lemma 3.21. Let R1, S1 and T1 be positive integers and consider the set

Σ̃1 = {(x1, x2) = (r + tβ1, s+ tβ2) : 0 ≤ r ≤ R1, 0 ≤ s ≤ S1, 0 ≤ t ≤ T1} ,
where β1 = b1/b3 and β2 = b2/b3 with b1, b2 and b3 coprime non-zero rational integers, and assume
that

Card Σ̃1 = (R1 + 1) (S1 + 1) (T1 + 1) .

Put

V = ((R1 + 1) (S1 + 1) (T1 + 1))
1/2

.

For any (λ, µ) ∈ C2 \ {(0, 0)} and any complex number c, let Mc be the number of elements

(x1, x2) ∈ Σ̃1 such that λx1 + µx2 = c.
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(a) Let χ be a positive real number. If

(3.24) Mc <M := max {R1 + S1 + 1, S1 + T1 + 1, R1 + T1 + 1, χV}
does not hold, then there exist rational integers u1, u2 and u3, not all zero, such that

u1b1 + u2b2 + u3b3 = 0,

with gcd (u1, u2, u3) = 1 and

|u1| ≤
(S1 + 1)(T1 + 1)

M−max{S1, T1}
, |u2| ≤

(R1 + 1)(T1 + 1)

M−max{R1, T1}
and |u3| ≤

(R1 + 1)(S1 + 1)

M−max{R1, S1}
.

(b) If the upper bound (3.24) for Mc holds then, for all (λ, µ) ∈ C2 \ {(0, 0)}, we have

Card
{
λx1 + µx2 : (x1, x2) ∈ Σ̃1

}
≥ (R1 + 1)(S1 + 1)(T1 + 1)

max {R1 + S1 + 1, S1 + T1 + 1, R1 + T1 + 1, χV} .

Remark. The introduction of χV here turns out to be very helpful to us. In many cases, χV is
much larger than the other terms in the definition of M here. So its use here gives us much smaller
upper bounds on the sizes of the ui’s. This gives us better results from the kit.

Proof. (a) Suppose that (3.24) does not hold for some triple (λ, µ, c). Let c be a complex number
such thatMc is maximal and consider the associated values of λ and µ. We distinguish the following
possibilities for µ and λ.

• µ = 0: suppose that (x1, x2) ∈ Σ̃1 satisfies λx1 + µx2 = λ (r + tβ1) = c. So b3r + b1t = cb3/λ
for some integers 0 ≤ r ≤ R1 and 0 ≤ t ≤ T1 (since µ = 0 here and also (µ, λ) 6= (0, 0), we have
λ 6= 0).

We will now apply Lemma 3.20. Let (X,Y, Z) there be (S1, R1, T1) and (B,C,D) there be
(b3/d1, b1/d1, cb3/ (λd1)), where d1 = gcd (b1, b3). Taking r and t here as y and z, respectively, in
the definition of M in Lemma 3.20, the equation By+Cz = D in the definition of M becomes our
(b3/d1) r + (b1/d1) t = cb3/ (d1λ).

Using the map σ : Σ → Σ̃1 defined by σ : (s, r, t) 7→ (r + tβ1, s+ tβ2), we show that the

cardinalities of Σ and Σ̃1 are equal. The map is clearly surjective. Suppose that

σ (s1, r1, t1) = (r1 + t1β1, s1 + t1β2) = (r2 + t2β1, s2 + t2β2) = σ (s2, r2, t2) .

Then (r1 − r2) + (t1 − t2)β2 = (s1 − s2) + (t1 − t2)β2 = 0, so r1 − r2 = s1 − s2. In this case, we
can write r1 = r2+k and s1 = s2+k. Thus (r2 + k + t1β1, s2 + k + t1β2) = (r2 + t2β1, s2 + t2β2),
which can only happen if k = 0. This proves that σ is injective too. Hence the cardinalities of Σ

and Σ̃1 are equal
Therefore, since (3.24) does not hold, the inequality for M in Lemma 3.20(b) holds and we have

|b3/d1| = |B| ≤ (S1 + 1) (T1 + 1)

Mc − S1
≤ (S1 + 1) (T1 + 1)

M− S1

and

|b1/d1| = |C| ≤ (S1 + 1) (R1 + 1)

Mc − S1
≤ (S1 + 1) (R1 + 1)

M− S1
.

We now use this information to obtain the linear relation we want between the bi’s. We have the
trivial relationship (b1/d1) b3 − b1 (b3/d1) = 0, so we can let u1 = −b3/d1, u2 = 0 and u3 = b1/d1.
The upper bounds above on |b3/d1| and |b1/d1| establish our lemma in this case.

Now we assume µ 6= 0 and, to simplify the notation, we take µ = 1.
• λ = 0: by the same argument as for µ = 0, we have b3 (λx1 + µx2) = b3µx2 = b3 (s+ tβ2) =

b3s+tb2 = b3c for some (x1, x2) ∈ Σ̃1. Here we apply Lemma 3.20 with (R1, S1, T1) for (X,Y, Z) and
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(b3/d1, b2/d1, b3c/d1) for (B,C,D), where d1 = gcd (b2, b3). As in the case of µ = 0, Lemma 3.20(b)
gives us

|b3/d1| = |B| ≤ (R1 + 1) (T1 + 1)

M−R1
and |b2/d1| = |C| ≤ (R1 + 1) (S1 + 1)

M− S1
.

As in the case of µ = 0, we have the relationship u1b1+u2b2+u3b3 = 0 with u1 = 0, u2 = b3/d1
and u3 = −b2/d1.

It remains to consider µλ 6= 0. We do so with two cases.
• λb1 + b2 = 0: we proceed in the same way as in the case of λ = 0. We have λx1 + µx2 =

−b2/b1 (r + tβ1) + s + tβ2 = c (recalling that we take µ = 1). Expanding this and simplifying it,
we obtain −b2r+ b1s = cb1, so we use Lemma 3.20 with (0,−b2/d2, b1/d2, cb1/d2) for (A,B,C,D),
(t, r, s) for (x, y, z) and (T1, R1, S1) for (X,Y, Z), where d2 = gcd (b1, b2). Here

|b2/d2| = |B| ≤ (S1 + 1) (T1 + 1)

M− T1
and |b1/d2| = |C| ≤ (T1 + 1) (R1 + 1)

M− T1
.

Notice the denominators here differ from those for the case of λ = 0. This explains why we need
the max in our upper bounds in the lemma.

The desired relationship, u1b1 + u2b2 + u3b3 = 0, holds if we take u1 = b2/d2, u2 = −b1/d2 and
u3 = 0.

• λµ (λb1 + b2) 6= 0: we will show that the desired relationship between the bi’s holds here too.
To proceed, we put

E1 =
{
(r, s, t) ∈ Z3 : 0 ≤ r ≤ R1, 0 ≤ s ≤ S1, 0 ≤ t ≤ T1

}
.

Since Mc > T1+1 (by our assumption that (3.24) does not hold), there exist two distinct triples
(r1, s1, t0) and (r′1, s

′
1, t0) ∈ E1 such that

λ (r1 + β1t0) + (s1 + β2t0) = λ (r′1 + β1t0) + (s′1 + β2t0) ,

recalling our assumption (stated just before considering the case λ = 0) that µ = 1. This gives us
a trivial linear relation between the bi’s, but it does tell us that λ (r

′
1 − r1) = s1 − s′1. Since λ 6= 0

and at least one of r1 6= r′1 or s1 6= s′1 holds, it follows that both r1 6= r′1 and s1 6= s′1 hold. Put
r′′1 = (r′1 − r1) / gcd (r1 − r′1, s1 − s′1) and s

′′
1 = (s1 − s′1) / gcd (r1 − r′1, s1 − s′1), then λ = s′′1/r

′′
1 .

We now use this information about λ to obtain a non-trivial linear relation between the bi’s
whose coefficients we can bound.

We have λx1 + µx2 = s′′1/r
′′
1 (r + tβ1) + s+ tβ2 = c (recalling that we take µ = 1). Expanding

this and simplifying it, we obtain

s′′1b3r + (s′′1b1 + r′′1 b2) t+ r′′1 b3s = r′′1 b3c,

so we use Lemma 3.18(b) with (s′′1b3/δ1, (s
′′
1b1 + r′′1 b2) /δ1, r

′′
1 b3/δ1, r

′′
1 b3c/δ1) for (A,B,C,D), (r, t, s)

for (x, y, z) and (R1, T1, S1) for (X,Y, Z), where

δ1 = gcd (s′′1b3, s
′′
1b1 + r′′1 b2, r

′′
1 b3) = gcd (b3, s

′′
1b1 + r′′1 b2)

since r′′1 and s′′1 are coprime. Here

|s′′1b3/δ1| = |A| ≤ (Y + 1) (Z + 1)

M−max{Y, Z} ≤ (S1 + 1) (T1 + 1)

M−max{S1, T1}
,

|(s′′1b1 + r′′1 b2) /δ1| = |B| ≤ (X + 1) (Z + 1)

M−max{X,Z} ≤ (R1 + 1) (S1 + 1)

M−max{R1, S1}
and

|r′′1 b3/δ1| = |C| ≤ (X + 1) (Y + 1)

M−max{X,Y } ≤ (R1 + 1) (T1 + 1)

M−max{R1, T1}
.
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Since δ1 divides s′′1b1+ r
′′
1 b2, we have s

′′
1b1+ r

′′
1 b2 = k1δ1. Multiplying this by b3/δ1, we get a linear

relation

u1b1 + u2b2 + u3b3 = 0

with u1 = s′′1b3/δ1, u2 = r′′1 b3/δ1 and u3 = − (s′′1b1 + r′′1 b2) /δ1. Thus

|u1| = |s′′1b3/δ1| ≤
(S1 + 1) (T1 + 1)

M−max{S1, T1}
,

|u2| = |r′′1 b3/δ1| ≤
(R1 + 1) (T1 + 1)

M−max{R1, T1}
and

|u3| = |(s′′1b1 + r′′1 b2) /δ1| ≤
(R1 + 1) (S1 + 1)

M−max{R1, S1}
.

(b) For (λ, µ) ∈ C2 \ {(0, 0)}, we consider the cardinality

N = Card
{
λx1 + µx2 : (x1, x2) ∈ Σ̃1

}
.

Putting M = maxc∈CMc, we clearly have N ≥ Card
(
Σ̃1

)
/M , so part (b) of the lemma follows

from the assumption in the lemma that

Card Σ̃1 = (R1 + 1) (S1 + 1) (T1 + 1)

and the assumption in part (b) that M ≤ M. �

4. Proof of Main Result

We start by showing that we can apply our zero lemma, Proposition 3.11, to ∆, so that we have
∆ 6= 0. This will allow us to use Proposition 3.9 to obtain a lower bound for |∆|.

If the N = K(K+1)L/2 rows of the matrix used to define the interpolation determinant, ∆, in
(2.6) are linearly dependent, then there exists a polynomial, P (X1, X2, Y ), not exactly zero, with
P (r + tβ1, s+ tβ2, α

r
1α

s
2α

t
3) = 0 for all triples (r, s, t) with 0 ≤ r < R, 0 ≤ s < S and 0 ≤ t < T .

Since this polynomial arises from a linear combination of the rows, the maximum exponent of
r + tβ1 plus the maximum exponent of s + tβ2 is at most K − 1 and the maximum exponent of
αr
1α

s
2α

t
3 is at most L− 1, degX(P ) ≤ K − 1 and degY (P ) ≤ L− 1.

Using the definition of the Σj ’s in (3.21), along with the lower bounds for R, S and T in (2.7), we
use that the set of all such triples (r, s, t) contains Σ1+Σ2+Σ3. Therefore, if conditions (3.17), (3.18)
and (3.19) in Proposition 3.11 hold, then we find that P (X1, X2, Y ) is the zero polynomial. This
contradiction shows that the N = K(K+1)L/2 rows of the matrix used to define the interpolation
determinant, ∆, in (2.6) are not linearly dependent and hence the interpolation determinant, ∆,
is not zero.

Thus, if we can show that conditions (2.9)–(2.13) in the theorem imply conditions (3.17), (3.18)
and (3.19) in Proposition 3.11 (unless conditions (2.14) or (2.15) hold), then by Proposition 3.10,
the lower bound for Λ′ in the theorem will hold (again, unless conditions (2.14) or (2.15) hold).

Condition (3.17) of Proposition 3.11 has two subconditions. The first subcondition is

(4.1) Card {λx1 + µx2 : (x1, x2, y) ∈ Σ1} > K, ∀(λ, µ) 6= (0, 0).

Recalling the definition of Σ1 in (3.21) and of Σ̃1 in Lemma 3.17, we have

Card {λx1 + µx2 : (x1, x2, y) ∈ Σ1} = Card
{
λx1 + µx2 : (x1, x2) ∈ Σ̃1

}
.
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By Lemma 3.17, we find that Card Σ̃1 = (R1 + 1) (S1 + 1) (T1 + 1) holds unless condition (2.14)

holds. So we may now assume that Card Σ̃1 = (R1 + 1) (S1 + 1) (T1 + 1) holds. Thus, by Lemma 3.21(b),
condition (2.9) of the theorem implies that

Card
{
λx1 + µx2 : (x1, x2) ∈ Σ̃1

}
> K, ∀(λ, µ) 6= (0, 0).

holds, unless the condition in Lemma 3.21(a) holds. This condition in Lemma 3.21(a) gives rise to
condition (2.15).

The second subcondition of condition (3.17) of Proposition 3.11 is

(4.2) Card {y : (x1, x2, y) ∈ Σ1} > L.

Condition (2.10) in this theorem implies that this subcondition holds.
So we have shown that condition (3.17) of Proposition 3.11 follows from conditions (2.9) and

(2.10) in this theorem, provided that conditions (2.14) and (2.15) do not hold.

We now consider condition (3.18) of Proposition 3.11.
It is also divided into two subconditions. We replace the first one by the stronger condition

(4.3) Card {y : (x1, x2, y) ∈ Σ2} > 2KL.

Condition (2.11) in this theorem implies that this subcondition holds.
The second subcondition of condition (3.18) of Proposition 3.11 is

(4.4) Card {(x1, x2) : (x1, x2, y) ∈ Σ2} > K2.

By Lemma 3.17, Card {(x1, x2) : (x1, x2, y) ∈ Σ2} = (R2 + 1) (S2 + 1) (T2 + 1) holds unless
condition (2.14) holds. So condition (2.12) in this theorem implies that this subcondition holds
unless condition (2.14) holds.

Condition (3.19) of Proposition 3.11 is that CardΣ3 > 3K2L. From the definition of w, if
Λ ∈ iπQ, then Λ = iπ2p/q where p 6= 0 and 0 < |q| ≤ w. So, from the assumption in this theorem
that 0 < |Λ| < 2π/w, it follows that Λ 6∈ iπQ. Thus the map in Lemma 3.15(a) is injective, so
hypothesis (2.13) of the theorem implies condition (3.19) of Proposition 3.11 holds. This finishes
the proof.

5. How to use Theorem 2.1

We will first consider the multiplicative group generated by the three algebraic numbers α1, α2

and α3, which we will denote by G.

5.1. About the multiplicative group G. In practical examples, generally the following condi-
tion holds:

(5.1)

{
either α1, α2 and α3 are multiplicatively independent, or

two of them are multiplicatively independent and the third is a root of unity 6= 1.

We now use hypothesis (5.1), which is clearly stronger than the standard hypothesis that the
multiplicative group G is of rank at least two. We also notice that the order in C× of a root of
unity 6= 1 is at least equal to 2, thus the condition (4.2) is satisfied if

(5.2)
2(R1 + 1)(S1 + 1)(T1 + 1)

W1 + 1
> L,
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where

W1 =





R1, if α1 is a root of unity,

S1, if α2 is a root of unity,

T1, if α3 is a root of unity,

1, otherwise,

and recalling the definition of the Σj ’s in (3.21). But see also the first remark after (5.3) below.
In the same way, we see that to satisfy the condition (4.3) it is enough to suppose that (when

condition (5.1) holds)

(5.3)
(R2 + 1) (S2 + 1) (T2 + 1)

W2 + 1
> KL,

where W2 is defined by

W2 =





R2, if α1 is a root of unity,

S2, if α2 is a root of unity,

T2, if α3 is a root of unity,

1, otherwise.

Remark. When (for example) α3 is a root of unity of order ν, condition (5.2) above can be replaced
by

ν (R1 + 1) (S1 + 1) > L

(provided T1 ≥ ν − 1) and condition (5.3) can be replaced by

ν (R2 + 1) (S2 + 1) > KL

(provided T2 ≥ ν − 1).

Remark. Under a weaker condition, one can obtain similar (but slightly weaker) conclusions (see,
for instance, [31, Ex. 7.5, p. 229]).

5.2. The choice of parameters. Here we assume that condition (5.1) holds, then by Lemma 3.16
above we know that Λ 6∈ iπQ.

To apply Theorem 2.1, we consider an integer L ≥ 5 and real parameters m > 0, ρ ≥ 2 and
χ > 0. Note that having chosen ρ, we can set the values of the ai’s too.

Now we put

(5.4) K = ⌊mLa1a2a3⌋.
The reason for this choice of K is as follows. The main term on the left-hand side of equa-

tion (2.8) is KL log(ρ)/2, so it must be larger than D(K − 1) log(b). This suggests that we let L =
O (D log(b)/ log(ρ)). Thus our lower bound for log |Λ|, which is− log(ρ)KL, isO

(
a1a2a3D2 log2(b)/ log(ρ)

)
.

This is our desired form and consistent with the bounds for linear forms in two logs that we obtain
from this same technique (see, for example, [20, 19]).

We will also assume that
m ≥ 1 and Ω := a1a2a3 ≥ 2.

We define

R1 = ⌊c1a2a3⌋, S1 = ⌊c1a1a3⌋, T1 = ⌊c1a1a2⌋,
R2 = ⌊c2a2a3⌋, S2 = ⌊c2a1a3⌋, T2 = ⌊c2a1a2⌋,(5.5)

R3 = ⌊c3a2a3⌋, S3 = ⌊c3a1a3⌋, T3 = ⌊c3a1a2⌋,
where the parameters c1, c2 and c3 will be chosen so that conditions (2.9) through (2.13) of
Theorem 2.1 are satisfied. The motivation for this choice of these quantities is so that all three
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terms in a1R + a2S + a3T on the right-hand side of equation (2.8) are roughly the same size,
O (a1a2a3), and so that the gL (a1R+ a2S + a3T ) term on the right-hand side of (2.8) is roughly
the same size as the other main term on the right-hand side of (2.8), D(K − 1) log b.

We first consider condition (2.9) of Theorem 2.1. Recalling that V = ((R1 + 1) (S1 + 1) (T1 + 1))
1/2

,

we see that (R1 + 1) (S1 + 1) (T1 + 1) > KχV holds, if
(
c31 (a1a2a3)

2
)1/2

≥ χma1a2a3L. I.e.,

c1 ≥ (χmL)2/3.
Next we establish conditions for

(R1 + 1) (S1 + 1) (T1 + 1) > K ·max {R1 + S1 + 1, S1 + T1 + 1, R1 + T1 + 1}
to hold. We consider the special case a1 ≤ a2 ≤ a3 (the other cases are the same), then T1 ≤ S1 ≤
R1 and we want to show that

(R1 + 1) (S1 + 1) (T1 + 1) > K (R1 + S1 + 1) .

Using the expressions for these quantities, this inequality will hold if

(R1 + 1) c21a
2
1a2a3 > mLa1a2a3 (R1 + 1 + c1a1a3)

holds. If ax > bx + c with a, b, c > 0 holds for x = x0, then it holds for all x ≥ x0. So it
suffices to show that c31a

2
1a

2
2a

2
3 ≥ mLa1a2a3 (c1a2a3 + c1a1a3) holds. This will hold if c21a

2
1a

2
2a

2
3 ≥

2mLΩ2
(
a−1
1 + a−1

2

)
holds. That is, when c21 ≥

(
a−1
1 + a−1

2

)
mL holds. In the general case, the

wanted condition holds if

c21 ≥
(
a−1 + a′−1

)
mL, where a = min {a1, a2, a3} and a′ = min ({a1, a2, a3} \ {a}) .

Condition (2.10) of Theorem 2.1 holds when 2c21a1a2a3 ·min {a1, a2, a3} = 2c21Ωa > L, provided
that c1 > 21/3 (since Ω ≥ 2). This inequality arises from the second part of (5.1), with the factor
of 2 on the left-hand side coming from the fact that the order of the root of unity is at least 2.
The condition that c1 > 21/3 ensures that condition (2.10) also holds when the first part of (5.1)
holds.

Thus, since we suppose m ≥ 1 and also Ω ≥ 2, we can take

(5.6) c1 = max

{
21/3, (χmL)2/3,

(
2mL

a

)1/2
}
.

Our treatment of condition (2.11) of Theorem 2.1 is very similar to that for condition (2.10).

We want 2c22Ω > 2KL. Thus c2 =
√
m/aL.

To satisfy condition (2.12) of Theorem 2.1, we need

(R2 + 1) (S2 + 1) (T2 + 1) > K2.

Using our expressions above, this will hold if c32 > m2L2.
Combining these two expressions for c2, we require

(5.7) c2 = max
{
(mL)2/3,

√
m/aL

}
.

Note we do not require c2 ≥ 21/3 here explicitly, since m ≥ 1 and L ≥ 5 ensures that (mL)2/3 >
21/3.

Finally, because of the hypothesis in (5.1), we have Λ 6∈ iπQ by Lemma 3.16. So, by Lemma 3.15,
condition (2.13) of Theorem 2.1 holds for

(5.8) c3 =
(
3m2

)1/3
L.
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Remark. When α1, α2, α3 are multiplicatively independent then it is enough to take c1 and c3 as
above and

(5.9) c2 = (mL)2/3.

5.3. The degenerate case. In this subsection, we present some informal arguments for what
happens in the degenerate case. We obtain

log |Λ| ≫ −a1a2a3 min {a1, a2, a3} (D logB)8/3.

Remark. It is this worse dependence on logB than in the non-degenerate case that leads to the de-
generate case having an impact on the results obtained in practice. Fortunately, it is the constants
that are important and our estimates should lead to good results when compared to published
previously ones (e.g., [22]). See the examples in the next section for evidence of this.

From condition (2.14) in Theorem 2.1, we have

b1 ≤ max {R1, R2} , b2 ≤ max {S1, S2} and b3 ≤ max {T1, T2} .
We now focus our attention on condition (2.15). In the remainder of this subsection we put

χ = 1. We have
u1b1 + u2b2 + u3b3 = 0,

with

|u1| ≤
(S1 + 1)(T1 + 1)

M−max{S1, T1}
, |u2| ≤

(R1 + 1)(T1 + 1)

M−max{R1, T1}
and |u3| ≤

(R1 + 1)(S1 + 1)

M−max{R1, S1}
where

M = max {R1 + S1 + 1, S1 + T1 + 1, R1 + T1 + 1, χV} .
This essentially implies that

|u1| ≤
√
c1a1/χ, |u2| ≤

√
c1a2/χ and |u3| ≤

√
c1a3/χ,

since R1 ≈ c1a2a3, S1 ≈ c1a1a3, T1 ≈ c1a1a2 and typically M = χV ≈ χc
3/2
1 a1a2a3.

Suppose we eliminate b1. Then

u1Λ = u1b1 logα1+u1b2 logα2+u1b3 logα3 = b2 (−u2 logα1 + u1 logα2)+b3 (u1 logα3 − u3 logα1) .

Applying [20] to this linear form in two logs we get

− log |Λ| ≪ (|u1| a2 + |u2| a1) (|u1| a3 + |u3| a1)D2 log2B,

where (being somewhat pessimistic) B = max {|b1| , |b2| , |b3|}, and the implied constant is an
absolute constant. Using the upper bounds for the |u1|’s, we get

− log |Λ| ≪ (
√
c1a1a2/χ) (

√
c1a1a3/χ)D2 log2B ≪ a21a2a3L

2/3D2 log2 B/χ2,

since we have c1 ≪ L2/3. Recalling that L = O (D logB), we get

− log |Λ| ≪ a21a2a3(D logB)8/3,

where the implied constant is again absolute.
In the two remaining cases, where we eliminate b2 or b3, the argument is identical and we obtain

similar results:

− log |Λ| ≪ a1a2a3ai(D logB)8/3,

where we eliminate bi. This suggests eliminating bi where ai = min {a1, a2, a3}. This choice works
best in our examples below too.

Of course, one could use [22] (or any logB type lower bound) instead of [20]. This would lead
to a lower bound for log |Λ| with (logB)5/3 instead of (logB)8/3. However, it would also lead to
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a much larger constant and it is that constant that is more important than the dependence on B
for our use here.

6. Examples

To demonstrate how to use our kit, we give two examples here, revisiting the linear forms in
three logs that arose in [9] and [10].

These examples also provide comparison for readers. In both [9] and [10], the authors used
earlier versions of our kit due to the first author (see Section 12 of [9] and Section 14 of [10]). In
the first example [9], the authors showed that if yp = Fn, then p < 197 · 106. Here we obtain
p < 18 · 106, roughly 11 times smaller than the bound in [9]. For the second example, we improve
the upper bound in [10] as well as correct mistakes in [10].

We start with the following sharpening of Lemma 2.2 of [25] that we will use throughout this
section and in our code. In fact, it is explicit in their proof. Roughly speaking, it removes the
factor of 2h from their result, yielding bounds very close to the actual largest solution.

Lemma 6.1. Let a ≥ 0, h ≥ 1 and b > (1/h)
h
be real numbers and let x ∈ R be the largest solution

of x = a+ b (log x)h. Put c = hb1/h. Then,

x <

(
c log c+

log c

log(c)− 1

(
a1/h + c log log c

))h

.

Proof. This is the inequality on the second-last line of the proof of Lemma 2.2 of [25] with a weaker
condition on b, so we reprove their lemma to justify this weaker condition.

Since h ≥ 1, we know that (z1 + z2)
1/h ≤ z

1/h
1 + z

1/h
2 for any positive real numbers, z1 and z2.

Applying this to our expression for x, we obtain

x1/h ≤ a1/h + c log
(
x1/h

)
,

where c = hb1/h, provided a > 0, c > 0 and x > 1. Put x1/h = (1 + y)c log(c). We also have
c log

(
x1/h

)
≤ x1/h under these conditions. Hence c log(c) + c log log

(
x1/h

)
≤ x1/h. So as long as

x > eh and log(c) > 0, we have y > 0 above.
Thus

(1 + y)c log(c) = x1/h ≤ a1/h + c log(1 + y) + c log(c) + c log log(c)

≤ a1/h + cy + c log(c) + c log log(c).

Hence

yc (log(c)− 1) < a1/h + c log log(c).

The upper bound for x in our lemma now follows, as in the proof of Lemma 2.2 of [25] except
that the condition c > e2 is not needed here. �

6.1. Example 1: yp = Fn.

Theorem 6.2. If yp = Fn has a solution for an odd prime p and y > 1, then

(6.1) p < 18 · 106.

Proof. Following Section 13 of [9], we suppose that yp = Fn. From Proposition 10.1 of [9], we have

(6.2) log y > 1020.
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Here we will suppose that p > 10 · 106, rather than p > 2 · 108 in [9]. The reason for this weaker
bound on p is to accommodate the improved upper bound we obtain here. We will also use the
principal branch of the logarithm throughout the proof.

Step (1): Linear form definition and upper bound

We now define the linear form in logs we will use and obtain an upper bound for it.
In Section 13 of [9], on page 1013, the authors consider

Λ = n log(ω)− log
√
5− p log(y),

which they rewrite as

Λ = p log
(
ωk/y

)
− q log(ω)− log

√
5.

Notice that −Λ is in the form we consider in (2.1).

Here ω =
(
1 +

√
5
)
/2 and n = kp − q with 0 ≤ q < p. Note that if q = 0, then Λ is a linear

form in two logs and we obtain a much better upper bound on p.
They also state (see the start of the proof of Proposition 11.1 on page 1000 or the start of

Section 13 on page 1013) that

(6.3) log |Λ| < −2p log(y) + 1.

Step (2): Matveev

In the notation of Theorem 3.1, we have D = 2, α1 = ωk/y, α2 = ω, α3 =
√
5, b1 = p,

b2 = −q > −p and b3 = 1.
Recall that Aj ≥ max {D h (αj) , |logαj |}. Thus, we can take A2 = log(ω) and A3 = log(5). For

A1, we need a little more work.
From the first expression above for Λ and (6.3), we have

log
√
5

p
− e

py2p
<
n

p
log(ω)− log(y) <

log
√
5

p
− e

py2p
.

Applying n = kp− q and using 0 ≤ q ≤ p− 1, we have

0 <
log

√
5

p
− e

py2p
≤ q

p
log(ω) +

log
√
5

p
− e

py2p
< k log(ω)− log(y) <

q

p
log(ω) +

log
√
5

p
+

e

py2p

≤ log(ω)− 1

p
log(ω) +

log
√
5

p
+

e

py2p
≤ log(ω) +

1

3p
.

Hence

(6.4)
∣∣log

(
ωk/y

)∣∣ = log
∣∣ωk/y

∣∣ < log(ω) + 10−6,

since p > 10 · 106.
The conjugate of ωk/y is ω−k/y < 1, so h

(
ωk/y

)
= (2 log(y)+k log(ω)−log(y))/2 = (k/2) log(ω)+

(1/2) log(y) (the 2 log(y) is because we need a factor of y2 to clear the denominator in the minimal
polynomial of ωk/y). From (6.4), we have k log(ω) < log(ω) + log(y) + 10−6, so

(6.5) h (α1) = h
(
ωk/y

)
< (1/2) log(ω) + log(y) + 10−6

and A1 = 2h (α1) < 2 log(y) + 0.4813. Thus max {|bj|Aj/A1 : 1 ≤ j ≤ 3} = p and we can take
B = p.
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Applying Matveev’s theorem (Theorem 3.1 above) with χ = 1 and the above quantities gives

log |Λ| > −5 · 165
6

· e3 · 9(3e/2) · (26.25 + log(4 log(2e))) · 4 · (2 log(y) + 0.4813) · logω
· log(5) · log (3ep log(2e))

> −
(
7.10 · 1010 + 2.71 · 1010 log(p) + 2.96 · 1011 log(y) + 1.13 · 1011 log(y) log(p)

)
.

Combining this lower bound for log |Λ| with the upper bound in (6.3), and dividing by 2 log(y),
we obtain

1.476 · 1011 + 5.62 · 1010 log(p) > p,

using (6.2).
Applying Lemma 6.1 with a = 1.476 · 1011, b = 5.62 · 1010, h = 1 and x = p, so c = hb1/h = b

and

(6.6) p < b log(b) +
log(b)

log(b)− 1
(a+ b log(log(b))) < 1.74 · 1012.

The reason we take this step is because we first need an upper bound on p to control simulta-
neously the condition in (2.8) and the degenerate cases in our main theorem.

Step (3): Non-degenerate case

Here we apply Theorem 2.1 to reduce our bound on p.
So that our linear form is in the form (2.1), we set

α1 = ω, α2 =
√
5, α3 = ωk/y b1 = q, b2 = 1 and b3 = p

and in what follows (Steps (3) and (4)), put

Λ = b1 logα1 + b2 logα2 − b3 logα3 = q log (ω) + 1 · log
(√

5
)
− p log

(
ωk/y

)
.

This is −1 times the Λ considered above in Steps (1) and (2).
Recall that we take

ai ≥ ρ |logαi| − log |αi|+ 2D h (αi)

and here D = 2.
We have h(ω) = log(ω)/2, so we can take a1 = (ρ+ 1) log(ω).

Similarly, h
(√

5
)
= log

(√
5
)
, so a2 = (ρ+ 3) log

(√
5
)
.

In Step (2), we saw that log |α3| = log |α3| (recall that α3 here was denoted by α1 there), so
ρ |logα3| − log |α3| = (ρ− 1) log |α3|. Applying (6.4), we obtain

ρ |logα3| − log |α3| < (ρ− 1) logω + (ρ− 1)10−6.

Combining this with (6.5), we can take

a3 = (ρ− 1) log(ω) + 2 log(ω) + 4 log(y) + (ρ+ 3)10−6 = (ρ+ 1) log(ω) + 4 log(y) + (ρ+ 3)10−6.

To apply Theorem 2.1, we need to select values for all the parameters there. I.e., the positive
rational integers K, L, R, R1, R2, R3, S, S1, S2, S3, T , T1, T2 and T3, along with the real numbers
ρ and χ.

We use the work in Section 5 to reduce the amount of choice involved here.
From (5.4), we see that K depends on a1, a2, a3, L and a real number m ≥ 1.
From (5.5), we see that the Ri’s, Si’s and Ti’s depend on a1, a2, a3 and three positive real

parameters c1, c2 and c3. Furthermore, we put R = R1 +R2 +R3 + 1, S = S1 + S2 + S3 + 1 and
T = T1 + T2 + T3 + 1.

From (5.6), (5.7), (5.8) and (5.9), we have values for c1, c2 and c3 in terms of m, L, a1, a2, a3
and χ. For our linear form, this just leaves m, L, ρ and χ as unspecified parameters.
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To apply Theorem 2.1, we do a brute force search. To minimise the effect of the degenerate
case we will use Theorem 2 of [19]. But this also involves a search to obtain the best results, so we
do not want to do such an additional search for every choice of m, L, ρ and χ that we consider.
Instead we do the degenerate case only once for each value of χ.

For each of 20 equidistributed values of χ satisfying 0.5 ≤ χ ≤ 1.5, we proceed as follows. First,
we search over integer values of L with 100 ≤ L ≤ 200, 20 values of each of m and ρ evenly
distributed with 4 ≤ m ≤ 9 and 7 ≤ ρ ≤ 12 that lead to (2.8) being satisfied and so that KL log(ρ)
is as small as possible. With such a minimal choice of parameters for Step 3 for each value of χ,
we find the associated bound for Step 4 (the degenerate case) for this choice of parameters. The
choice of χ that leads to the best bound for both Step 3 and Step 4 is the one we use.

There is nothing special about using 20 such values. It was only chosen to give a good balance
between speed and finding small admissible values of KL log(ρ). The ranges on the parameters
were found by experimentation.

This search led to the choice

χ = 0.75, L = 167, m = 6 and ρ = 10.

We have
K = ⌊Lma1a2a3⌋ = ⌊221, 945 log(y)⌋.

Since a = a1 and a′ = a2, we put

c1 = 82.65 . . . , c2 = 100.13 . . . , c3 = 795.28 . . . .

Using these values and the values of the Ri’s in (5.5), we get

R1 = ⌊c1a2a3⌋ = ⌊3458.9 log(y)⌋, R2 = ⌊c2a2a3⌋ = ⌊4190.2 log(y)⌋,
and

R3 = ⌊c3a2a3⌋ = ⌊33280 log(y)⌋.
Further

S1 = ⌊c1a1a3⌋ = ⌊1750.2 log(y)⌋, S2 = ⌊c2a1a3⌋ = ⌊2120.2 log(y)⌋, S3 = ⌊c3a1a3⌋ = ⌊16839 log(y)⌋
and finally

T1 = ⌊c1a1a2⌋ = 4577, T2 = ⌊c2a1a2⌋ = 5544,

and
T3 = ⌊c3a1a2⌋ = 44, 039.

With V = ((R1 + 1) (S1 + 1) (T1 + 1))
1/2

, we have χV > 124, 000 log(y), while 5210 log(y) >
R1 + S1 + 1 = max {R1 + S1 + 1, S1 + T1 + 1, R1 + T1 + 1}, since log(y) > 1020, so M = χV .

With these choices, along with our lower bound for y and upper bound for p, we also find that

log (b′3η0) < log ((20465 log(y) + 27080)p) < log log(y) + 38.11 and

log (b′′3ζ0) < log ((10355 log(y)− 1/2)p+ 27080) < log log(y) + 37.43.

Combining these estimates with Lemma 3.5(a) and our expression above for K, we obtain

log(b′) < 54.58.

As seen in Subsection 5.2, these choices imply that the conditions (2.9)–(2.13) of Theorem 2.1
hold. Moreover, the above choices have been made so that condition (2.8) holds.

Thus we have
log |Λ| ≥ −KL logρ− log(KL) > −8.535 · 107 log(y).

Combining this with the upper bound from (6.3), we get

p < 42.68 · 106.
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Step (4): Degenerate case

Under condition (2.14) of Theorem 2.1, we obtain

p = b3 ≤ max {T1, T2} < 5600,

which is excluded since we assume p > 10 · 106.
So we now consider condition (2.15) of Theorem 2.1, where we have

u1b1 + u2b2 + u3b3 = u1q + u2 + u3p = 0

with gcd (u1, u2, u3) = 1.
We put

U1 :=
(S1 + 1) (T1 + 1)

M−max{S1, T1}
, U2 :=

(R1 + 1)(T1 + 1)

M−max{R1, T1}
and U3 :=

(R1 + 1) (S1 + 1)

M−max{R1, S1}
.

From the values of the relevant quantities in Step (3) and log(y) > 1020, we obtain

|u1| ≤ ⌊U1⌋ = 65, |u2| ≤ U2 = 130 and |u3| ≤ ⌊U3⌋ < 49.87 log(y).

We will use this linear relation between the bi’s to reduce the linear form, Λ, to one in two
logarithms. Let us make a remark here about how we choose which bi to eliminate.

Remark. We can only eliminate a bi with Ui bounded above by a constant. Trying to eliminate a bi
with Ui depending on some parameter (like U3 here depending on log y) leads to both the quantities
a1 and a2 in Theorem 2 of [19] depending on that parameter, so we do not get an absolute upper
bound on the quantity we are interested in (i.e., p here).

Here this means that we eliminate either b1 = q or b2 = 1. Since a1 < a2 here, our heuristic
argument in Subsection 5.3 above suggests that we eliminate b1.

In our Pari/GP code, we tried eliminating both possibilities (b1 and b2) and the best upper
bound for p comes from eliminating b1 = q. As noted above, this is in keeping with our heuristic
argument in Subsection 5.3. So we consider u1Λ:

u1Λ = u1q log(ω) + u1 log
(√

5
)
− u1p log

(
ωk/y

)

= − (u2q + u3p) log (ω) + u1 log
(√

5
)
− u1p log

(
ωk/y

)

= log
(√

5
u1 · ω−u2

)
− p log

((
ωk/y

)u1 · ωu3

)
.

We will use Theorem 2 in [19] to obtain lower bounds for this linear form.

We put α′
1 =

√
5
u1 · ω−u2 , α′

2 =
(
ωk/y

)u1 · ωu3 , b1 = 1 and b2 = p. We use α′
1 and α′

2 here for
α1 and α2 in [19] in order not to confuse it with our α1 and α2 above. As mentioned above, using
Laurent’s Theorem 2 requires a search, here for the quantities that he labels as ̺ (which plays the
analogous role for linear forms in two logs as our ρ) and µ. Once again, we do a brute force search
over 20 equidistributed values of each parameter with 7 ≤ ̺ ≤ 11 and 0.5 ≤ µ ≤ 0.7. In this way,
we take

̺ = 10, µ = 0.61, a1 = 1368.2 and a2 = 524 log(y).

We have
b1
a2

+
b2
a1

< 0.00074p.

So 2 log(p)− 9.373 < h < log(p)− 2 log(p)− 9.372. Thus

log |Λ| > 423, 900 (log(p)− 4.687)
2
log(y).
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Combining this with the upper bound for Λ in (6.3), we get

−423, 900 (log(p)− 4.687)
2
log(y) < −2p log(y) + log |e| .

Dividing both sides by 2 log(y), using log(y) > 1020 and again applying Lemma 6.1 with a =
log(e)/

(
2 · 1020 exp(4.687)

)
< 10−6, b = 423, 900/ (2 exp(4.687)), h = 2 and x = p/ exp(4.687), we

get c < 88.41 and
p < 34.86 · 106.

But we also have to consider the case that we cannot eliminate b1. This is the case when u1 = 0.
We proceed in the same way as we just did, but now eliminate b2, since u2 is bounded above by a
constant. Doing so gives us the upper bound p < 39 · 106.

Combining this with the result of Step (3), we have proved that p ≤ 42.68 · 106.
Step (5): Iteration of Steps (3) and (4)

As in [9], we repeated Steps (3) and (4) a second time to obtain the improved upper bound
p ≤ 19.4 · 106.

We repeat this same search a third time with this further improved upper bound for p to obtain
p < 17.92 · 106.

iteration initial upper bound for p L m ρ χ ̺ µ new upper bound for p
1 1.8 · 1012 167 6 10 0.75 10 0.61 43 · 106
2 43 · 106 105 7.25 9.75 1.03 10 0.61 19.4 · 106
3 19.4 · 106 104 7.4 9.4 1.06 9.8 0.61 17.92 · 106

The three iterations took 180, 187 and 70 seconds on a Windows laptop with an Intel i7-9750H
2.60GHz CPU and 16Gb of RAM.

The third iteration gives us the upper bound for p stated in the theorem. �

From the table, one can see that little improvement is obtained after the second iteration.
If one could ignore the degenerate case, as we conjecture should be possible, and only consider

the inequality (2.8) for the non-degenerate case, then one would obtain p < 12.4 · 106 instead. So
we are within 50% of the best possible result that our transcendence argument can provide. Our
kit should always provide such proximity to the optimal result when considering the real case for
our linear forms in logs (as described in Subsection 2.1).

6.2. Example 2: x2 + 7 = yp. This is the case D = 7 examined in detail in Section 15 of [10].
There the authors claimed that p < 130 ·106. Our work here suggests that the best possible bound
they could have obtained was p < 156 ·106. While our result here is over 6 times smaller than this,
our improvement here is not as large as for the previous example. The reason is because in [10],
the zero estimate of Laurent [18], given in Appendix A below, was used. This was an improvement
over the zero estimate used in [9].

So we take the opportunity here to correct the handling of D = 7 in that paper. In addition
to the above, not all of the Ri’s, Si’s and Ti’s can be constants as stated in Section 15 of [10]. A
dependence on log(y) is required. See our correct choice of these parameters in Step (3) below.

One last note about our result here. The upper bound for p is the best possible one, given our
inequality (2.8) for the non-degenerate case. The degenerate case does not adversely affect the
results we obtain here. This turns out to always happen when, as here, we are considering the
imaginary case for our linear forms in logs (as described in Subsection 2.1).

Theorem 6.3. If x2 + 7 = yp has a solution for a prime p ≥ 3 with x, y ∈ Z, then

(6.7) p < 25 · 106.
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Proof. We will assume that p > 20 · 106 and use the modular lower bound for y in equation (14)
of [10]:

(6.8) y ≥ (
√
p − 1)

2
> 19.9 · 106.

We will use the principal branch of the logarithm throughout the proof.

Step (1): Linear form definition and upper bound

In Section 15 of [10], on page 56, the authors consider

Λ = 2 log (ε1α0/α0) + p log (ε2γ/γ) + iqπ,

for some rational integer q with |q| < p, ε1, ε2 = ±1, α0 =
(
1 +

√
−7
)
/2 and γ is an algebraic

integer in Q
(√

−7
)
with norm y such that

(
x−

√
−7

x+
√
−7

)k

= (α0/α0)
κ
(±γ/γ)p .

This expression comes from Lemma 13.1 of [10] and its proof since Q
(√

−7
)
has class number 1,

so k0 = 1 there. As a result, their κ = 2 and k = 1. They assert in the proof of their Lemma 13.4
that this value of α0 is valid.

From their Lemma 13.3, we have

(6.9) log |Λ| < −p
2
log(y) + log

(
2.2

√
7
)
,

since D1 = 1 and D2 = 7.
This is the case (I) linear form that they consider there.

Step (2): Matveev

In the notation of Theorem 3.1, we have α1 = ε2γ/γ, α2 = ε1α0/α0, α3 = −1, b1 = p, b2 = 2 and
b3 = q. So D = χ = 2.

Note that we have swapped the α1 term with the α2 term here with those in the case (I) linear
form in [10]. This will result in A1 being the largest of the Ai’s, Doing so lets us take B = p in
Theorem 3.1.

Recall that Aj ≥ max {D h (αj) , |logαj |}. Since the norm of γ is y, we have h (γ) = log(y)/2
and since α1 is on the unit circle, by our choice of ε2, we have |logα1| < π/2. Thus, we can take
A1 = log(y), since y > 20 · 106 (by (6.8)).

Similarly, for A2, we have d = 2 by Lemma 13.1 and Table 4 of [10]. So from their Lemma 13.1,
h (α2) = log(2)/2. Also, |logα2| = 0.722734 . . ., so we can take A2 = 0.73.

Lastly, we can take A3 = π.
Applying Matveev’s theorem (Theorem 3.1 above) with the above quantities gives

log |Λ| > −5 · 165
6 · 2 e3(7 + 2 · 2)(3e/2)2 ·

(
26.25 + log

(
22 log(2e)

))
· 22 log(y)0.73π log (1.5e · 2p log(2e))

> −4.11 · 1011 log(y) log(13.81p).
Combining this lower bound for log |Λ| with the upper bound in (6.9), and dividing by log(y)/2,

we obtain

8.21 · 1011 log(p) + 2.16 · 1012 > 8.21 · 1011 log(13.81p) + 2 log
(
2.2

√
7
)
/ log(y) > p,

using (6.8).
Applying Lemma 6.1 with a = 2.16 · 1012, b = 8.21 · 1011, h = 1 and x = p, so c = hb1/h = b and

(6.10) p < b log(b) +
log(b)

log(b)− 1
(a+ b log(log(b))) < 2.76 · 1013.
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Step (3): Non-degenerate case

Here we apply Theorem 2.1 to reduce our bound on p.
Recall that we take ai ≥ ρ |logαi| − log |αi|+ 2D h (αi) and here D = 1.
Using the values of h (αi) and |logαi| that we found in Step (2), we can take a1 = ρπ/2+log(y),

a2 = 0.723ρ+ log(2) and a3 = ρπ.
To apply Theorem 2.1, we do a brute force search in the same way as we did in the first

example. For each of 20 equidistributed values of χ satisfying 0.04 ≤ χ ≤ 0.24, we proceed as
follows. First, we search over integer values of L with 30 ≤ L ≤ 200, 20 values of each of m and
ρ evenly distributed with 10 ≤ m ≤ 30 and 3 ≤ ρ ≤ 13 that lead to (2.8) being satisfied and so
that KL log(ρ) is as small as possible. With such a minimal choice of parameters for Step 3 for
each value of χ, we find the associated bound for Step 4 (the degenerate case) for this choice of
parameters. The choice of χ that leads to the best bound for both Step 3 and Step 4 is the one
we use.

This search led to the choice

χ = 0.08, L = 106, m = 21.0 and ρ = 5.5.

Since ⌊Lma1a2a3⌋ < ⌊300, 476 log(y)⌋, we put

K = ⌊231, 600 log(y)⌋.
We have a = a2 and a′ = a3 and put

c1 = 33.46 . . . , c2 = 243.59 . . . , c3 = 1163.65 . . . .

Using these values and the values of the Ri’s in (5.5), we get

R1 = ⌊c1a2a3⌋ = 2299, R2 = ⌊c2a2a3⌋ = 16, 737,

and

R3 = ⌊c3a2a3⌋ = 79, 953.

Further,

S1 = ⌊c1a1a3⌋ = ⌊876 log y⌋, S2 = ⌊c2a1a3⌋ = ⌊6373 log y⌋, S3 = ⌊c3a1a3⌋ = ⌊30440 logy⌋
and finally

T1 = ⌊c1a1a2⌋ = ⌊202 log y⌋, T2 = ⌊c2a1a2⌋ = ⌊1467 log y⌋,
and

T3 = ⌊c3a1a2⌋ = ⌊7006 log y⌋.
With V = ((R1 + 1) (S1 + 1) (T1 + 1))

1/2
, we have χV > 1611 log(y), while 1100 log(y) > S1 +

T1 + 1 = max {R1 + S1 + 1, S1 + T1 + 1, R1 + T1 + 1}, since log(y) > 17.4, so M = χV .
With these choices, along with our lower bound for y and upper bound for n, we also find that

log (b′3η0) < log ((4337 log(y) + 49, 500)n) < log log(y) + 39.85 and

log (b′′3ζ0) < log ((8680 + 18, 850n) log(y)) < log log(y) + 40.8.

Combining these estimates with Lemma 3.5(a) and our expression above for K, we obtain

log(b′) < 59.6.

As seen above, these choices imply that the conditions (2.9)–(2.13) of Theorem 2.1 hold. More-
over, the above choices have been made so that condition (2.8) holds.

Thus we have

log |Λ| ≥ −KL logρ− log(KL) > −4.185 · 107 log(y).
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Combining this with the upper bound from (6.3), we get

p < 83.69 · 106.

Step (4): Degenerate case

Under condition (2.14) of Theorem 2.1, we obtain

p = b1 ≤ max {R1, R2} < 16, 800,

which is excluded since we assume p > 20 · 106.
So we now consider condition (2.15) of Theorem 2.1, where we have

u1b1 + u2b2 + u3b3 = u1q + u2 + u3p = 0

with gcd (u1, u2, u3) = 1.
We put

U1 :=
(S1 + 1) (T1 + 1)

M−max{S1, T1}
, U2 :=

(R1 + 1)(T1 + 1)

M−max{R1, T1}
and U3 :=

(R1 + 1) (S1 + 1)

M−max{R1, S1}
.

From the values of the relevant quantities in Step (3) and log(y) > 17.4, we obtain

|u1| ≤ U1 < 239.64 log(y), |u2| ≤ ⌊U2⌋ = 328 and |u3| ≤ ⌊U3⌋ = 2735.

Here we use this linear relation between the bi’s to reduce the linear form, Λ, to one in two
logarithms by eliminating b2:

u2Λ = 2u2 log (ε1α0/α0) + u2p log (ε2γ/γ) + u2q log(−1)

= − (u1p+ u3q) log (ε1α0/α0) + u2p log (ε2γ/γ) + u2q log(−1)

= p log
(
(ε2γ/γ)

u2 · (ε1α0/α0)
−u1

)
− q log

(
(ε1α0/α0)

u3 · (−1)−u2
)
.

So we put α1 = (ε2γ/γ)
u2 · (ε1α0/α0)

−u1 , α2 = (ε1α0/α0)
u3 · (−1)−u2 , b1 = p and b2 = q in

Theorem 2 of [19]. In the same way as in Example 1, we take

̺ = 180, µ = 0.61, a1 = 495.2 log(y) + 565.5 and a2 = 2461.3.

We have
b1
a2

+
b2
a1

< 0.00052p,

since D = 1, log(y) > 17.4 and p > 20 · 106. So log(p)− 4.431 < h < log(p)− 4.185. Thus

log |Λ| > 28, 100 (log(p)− 4.185)
2
log(y).

Combining this with the upper bound for Λ in (6.9), we get

−28, 100 (log(p)− 4.185)
2
log(y) < −(p/2) log(y) + log

∣∣∣2.2
√
7
∣∣∣ .

Dividing both sides by −(1/2) log(y) and again applying Lemma 6.1 with

a =
log
(
2.2

√
7
)

(1/2) log (19.9 · 106) exp(4.185) < 0.0032,

b = 28, 100/(0.5 exp(4.185)), h = 2 and x = p/ exp(4.185), we get c < 58.46 and

p < exp(4.185) · 3472 < 79.2 · 106.
Similarly, when we consider the possibility that u2 = 0, we find that p < 54.2 · 106.
Combining this with the result of Step (3), we have proved that p < 84 · 106.

Step (5): Iteration of Steps (3) and (4)

As in [10], we repeated Steps (3) and (4) a second time using the improved upper bound p < 84·106.
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iteration initial upper bound for p L m ρ χ ̺ µ new upper bound for p
1 2.76 · 1013 106 21.0 5.5 0.08 180 0.61 84 · 106
2 84 · 106 59 18.0 6.0 0.1 180 0.61 29 · 106
3 29 · 106 59 18.0 5.75 0.1 180 0.61 25.4 · 106
4 25.5 · 106 57 19.0 5.75 0.1 180 0.61 24.94 · 106

The four iterations took 191, 188, 103 and 104 seconds on a Windows laptop with an Intel
i7-9750H 2.60GHz CPU and 16Gb of RAM.

The fourth iteration gives us the upper bound for p stated in the theorem. �
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Appendix A. A Zero Estimate by Michel Laurent

We revisit the original argument due to Masser [2], establishing zero lemmas in algebraic commu-
tative groups. Starting with a hypersurface, his approach is based on the construction of complete
intersections in successive codimensions 2, 3, . . . , using subsets of points Σ1, Σ2, . . . as translation
operators. Compared with subsequent works, see [3] for instance, the process enables us to control
efficiently the possible degeneracies at each step of the construction. We take advantage of this
feature to minimise the size of the sets Σ1, Σ2 and Σ3 occurring in the following proposition.

Proposition A.1. Let K be an algebraically closed field of characteristic 0. Let K1, K2 and L be
non-negative integers and let Σ1, Σ2 and Σ3 be finite subsets of the group G = K2 × K× (whose
composition law is written additively). Assume that Σ1, Σ2 and Σ3 contain the origin (0, 0, 1) of
G and that
(A.1){

Card {ax1 + bx2 : ∃y ∈ K× with (x1, x2, y) ∈ Σ1} > max {K1,K2} , ∀(a, b) ∈ K2 \ {(0, 0)},
Card

{
y : ∃ (x1, x2) ∈ K2 with (x1, x2, y) ∈ Σ1

}
> L,

(A.2){
Card {(ax1 + bx2, y) : (x1, x2, y) ∈ Σ2} > 2max {K1,K2}L, ∀(a, b) ∈ K2 \ {(0, 0)},
Card {(x1, x2) : ∃y ∈ K× with (x1, x2, y) ∈ Σ2} > 2K1K2,

and

(A.3) CardΣ3 > 6K1K2L.

Let s be a non-zero polynomial of K [X1, X2, Y ], whose partial degrees in the variables X1, X2

and Y are bounded by K1, K2 and L, respectively. Then s does not vanish identically on the set
Σ1 +Σ2 +Σ3.

Notice that a similar result has been obtained by Gouillon [1] for polynomials s of total degree
in X1 and X2 bounded by 2max {K1,K2}, with a constant 12 instead of 6 in the above main
condition (A.3) and where K = C.

A.1. Geometrical preliminaries. We embed naturally the group G in the product

P = P1(K)×P1(K)×P1(K).

For any closed irreducible subvarieties V ⊆ P of codimension 0 ≤ r ≤ 3, and any triple of
integers (a, b, c) with

a ∈ {0, 1}, b ∈ {0, 1}, c ∈ {0, 1} and a+ b+ c = r,

we define the multidegrees δa,b,c(V ) as the intersection degree

δa,b,c(V ) = Card
{
V ∩ π−1

1 (La) ∩ π−1
2 (Lb) ∩ π−1

3 (Lc)
}
,

where La, Lb and Lc stand for generic linear subvarieties in P1(K) with respective dimensions a, b
and c (thus L1 = P1(K) and L0 is a point) and where the maps πj : P → P1(K) denote the three
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canonical projections. We also extend to cycles (meaning formal linear combinations with integer
coefficients of closed irreducible subvarieties of codimension r in P) the above definition of the
multidegrees δa,b,c. Let Z be a cycle of codimension r ≤ 2 in P and let s ∈ K [X1, U1;X2, U2;Y, V ]
be a non-zero polynomial which is homogeneous of respective degrees DX1 , DX2 , DY in each of the
three pairs of variables (X1, U1), (X2, U2) and (Y, V ). Assume that s does not vanish identically
on each component of Z. Then Bezout’s Theorem gives us the multidegrees of the intersection
cycle Z · (s) of codimension r+1 in P. For any a, b and c as above with a+ b+ c = r+1, we have
the equalities:

(A.4) δa,b,c(Z · (s)) = DX1δa−1,b,c(Z) +DX2δa,b−1,c(Z) +DY δa,b,c−1(Z),

where the multidegrees δ appearing on the right-hand side are understood to be zero whenever the
indices a− 1 or b − 1 or c− 1 are negative.

Now the above Bezout equalities on P induce upper bounds on G in the following way. For any
irreducible subvarieties V ⊆ G, we denote by δa,b,c(V ) the corresponding multidegree δa,b,c

(
V
)
of

its Zariski closure V in P, and if Z is any cycle in G, that is to say some formal linear combination
of irreducible subvarieties of G of the same codimension, we define δa,b,c(Z) by linearity.

Let s1, s2 and s3 be three non-zero polynomials of K [X1, X2, Y ] with partial degrees in X1,
X2 and Y respectively bounded by K1, K2 and L. Denote by Z1 = (s1) the (eventually null)
divisor of the zeroes of s1 on G and assume that s2 does not vanish identically on any component
of Z1. Let Z2 = Z1 · (s2) be the (eventually null) intersection cycle on G of codimension 2. Assume
again that s3 does not vanish identically on any component of Z2 and put Z3 = Z2 · (s3). Notice
that our assumptions mean equivalently that the sequence (s1, s2, s3) is a regular sequence in the
local ring of any common zero of s1, s2 and s3 on G. Then the above trihomogeneous version of
Bezout’s theorem in equation (A.4) implies inductively the upper bounds for the multidegrees of
the intersection cycles Z1, Z2 and Z3:

(A.5) δ1,0,0 (Z1) ≤ K1, δ0,1,0 (Z1) ≤ K2, δ0,0,1 (Z1) ≤ L,

(A.6) δ1,1,0 (Z2) ≤ 2K1K2, δ0,1,1 (Z2) ≤ 2K2L, δ1,0,1 (Z2) ≤ 2K1L and

(A.7) δ1,1,1 (Z3) ≤ 6K1K2L.

A.2. Proof of Proposition A.1. Suppose on the contrary that there exists a non-zero polynomial
s ∈ K [X1, X2, Y ] with partial degrees in X1, X2 and Y bounded by K1, K2 and L and vanishing
on Σ1 + Σ2 + Σ3. Then we plan to construct polynomials s1, s2 and s3 as in Section A.1 and
vanishing moreover respectively on the subsets Σ1 +Σ2 +Σ3, Σ2 +Σ3 and Σ3. Since

δ1,1,1 (Z3) ≥ CardΣ3,

the assumption (A.3) of the proposition will contradict equation (A.7).
We start with s1 = s. Notice that the cycle Z1 = (s1) is non-zero since the points Σ1 +Σ2 +Σ3

are contained in its support.
Let us construct s2. Observe first that for any component V of Z1, there exists a translated

variety g + V , for some g ∈ Σ1, which is not a component of Z1. Otherwise by equation (A.5), we
should have the upper bounds

Card (Σ1/H) δ1,0,0(V ) ≤ δ1,0,0 (Z1) ≤ K1,

Card (Σ1/H) δ0,1,0(V ) ≤ δ0,1,0 (Z1) ≤ K2 and

Card (Σ1/H) δ0,0,1(V ) ≤ δ0,0,1 (Z1) ≤ L,

where H = {g ∈ G : g + V = V } is the stabiliser of V . Clearly H is an algebraic subgroup of G
and dimH ≤ 2.
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When H =W × K×, where W is either {0} or a line aX1 + bX2 = 0 in K2, at least one of the
degrees δ1,0,0(V ) or δ0,1,0(V ) is positive and we get a contradiction with the first lower bound of
(A.1).

When H = W × µ, with a finite multiplicative group µ, then δ0,0,1(V ) ≥ Card(µ), and we
deduce from the last upper bound

Card
{
y : ∃ (x1, x2) ∈ K2 with (x1, x2, y) ∈ Σ1

}
≤ Card (Σ1/(W × {1}))
≤ Card (Σ1/(W × µ))Card(µ) ≤ L,

which contradicts the second lower bound of (A.1).
Therefore, for some g ∈ Σ1, the translated polynomial s1 ◦ τg does not vanish identically on V .

Now a generic linear combination s2 of the polynomials s1 ◦ τg, g ∈ Σ1 has the required properties.
We construct s3 in a similar way, proving first that for any component V of Z2 = Z1 · (s2), the

translated varieties g+V, g ∈ Σ2, are not all components of Z2. Otherwise we should deduce from
(A.6) the upper bounds

Card (Σ2/H) δ1,1,0(V ) ≤ δ1,1,0 (Z2) ≤ 2K1K2,(A.8)

Card (Σ2/H) δ1,0,1(V ) ≤ δ1,0,1 (Z2) ≤ 2K1L and

Card (Σ2/H) δ0,1,1(V ) ≤ δ0,1,1 (Z2) ≤ 2K2L,

whereH = {g ∈ G : g+V = V } is again the stabiliser of V . Now dimH ≤ 1. When H = {0}×K×,
the curve V is some line (u, v,K×) and δ1,1,0(V ) = 1. Then the first upper bound in (A.8)
contradicts the second lower bound of (A.2).

Suppose now that H =W ×µ, where µ is a finite multiplicative group and W is either {0} or a
line aX1 + bX2 = 0. The projection π1 × π2 restricted to V is then a finite map on to its image in
K2 of degree ≥ Card(µ). Then at least one of the multidegrees δ1,0,1(V ) or δ0,1,1(V ) is ≥ Card(µ).
Thus we find the upper bounds

Card{(ax1 + bx2, y) : (x1, x2, y) ∈ Σ2} ≤ Card (Σ2/(W × {1}))
≤ Card (Σ2/(W × µ))Card(µ) ≤ 2max {K1,K2}L,

which contradict the first lower bound of (A.2).
Finally, we take for s3 a generic linear combination of the polynomials s1 ◦ τg and s2 ◦ τg, for

g ∈ Σ2.
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