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Abstract. Randomized quadratures for integrating functions in Sobolev spaces

of order α ≥ 1, where the integrability condition is with respect to the Gauss-
ian measure, are considered. In this function space, the optimal rate for the

worst-case root-mean-squared error (RMSE) is established. Here, optimality

is for a general class of quadratures, in which adaptive non-linear algorithms
with a possibly varying number of function evaluations are also allowed. The

optimal rate is given by showing matching bounds. First, a lower bound on the

worst-case RMSE of O(n−α−1/2) is proven, where n denotes an upper bound
on the expected number of function evaluations. It turns out that a suitably

randomized trapezoidal rule attains this rate, up to a logarithmic factor. A
practical error estimator for this trapezoidal rule is also presented. Numerical

results support our theory.

1. Introduction

We study numerical integration of functions with respect to the standard Gauss-
ian measure. Given a function f : R → R, our problem is to approximate the
integral

I(f) =

∫
R
f(x)ρ(x) dx with ρ(x) =

1√
2π
e−x2/2,

based on pointwise function evaluations.
Of particular interest in this paper are randomized algorithms, which typically

combine a fixed (deterministic) quadrature rule and the Monte Carlo sampling; see
for example [13, Section 12.7] and references therein as well as [19, 6, 23]. One
benefit of these algorithms is that one may construct online error estimators to
assess their accuracy, which is often difficult with deterministic algorithms. An-
other is that they are robustly efficient for various smoothness of the integrand.
Even in the absence of smoothness of the integrand, which is typically required
for deterministic quadratures, they may work well at least as accurate as the plain
vanilla Monte Carlo method; in the presence of smoothness, they exploit it and
may achieve accuracy superior to the Monte Carlo methods.

How accurate can a randomized algorithm be? To address this question, we fix a
function class and a figure of merit. We then consider a general class of algorithms
and derive a lower bound for the error, which quantifies the best possible accuracy
using this class of algorithms in the sense specified below.
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It turns out that this best possible rate is, up to a logarithmic factor, attained
by a randomized trapezoidal rule, which we propose in this paper. This result is a
random counterpart of our recent result [9], in which we showed that the trapezoidal
rule is, up to a logarithmic factor, optimal to approximate I(f) in a suitable sense.

Following [9], throughout this paper, we assume that f is in a Sobolev space of
integer order α ≥ 1, denoted by Hα. More precisely, with the normed vector space
L2
ρ(R) defined by

∥f∥2L2
ρ
:=

∫
R
|f(x)|2ρ(x) dx <∞,

for an integer α ≥ 1, Hα is defined by

Hα :=

f ∈ L2
ρ(R)

∣∣∣∣∣∣ ∥f∥α :=

(
α∑

τ=0

∥f (τ)∥2L2
ρ

)1/2

<∞

 ,

where f (τ) denotes the τ -th weak derivative of f .
For this class of functions, we quantify the efficiency of the algorithms in terms

of the worst-case root-mean-squared error (RMSE), where the mean is taken on the
underlying probability space where the randomization is considered. To define this,
we first introduce a class of deterministic algorithms; realizations of the random-
ized algorithm we consider take their values in the following class of deterministic
algorithms.

In the deterministic worst-case setting which we build upon, we approximate
I(f) by a (deterministic) quadrature rule of the form

Adet
m (f) = φm(f)

(
x1, x2, . . . , xm(f), f(x1), f(x2), . . . , f(xm(f))

)
,(1)

with nodes xi ∈ R, i = 1, . . . ,m(f), where φm(f) : R2m(f) → R is a (linear or non-
linear) mapping. Here, each node xi can be chosen sequentially by using the infor-
mation already obtained through x1, . . . , xi−1 and f(x1), . . . , f(xi−1), for i ≥ 2, i.e.,
with x1 pre-selected independently of f , xi = ψi(x1, . . . , xi−1, f(x1), . . . , f(xi−1))
for some (not necessarily linear) function ψi, i ≥ 2. This sequential choice of nodes
is continued until a stopping criterion is satisfied, and the number of quadrature
nodes m is not determined a priori. More precisely, the sequential choice of nodes
is terminated as soon as

(2) teri(x1, . . . , xi, f(x1), . . . , f(xi)) = 1,

where teri : R2i → {0, 1} is a Boolean function for each i. Then the positive integer
m(f), representing the total number of function evaluations, is given by

m(f) = min {i ∈ N | teri(x1, . . . , xi, f(x1), . . . , f(xi)) = 1} .
For example, if we define the functions teri by teri ≡ 0 if i < m and term ≡ 1 for
some fixedm ∈ N, then the number of quadrature nodes is equal tom independently
of the integrand f . Another example is the case where teri is a function of an error
estimator

Estimator(x1, . . . , xi, f(x1), . . . , f(xi))

and a user-specified error tolerance TOL; teri is defined so that it returns 1 if the
estimated error is below TOL, and returns 0 otherwise. In this case, the number
of quadrature nodes in general depends on f .

In this paper, following the standard terminology in the context of information-
based complexity [16, Sections 4.1.1 & 4.2.1] and [24, 15], we say that this type
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of sequential node selection is adaptive and that (1) is an adaptive algorithm. If
the number m(f) does not vary with f and each node xi is chosen without the
information f(x1), . . . , f(xm), we say that (1) is a non-adaptive algorithm. In this
context, the adaptive stopping rule and the adaptive node selection are usually
considered separately, and each type of adaptivity improves an algorithm in different
ways; see [24, 15].

Our interest in this paper is in the randomized setting. We follow [16, Defini-
tion 4.35] for the class of algorithms we consider:

Definition 1.1. A randomized quadrature rule A is a pair of a probability space
(Ω,Σ, µ) and a family (Aω)ω∈Ω of mappings such that the following holds:

(1) For each fixed ω ∈ Ω, the mapping Aω : Hα → R is a deterministic quad-
rature rule of the form (1).

(2) Let M(f, ω) be the number of nodes used in Aω for f ∈ Hα and ω. Then
the function ω 7→M(f, ω) is measurable for each fixed f .

Finally, for a randomized quadrature rule A, its cardinality is defined as the supre-
mum of the expected number of nodes over f ∈ Hα:

#(A) := sup
f∈Hα

∫
Ω

M(f, ω) dµ(ω).

We quantify the efficiency of the algorithm by the worst-case error. For a de-
terministic algorithm Adet

m as in (1), the (deterministic) worst-case error in Hα is
given by

(3) ewor(Adet
m ,Hα) := sup

f∈Hα

∥f∥α≤1

∣∣I(f)−Adet
m (f)

∣∣ .
For the randomized setting, we consider the worst-case RMSE

ermse(A,Hα) := sup
f∈Hα

∥f∥α≤1

(∫
Ω

(I(f)−Aω(f))2 dµ(ω)

)1/2

.

For Adet
m we have ermse(Adet

m ,Hα) = ewor(Adet
m ,Hα).

The main contribution of this paper is two-fold.

(1) We establish a lower bound for the worst-case RMSE ermse(A,Hα) for any
integer α ≥ 1. More precisely, we prove that for any n ≥ 1 and any
randomized quadrature rule A with cardinality #(A) ≤ n, ermse(A,Hα) is
bounded from below by cαn

−α−1/2 with a constant cα > 0 depending only
on α; see Section 2.

(2) We propose an algorithm that achieves this rate up to a logarithmic factor;
hence, our algorithm is optimal, up to a logarithmic factor, in the sense of
the worst-case RMSE. More precisely, we develop a suitably truncated ran-
domized trapezoidal rule with the number of nodesM(f, ω) being randomly
chosen independently of f ∈ Hα. This quadrature rule is shown to be an
unbiased estimator of I(f), which allows for practical error estimation.

As briefly mentioned earlier, the second contribution above is motivated by our
recent paper [9], in which we considered a suitably truncated trapezoidal rule and
established the optimality in terms of the worst-case error. There, building upon
the work of Nuyens and Suzuki [18], we showed that for any α ≥ 1 a suitably
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truncated trapezoidal rule achieves the optimal rate O(n−α) up to a logarithmic
factor.

As already mentioned, we randomize this trapezoidal rule and establish the op-
timality in the sense of the worst-case RMSE. Without randomizing the same al-
gorithm is sub-optimal; it will achieve only O(n−α) in the sense of the worse-case
RMSE, while the lower bound we establish in this paper is n−α−1/2 up to a con-
stant factor. We also note that the worst-case deterministic error for the standard,
deterministic, Gauss–Hermite quadrature in Hα is bounded from below and above
by n−α/2 up to some constant factors (note also that, from ermse(Adet

m ,Hα) =
ewor(Adet

m ,Hα) for deterministic algorithms, these matching bounds of the rate
n−α/2 also apply to the worst-case RMSE for the standard deterministic Gauss–
Hermite quadrature). This rate is merely half of the best possible rate; see [8]
together with [9].

Our idea for randomization comes from a classical work of Bakhvalov [2], who
introduced the method of choosing the number of quadrature nodes randomly. His
method has been explored further quite recently in the context of quasi-Monte
Carlo integration over the high-dimensional unit cube [7, 11]. Another related
work is by Wu [25], who considered a randomized trapezoidal rule similar to ours.
Compared to our methods, Wu used a fixed number of nodes; the function space
considered there was the fractional Sobolev spaces of order less than 2 over a finite
interval, for which the author showed that the convergence rate in Lp (p ∈ [2,∞)),
where the p-integrability is with respect to the underlying probability measure,
improves the standard convergence rate by 1/2. In contrast, our results show that,
for the function classes we consider, we are able to exploit smoothness more than
2 and improve the L2-convergence rate by 1/2. See also Remark 3.10 for a related
discussion.

We start by showing a general lower bound for the worst-case RMSE in Sec-
tion 2. The lower bound established in this section shows the best possible rate.
In Section 3, we show that this rate, up to a logarithmic factor, is achieved by a
randomized trapezoidal rule. Numerical results in Section 4 support our theory.

2. A general lower bound

In this section, we prove the following general lower bound on ermse(A,Hα) that
holds for any randomized quadrature rule A with its cardinality #(A) at most n.

Theorem 2.1 (General lower bound on the worst-case RMSE). Let integers α ≥ 1
and n ≥ 1 be given. For any randomized quadrature rule A, possibly adaptive or
nonlinear, as in Definition 1.1 with #(A) ≤ n, the inequality

ermse(A,Hα) ≥
cα

nα+1/2

holds, where the constant cα > 0 depends on α but is independent of n and A.

To show this result, we first construct fooling functions, which are crucial for our
proof. For n ∈ N given, consider 10n intervals

ιj := (ξj−1, ξj) := ((j − 1)/n, j/n), j = −5n+ 1, . . . , 5n.(4)

By construction, ιj , j = −5n + 1, . . . , 5n are disjoint. For each j, we construct a
function fj ∈ Hα supported on ιj that integrates to a large value, still having a
unit Sobolev norm.
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Lemma 2.2 (Fooling function and its integral). Let integers α ≥ 1 and n ≥ 1 be
given. Then, for each j = −5n + 1, . . . , 5n, there exists a function fj ∈ Hα such
that fj ≥ 0, supp(fj) = ιj, ∥fj∥α = 1, and

I(fj) ≥
ηα

nα+1/2
,

where ηα > 0 is a constant depending on α but independent of n, j and fj. Here,
supp(fj) denotes the set-theoretical support supp(fj) = {x ∈ R | fj ̸= 0}.

Proof. Define hj : R → R such that hj ≥ 0 and supp(hj) = ιj by

hj(x) =


(
x− ξj−1

ξj − ξj−1

)α(
1− x− ξj−1

ξj − ξj−1

)α

if x ∈ ιj ,

0 otherwise.

As we showed in [9, Proof of Lemma 3.1], we have hj ∈ Hα. Moreover, with

Sα,τ :=

α∑
ℓ1,ℓ2=0

(−1)ℓ1+ℓ2

(
α

ℓ1

)(
α

ℓ2

)
(α+ ℓ1)!

(α+ ℓ1 − τ)!

(α+ ℓ2)!

(α+ ℓ2 − τ)!
,

we have

∥hj∥2α =

α∑
τ=0

∫
ιj

∣∣h(τ)j (x)
∣∣2ρ(x) dx ≤

α∑
τ=0

e−min(ξ2j−1,ξ
2
j )/2

√
2π

∫
ιj

∣∣h(τ)j (x)
∣∣2 dx

≤
α∑

τ=0

Sα,τ√
2π(ξj − ξj−1)2τ−1

=

α∑
τ=0

n2τ−1Sα,τ√
2π

≤ n2α−1
α∑

τ=0

Sα,τ√
2π
,

and

I(hj) =

∫
ιj

hj(x)ρ(x) dx ≥ e−max(ξ2j−1,ξ
2
j )/2

√
2π

∫
ιj

hj(x) dx

≥ e−25/2

√
2π

(ξj − ξj−1)

∫ 1

0

xα(1− x)α dx =
(α!)2

n(2α+ 1)!
√
2πe25

.

It follows that, with fj := hj/∥hj∥α, we have fj ∈ Hα, fj ≥ 0, supp(fj) = ιj ,
∥fj∥α = 1 and

I(fj) =
I(hj)

∥hj∥α
≥ (α!)2

nα+1/2(2α+ 1)!
√
2πe25

(
α∑

τ=0

Sα,τ√
2π

)−1/2

=:
ηα

nα+1/2
,

for j = −5n+ 1, . . . , 5n. This completes the proof. □

We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1. Let fj , j = −5n + 1, . . . , 5n, be as in Lemma 2.2. By con-
struction, we have ∥fj∥α = 1. Hence, the definition of ermse(A,Hα) implies

ermse(A,Hα)

≥ max
f∈{±fj |j=−5n+1,...,5n}

(∫
Ω

(I(f)−Aω(f))2 dµ(ω)

)1/2

≥

 1

10n

5n∑
j=−5n+1

∫
Ω

(I(fj)−Aω(fj))
2 + (I(−fj)−Aω(−fj))2

2
dµ(ω)

1/2
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=

 1

10n

∫
Ω

5n∑
j=−5n+1

(I(fj)−Aω(fj))
2 + (I(−fj)−Aω(−fj))2

2
dµ(ω)

1/2

.(5)

We will show that at least n out of 10n functions fj , j = −5n + 1, . . . , 5n, satisfy
(I(fj)−Aω(fj))

2+(I(−fj)−Aω(−fj))2 ≥ 2η2α/n
2α+1 on a set of positive measure

E ⊂ Ω. Here, the choice of these n functions may depend on ω ∈ E.
Define E ∈ Σ, where Σ is the σ-algebra as in Definition 1.1, by

E :=

ω ∈ Ω

∣∣∣∣∣∣ 1

10n

5n∑
j=−5n+1

M(fj , ω) < 2n

 .

Moreover, for ω ∈ E denote by Fω
0 the subset of fj ’s whose corresponding quadra-

ture Aω(fj) uses at most 4n nodes: with

Indω0 :=
{
j ∈ {−5n+ 1, . . . , 5n}

∣∣M(fj , ω) ≤ 4n
}
,

let

Fω
0 :=

{
fj ∈ {f−5n+1, . . . , f5n}

∣∣ j ∈ Indω0
}
.

For i = 1, 2, . . . , 4n, we recursively define

Indωi :=
{
j ∈ Indωi−1

∣∣ i ≤M(fj , ω), x
(j)
i /∈ ιj

}
∪
{
j ∈ Indωi−1

∣∣M(fj , ω) < i
}
,

where x
(j)
i = x

(j)
i (ω) denotes the i-th node of Aω(fj) and ιj is defined in (4), and

Fω
i :=

{
fj ∈ Fω

i−1 | j ∈ Indωi
}
.

Fω
i is constructed so that if i ≤ M(fj , ω), i.e., when the i-th node exists, then

fj ∈ Fω
i implies fj(x

(j)
i ) = 0, and if M(fj , ω) < i, i.e., when the i-th node does not

exist, then we keep fj ∈ Fω
i−1 in Fω

i . We will show |Fω
4n| ≥ n for ω ∈ E and that

Fω
4n is the sought set that gives the aforementioned lower bound.
First, we show that E has a positive measure. By the definition of the cardinality

of a randomized quadrature rule, it holds that∫
Ω

1

10n

5n∑
j=−5n+1

M(fj , ω) dµ(ω) ≤ sup
j=−5n+1,...,5n

∫
Ω

M(fj , ω) dµ(ω)

≤ sup
f∈Hα

∫
Ω

M(f, ω) dµ(ω) ≤ n.

With Ec := Ω \ E, it follows from Markov’s inequality that

µ(E) = 1− µ(Ec) ≥ 1− 1

2n

∫
Ω

1

10n

5n∑
j=−5n+1

M(fj , ω) dµ(ω) ≥
1

2
.

For ω ∈ E it turns out |Fω
0 | ≥ 5n, i.e., for at least half of the 10n functions

fj , j = −5n + 1, . . . , 5n, the integral estimate Aω(fj) is computed by no more
than 4n nodes. Indeed, from Markov’s inequality for the uniform measure ν on
({−5n+1, . . . , 5n}, 2{−5n+1,...,5n}) and the corresponding expectation Eν , together
with the definition of E we see that the number of fj ’s whose corresponding nodes
exceed 4n is less than half:

|{j ∈ {−5n+ 1, . . . , 5n} |M(fj , ω) > 4n}|
10n

= ν({j |M(fj , ω) > 4n})
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≤ 1

4n
Eν [M(f·, ω)] =

1

4n
· 1

10n

5n∑
j=−5n+1

M(fj , ω) <
1

2
.

Next, we will show |Fω
i | ≥ |Fω

i−1| − 1 for i = 1, . . . , 4n. For this, we will show
that, given ω ∈ E, the first i quadrature nodes of Aω(fj) for fj ∈ Fω

i are uniquely
determined, independently of fj ∈ Fω

i .
To see this, first fix fj ∈ Fω

i ⊂ Fω
i−1 arbitrarily. By construction of Fω

i , the inter-

val ιj does not contain any of the first i−1 nodes x
(j)
1 , . . . , x

(j)
i−1 of A

ω(fj). Although

the next node x
(j)
i is (possibly adaptively) determined by the set of x

(j)
1 , . . . , x

(j)
i−1

and fj(x
(j)
1 ), . . . , fj(x

(j)
i−1), these function values are all equal to 0. Now recall that

the first node x
(j)
1 = x1 of Aω(fj) does not depend on fj , since initially we do not

have any information on fj . Therefore, by the recursive definition of Fω
i , we see

that for fj ∈ Fω
i the first i quadrature nodes of Aω(fj) are all equal for fj ∈ Fω

i ,
independently of the corresponding index j. Indeed, for fj , fj′ ∈ Fω

i , we have

x
(j)
ℓ = ψℓ(x

(j)
1 , x

(j)
2 , . . . , x

(j)
ℓ−1, fj(x

(j)
1 ), . . . , fj(x

(j)
ℓ−1))

= ψℓ(x1, x
(j)
2 , . . . , x

(j)
ℓ−1, 0, . . . , 0)

= ψℓ(x1, x
(j′)
2 , . . . , x

(j′)
ℓ−1, 0, . . . , 0) = x

(j′)
ℓ for ℓ = 2, . . . ,min{i,M(fj , ω)},

and if min{i,M(fj , ω)} = M(fj , ω) then for ℓ = M(fj , ω) + 1, . . . , i the point x
(j)
ℓ

does not exist. Here, note that if M(fj , ω) < i then M(fj , ω) = M(fj′ , ω), and if
i ≤M(fj , ω) then i ≤M(fj′ , ω). Indeed, for ℓ = 1, . . . , i, the Boolean function (2)
satisfies

terℓ(x
(j′)
1 , x

(j′)
2 , . . . , x

(j′)
ℓ , fj′(x

(j′)
1 ), . . . , fj′(x

(j′)
ℓ ))

= terℓ(x
(j)
1 , x

(j)
2 , . . . , x

(j)
ℓ , 0, . . . , 0)

= terℓ(x
(j)
1 , x

(j)
2 , . . . , x

(j)
ℓ , fj(x

(j)
1 ), . . . , fj(x

(j)
ℓ )).

Now, for fj ∈ Fω
i−1, we have fj ̸∈ Fω

i if and only if x
(j)
i ∈ ιj . Since the i-th

node x
(j)
i can be contained in at most one interval ιj̄ = ((j̄ − 1)/n, j̄/n) among

the supports (ιk)k corresponding to (fk)k ⊂ Fω
i−1, the above argument leads to

|{fj ∈ Fω
i−1 | fj ̸∈ Fω

i }| ≤ 1, and thus

|Fω
i | ≥ |Fω

i−1| − 1.

Therefore, |Fω
4n| ≥ |Fω

0 | − 4n ≥ n holds.
Now, from Fω

4n ⊂ Fω
0 , for fj ∈ Fω

4n no quadrature point of Aω(fj) is in the
support of fj . Therefore, |Fω

4n| ≥ n means that among 10n functions fj , j = −5n+
1, . . . , 5n, at least n of them have no quadrature node of {Aω(fj)}j=−5n+1,...,5n in
their supports. Hence, for these (at least) n functions, the function values used in
Aω(fj) are all 0, which also holds true for −fj . Therefore, for these fj ’s, we obtain
the equality Aω(fj) = Aω(0) = Aω(−fj) and

(I(fj)−Aω(fj))
2 + (I(−fj)−Aω(−fj))2

= (I(fj)−Aω(fj))
2 + (−I(fj)−Aω(fj))

2

= 2(I(fj))
2 + 2(Aω(fj))

2 ≥ 2(I(fj))
2 ≥ 2η2α

n2α+1
.
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For the rest of the (at most 4n) functions, (I(fj)−Aω(fj))
2+(I(−fj)−Aω(−fj))2

is trivially bounded below by 0.
Applying the results to (5), we obtain

ermse(A,Hα) ≥
(
µ(E) ·

(
n

10n
· η2α
n2α+1

+
9n

10n
· 0
))1/2

≥ ηα

2
√
5nα+1/2

,

which completes the proof of the theorem. □

Remark 2.3. The idea of proving a lower bound on the randomized error by the
average-case error over bump functions with mutually disjoint supports goes back
to Bakhvalov [1]. We also refer to [14, Chapter 2] and [17, Chapter 17] for more
information on error analyses for the randomized setting.

3. Randomized trapezoidal rule

Here we develop a randomized quadrature rule A that achieves the almost op-
timal rate of convergence in the sense of the worst-case RMSE ermse(A,Hα). This
algorithm is based on the suitably truncated deterministic trapezoidal rule we con-
sidered in [9], which is given by

A∗
n,T =

2T

n

n−1∑
j=0

f(ξ∗j )ρ(ξ
∗
j ) with ξ∗j = T

(
2j

n
− 1

)
, j = 0, . . . , n− 1.

Here, n denotes the number of nodes and T > 0 is a parameter that controls the
cut-off of the integration domain from R to [−T, T ]. As shown in [9], A∗

n,T turns
out to achieve, up to a logarithmic factor, the optimal rate of convergence in the
sense of the worst-case error in Hα, for any integer α ≥ 1.

In this paper, we introduce its randomized counterpart that makes ermse(A,Hα)
small. In what follows, we denote the cumulative distribution function of the stan-
dard Gaussian distribution by Φ.

Algorithm 3.1. Let f : R → R, n ≥ 4 and T > 0 be given. To approximate the
integral I(f), with independent random variables M⋆ ∼ U{⌊n/2⌋, . . . , n − 2} and

δ ∼ U(0, 1), we define the randomized trapezoidal rule An,T = (AM⋆,δ
n,T )M⋆,δ by

AM⋆,δ
n,T =

2T

M⋆

M⋆−1∑
j=0

f(ξ∗j )ρ(ξ
∗
j ) + Φ(−T )f(ξ∗left) + (1− Φ(T ))f(ξ∗right),(6)

where we let

ξ∗j := T

(
2(j + δ)

M⋆
− 1

)
, j = 0, . . . ,M⋆ − 1,

and the end nodes ξ∗left and ξ∗right are independent of M⋆ and sampled from the

truncated normal distributions on (−∞,−T ] and [T,∞), respectively.

Each node ξj in the first term of (6) is uniformly distributed over the interval
(T (2j/M⋆−1), T (2(j+1)/M⋆−1)), j = 0, . . . ,M⋆−1. For ξ∗left and ξ

∗
right, we specify

only their marginal distributions, truncated normals. Any random variables ξ∗left
and ξ∗right having the marginals specified above that are independent of M⋆ , in
particular those that are not independent of ξj ’s, allow the results in this paper
to hold. For instance, one straightforward implementation is to use the inversion
method, i.e., ξ∗left := Φ−1(δΦ(−T )), and ξ∗right := Φ−1((1− δ)Φ(T ) + δ), where δ is

as in Algorithm 3.1. As such, we omit ξ∗left and ξ
∗
right from the notation AM⋆,δ

n,T .
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However, in view of implementation, sampling from such truncated distributions
by the inversion method can be numerically unstable and inefficient when T is large;
see [4]. As pointed out therein, one needs to be careful when using the inversion
method for the right tail of the distribution. Hence, it can be more convenient to
sample them independently by other methods. We refer to [5, Chapter 9.1] and
[3, 4] among many others for random number generation from the tail of normal
distributions.

In Algorithm 3.1, the cut-off parameter T > 0 should be carefully chosen depend-
ing on n (and α). This point will be discussed later in this section. The symmetry
of the standard Gaussian distribution around 0 implies Φ(−T ) = 1−Φ(T ) for any

T > 0, i.e., the function values at ξ∗left and ξ
∗
right are weighted equally in AM⋆,δ

n,T .
We emphasize that An,T is a randomized non-adaptive linear quadrature rule;

M⋆ , δ, ξ∗left and ξ∗right are the only ω-dependent components of An,T and neither

depends on the integrand f . Furthermore, we have #(An,T ) ≤ n. This is because
M⋆ ∼ U{⌊n/2⌋, . . . , n − 2}, and moreover, for each realization of M⋆ and δ, the

deterministic rule AM⋆,δ
n,T utilizesM⋆+2 nodes: ξ∗left, ξ

∗
right, and ξ

∗
j , j = 0, . . . ,M⋆−1.

Hence, our result in Theorem 3.3 below shows that adaptivity and nonlinearity are
not needed to achieve the optimality (up to a logarithmic factor) in the sense that
is considered here (cf. the general lower bound in Theorem 2.1).

3.1. Unbiasedness and error estimation. Before proving an upper bound on
ermse(An,T ,Hα), we show that our randomized quadrature rule is unbiased and
allows for practical error estimation. Let us start by showing the unbiasedness of
An,T .

Lemma 3.2 (Unbiasedness). Let α ≥ 1, n ≥ 4, and T > 0 be given. For any
f ∈ Hα, we have

E
[
AM⋆,δ

n,T (f)
]
:=

1

n− 1− ⌊n/2⌋

n−2∑
m⋆=⌊n/2⌋

∫ 1

0

Am⋆,δ
n,T (f) dδ = I(f).

Proof. Substituting (6) into E
[
AM⋆,δ

n,T (f)
]
, we have

E
[
AM⋆,δ

n,T (f)
]
= E

 2T

M⋆

M⋆−1∑
j=0

f(ξ∗j )ρ(ξ
∗
j ) + Φ(−T )f(ξ∗left) + (1− Φ(T ))f(ξ∗right)


= E

 2T

M⋆

M⋆−1∑
j=0

f(ξ∗j )ρ(ξ
∗
j )


+Φ(−T )E [f(ξ∗left)] + (1− Φ(T ))E

[
f(ξ∗right)

]
.

For the first term on the rightmost side above, we have

E

 2T

M⋆

M⋆−1∑
j=0

f(ξ∗j )ρ(ξ
∗
j )


=

1

n− 1− ⌊n/2⌋

n−2∑
m⋆=⌊n/2⌋

∫ 1

0

 2T

m⋆

m⋆−1∑
j=0

f(ξ∗j )ρ(ξ
∗
j )

 dδ
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=
1

n− 1− ⌊n/2⌋

n−2∑
m⋆=⌊n/2⌋

2T

m⋆

m⋆−1∑
j=0

∫ 1

0

f(ξ∗j )ρ(ξ
∗
j ) dδ

=
1

n− 1− ⌊n/2⌋

n−2∑
m⋆=⌊n/2⌋

m⋆−1∑
j=0

∫ T (2(j+1)/m⋆−1)

T (2j/m⋆−1)

f(x)ρ(x) dx

=
1

n− 1− ⌊n/2⌋

n−2∑
m⋆=⌊n/2⌋

∫ T

−T

f(x)ρ(x) dx =

∫ T

−T

f(x)ρ(x) dx,

where the third equality follows from the change of variables x = T (2(j+δ)/m⋆−1)
for each j = 0, . . . ,m⋆ − 1. Regarding the second term, since ξ∗left is independent of
M⋆ , we have

Φ(−T )E [f(ξ∗left)] =

∫ −T

−∞
f(x)ρ(x) dx.

In a similar way, for the third term it can be shown that

(1− Φ(T ))E
[
f(ξ∗right)

]
=

∫ ∞

T

f(x)ρ(x) dx.

Altogether we obtain

E
[
AM⋆,δ

n,T (f)
]
=

∫ T

−T

f(x)ρ(x) dx+

∫ −T

−∞
f(x)ρ(x) dx+

∫ ∞

T

f(x)ρ(x) dx

=

∫ ∞

−∞
f(x)ρ(x) dx = I(f),

which proves the statement. □

In practice, we use the approximation

An,T (f) :=
1

r

r∑
i=1

A
M

(i)
⋆ ,δ(i)

n,T (f) ≈ I(f),

with r ∈ N independent random variables

(M
(1)
⋆ , δ(1), ξ

∗,(1)
left , ξ

∗,(1)
right), . . . , (M

(r)
⋆ , δ(r), ξ

∗,(r)
left , ξ

∗,(r)
right)

∈ {⌊n/2⌋, . . . , n− 2} × (0, 1)× (−∞,−T ]× [T,∞),

which can be easily generated. Lemma 3.2 yields an error bound and a practical
error estimator for this algorithm.

From Lemma 3.2, A
M

(i)
⋆ ,δ(i)

n,T (f), i = 1, . . . , r, are independent and unbiased esti-

mators of I(f). Thus An,T (f) is also an unbiased estimator of I(f), and thus

E
[(
An,T (f)− I(f)

)2]
=

1

r
E
[(
AM⋆,δ

n,T (f)− I(f)
)2]

,(7)

and

E
[(
An,T (f)− I(f)

)2]
= E

[(
An,T (f)− E

[
An,T (f)

])2]
.(8)

As we shall show in the proof of Theorem 3.3, with a suitable T > 0, for

any f ∈ Hα the mean-squared error can be bounded as E[(AM⋆,δ
n,T (f) − I(f))2] ≤
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C2
α,λ∥f∥2α

(lnn)α+1/2

n2α+1 , where Cα,λ > 0 is a constant depending on α and λ but inde-

pendent of f , and thus (7) implies the error bound

E
[(
An,T (f)− I(f)

)2]
≤ C2

α,λ∥f∥2α
1

r

(lnn)α+1/2

n2α+1
.

From (8), the sample variance

1

r(r − 1)

r∑
i=1

(
A

M
(i)
⋆ ,δ(i)

n,T (f)−An,T (f)

)2

(9)

can be used as an online, unbiased mean-squared error estimator.

3.2. A bound on the root-mean-square error. As the second main result of
this paper, we show an upper bound for the worst-case RMSE ermse(An,T ,Hα):

Theorem 3.3 (Upper bound on the worst-case RMSE). Let α ≥ 1 and n ≥ 4 be
given. Fix λ ∈ (1/2, 1) arbitrarily. Then, with

T =

√
2α+ 1

1− λ
ln(n),(10)

An,T as in Algorithm 3.1 satisfies

ermse(An,T ,Hα) ≤ Cα,λ
(lnn)α/2+1/4

nα+1/2
,

where Cα,λ > 0 is a constant depending only on α and λ.

This rate is optimal up to a logarithmic factor in the sense of the worst-case
RMSE; indeed, Theorem 2.1 shows that the optimal rate is O(n−α−1/2). To prove
this theorem, first we need some preparations.

Remark 3.4. In Theorem 3.3, the parameter λ ∈ (1/2, 1) does not affect the
convergence rate, including the logarithmic factor. However, it does change the
constant Cα,λ. This change is caused by changes of (i) the choice of the cut-off
parameter T and (ii) the constant C∗

α,λ, both of which depend on λ; see (16) and

(17) below. For increasing λ, T increases but C∗
α,λ decreases. It is not very straight-

forward to find the optimal λ minimizing the constant, and this is out of the scope
of the present paper.

3.2.1. Auxiliary results. Because our algorithm is based on the trapezoidal rule yet
the integrand is not assumed to be periodic, error analysis requires extra work.

First, we introduce the following notations for an α-times weakly differentiable
function F : R → R. Let F (τ) denote its τ -th weak derivative for τ = 0, . . . , α.
Define

∥F∥∗α := sup
I⊂R

|I|<∞

∥F∥∗α,I

with

∥F∥∗α,I :=

(
α−1∑
τ=0

(∫
I

F (τ)(x) dx

)2

+

∫
I

|F (α)(x)|2 dx

)1/2

and for λ ∈ (1/2, 1),

∥F∥α,λ,decay := sup
x∈R,τ∈{0,...,α−1}

∣∣∣e(1−λ)x2/2F (τ)(x)
∣∣∣ ,
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allowing this quantity to be infinite. It turns out that f ∈ Hα implies ∥fρ∥∗α <∞,
and ∥fρ∥α,λ,decay <∞, as we showed in [9, Proof of Theorem 4.5].

Lemma 3.5 (Norm inequality). Let α ≥ 1 and λ ∈ (1/2, 1) be given. For f ∈ Hα,
let F (x) := f(x)ρ(x). Then, we have

∥F∥∗α + ∥F∥α,λ,decay ≤ C∗
α,λ∥f∥α

with a constant C∗
α,λ > 0 depending on α and λ but independent of f .

Moreover, following [9] we use the following periodization (11) as an auxiliary
variable. We refer to [9, Lemma 4.1] for a proof.

Lemma 3.6 (Auxiliary periodic function and its properties). Let α ≥ 1 and T > 0
be given. For f ∈ Hα, let F (x) := f(x)ρ(x) and define G : [−T − d, T + d] → R by

G(x) := F (x)−
α∑

τ=1

B
[−T,T ]
τ (x)

τ !

(∫ T

−T

F (τ)(y) dy

)
,(11)

for x ∈ [−T − d, T + d], with an arbitrarily small d > 0, where B
[−T,T ]
τ denotes the

scaled Bernoulli polynomial of degree τ on [−T, T ], i.e.,

B[−T,T ]
τ (x) = (2T )τ−1Bτ

(
x+ T

2T

)
with Bτ being the standard Bernoulli polynomial of degree τ . Then, the following
holds:

(1) The function G preserves the integral of F on [−T, T ]:∫ T

−T

G(x) dx =

∫ T

−T

F (x) dx =

∫ T

−T

f(x)ρ(x) dx.

(2) The function G is (α−1)-times continuously differentiable on (−T−d, T+d)
with G(α−1) being absolutely continuous on [−T, T ], and satisfies G(τ)(−T ) =
G(τ)(T ) for all τ = 0, . . . , α− 1.

(3) The norm of G is bounded above by that of F :

∥G∥∗α,[−T,T ] ≤ ∥F∥∗α,[−T,T ] ,

where we note that ∥G∥∗α,[−T,T ] is well defined, since the continuous differen-

tiability and the absolute continuity above implies the weak differentiability
of G(τ) on [−T, T ] for all τ ≤ α− 1.

The functions defined above will be used to analyze the integration error on
[−T, T ]. In the proof, we decompose the integrand f(x)ρ(x) into two parts; the
periodic part which is represented by G(x), and the non-periodic part. We use
∥fρ∥∗α to control the integration error of the periodic part, while the error of the
non-periodic part is controlled by ∥fρ∥α,λ,decay, as can be seen in the proof of
Lemma 3.8 below. The cut-off parameter T in (10) is given in such a way that
these two errors are balanced. To control the error on the tail regions (−∞,−T ]
and [T,∞), we only need ∥f∥L2

ρ
, as shown in the proof of Lemma 3.9 below.

Remark 3.7. The method of periodizing a function by adding Bernoulli polynomi-
als in (11) was first introduced by Korobov [10], and also studied by Zaremba [26],
in the context of numerical integration. This method was originally proposed for
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numerically integrating non-periodic functions on a multidimensional box. This pe-
riodization is referred to as Bernoulli polynomial method in [20, Section 2.12]. Re-
cently, a new proof strategy was developed for a class of quasi-Monte Carlo methods
in [18], where this periodized function was used as an auxiliary function only ap-
pearing in a proof, but not in the algorithm. In particular, [18] showed that G(x)
is an orthogonal projection of F (x) in a suitable sense, from one kind of Sobolev
space to a corresponding periodic Sobolev space, in a multidimensional setting. This
implies the norm inequality shown in Lemma 3.6.3. In [9] the authors applied this
proof strategy for the Gaussian Sobolev spaces.

3.2.2. Proof of Theorem 3.3. Let us prove Theorem 3.3. It follows from the proof
of Lemma 3.2 and Jensen’s inequality that, for any f ∈ Hα, the mean-squared error
of An,T (f) is bounded above as

E
[(
AM⋆,δ

n,T (f)− I(f)
)2]

= E

 2T

M⋆

M⋆−1∑
j=0

f(ξ∗j )ρ(ξ
∗
j ) + Φ(−T )f(ξ∗left) + (1− Φ(T ))f(ξ∗right)

−
∫ T

−T

f(x)ρ(x) dx−
∫ −T

−∞
f(x)ρ(x) dx−

∫ ∞

T

f(x)ρ(x) dx

)2


≤ 3E


 2T

M⋆

M⋆−1∑
j=0

f(ξ∗j )ρ(ξ
∗
j )−

∫ T

−T

f(x)ρ(x) dx

2


+ 3E

(Φ(−T )f(ξ∗left)− ∫ −T

−∞
f(x)ρ(x) dx

)2
(12)

+ 3E

[(
(1− Φ(T ))f(ξ∗right)−

∫ ∞

T

f(x)ρ(x) dx

)2
]
.

Thus it suffices to give an upper bound on each term of (12). In Lemma 3.8 below,
we show an upper bound on the first term. And then in Lemma 3.9, we show upper
bounds on the second and third terms.

Lemma 3.8 (Upper bound on the RMSE for [−T, T ]). Let α ≥ 1, n ≥ 4, and
T > 0 be given. Fix λ ∈ (1/2, 1) arbitrarily. For any f ∈ Hα, the first term of (12)
is bounded as

E


 2T

M⋆

M⋆−1∑
j=0

f(ξ∗j )ρ(ξ
∗
j )−

∫ T

−T

f(x)ρ(x) dx

2


≤ (C∗
α,λ)

2∥f∥2α
(
2α2 max{1, (2T )2α}

e(1−λ)T 2 +
22α+5T 2α+1

π2αn2α+1

)
,

with C∗
α,λ > 0 being the same constant as in Lemma 3.5.
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Proof. Let us consider the auxiliary periodic function G : [−T, T ] → R defined in
(11). From Lemma 3.6.1, we have

E


 2T

M⋆

M⋆−1∑
j=0

f(ξ∗j )ρ(ξ
∗
j )−

∫ T

−T

f(x)ρ(x) dx

2


= E


 2T

M⋆

M⋆−1∑
j=0

(
F (ξ∗j )−G(ξ∗j )

)
+

2T

M⋆

M⋆−1∑
j=0

G(ξ∗j )−
∫ T

−T

G(x) dx

2


≤ 2E


 2T

M⋆

M⋆−1∑
j=0

(
F (ξ∗j )−G(ξ∗j )

)2


+ 2E


 2T

M⋆

M⋆−1∑
j=0

G(ξ∗j )−
∫ T

−T

G(x) dx

2
 .(13)

For the first term of (13), it follows from the periodization (11) that, for both
M⋆ and δ given, 2T

M⋆

M⋆−1∑
j=0

(
F (ξ∗j )−G(ξ∗j )

)2

= 4T 2

 1

M⋆

M⋆−1∑
j=0

α∑
τ=1

B
[−T,T ]
τ (ξ∗j )

τ !

(∫ T

−T

F (τ)(y) dy

)2

≤ 4T 2

(
α∑

τ=1

(2T )τ−1

2

∣∣∣F (τ−1)(T )− F (τ−1)(−T )
∣∣∣)2

≤
(
αmax{1, (2T )α}∥F∥α,λ,decay e−(1−λ)T 2/2

)2
≤ α2(C∗

α,λ)
2∥f∥2α max{1, (2T )2α} e−(1−λ)T 2

,(14)

where we used |B[−T,T ]
τ (x)/τ !| ≤ (2T )τ−1/2 for x ∈ [−T, T ], shown in [12], to get

the first inequality, and applied Lemma 3.5 in the last inequality. Since the bound
(14) does not depend on the realization of M⋆(ω) or on that of δ(ω), the first term
of (13) is bounded above by this bound multiplied by 2.

Let us move on to the second term of (13). Lemma 3.6.2 implies that G has the
pointwise-convergent Fourier series

G(x) =
∑
k∈Z

Ĝ(k)ϕ
[−T,T ]
k (x),

where {ϕ[−T,T ]
k (x) := exp(2πik(x + T )/(2T ))/

√
2T | k ∈ Z} forms an orthonormal

L2([−T, T ]) basis and Ĝ(k) denotes the k-th Fourier coefficient

Ĝ(k) =

∫ T

−T

G(x)ϕ
[−T,T ]
k (x) dx.
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Besides, it follows from the square integrability of G(α) that G(α) has the L2-
convergent Fourier series

G(α)(x) =
∑
k∈Z

Ĝ(α)(k)ϕ
[−T,T ]
k (x) =

∑
k∈Z

(
2πik

2T

)α

Ĝ(k)ϕ
[−T,T ]
k (x),

see [9, Proof of Lemma 4.1]. Therefore, regarding the second term of (13), for M⋆

and δ both given,

2T

M⋆

M⋆−1∑
j=0

G(ξ∗j )−
∫ T

−T

G(x) dx =
2T

M⋆

M⋆−1∑
j=0

∑
k∈Z

Ĝ(k)ϕ
[−T,T ]
k (ξ∗j )−

√
2TĜ(0)

=
∑
k∈Z

Ĝ(k)
2T

M⋆

M⋆−1∑
j=0

ϕ
[−T,T ]
k (ξ∗j )−

√
2TĜ(0),

holds, in which, for any k ∈ Z, we have

2T

M⋆

M⋆−1∑
j=0

ϕ
[−T,T ]
k (ξ∗j ) =

√
2T

M⋆

M⋆−1∑
j=0

e2πik(ξ
∗
j+T )/(2T ) =

√
2T

M⋆

M⋆−1∑
j=0

e2πik(j+δ)/M⋆

=
e2πikδ/M⋆

√
2T

M⋆

M⋆−1∑
j=0

e2πik(j/M⋆ )

=

{
e2πikδ/M⋆

√
2T if k ≡ 0 (mod M⋆),

0 otherwise.
(15)

Therefore, we obtain

E


 2T

M⋆

M⋆−1∑
j=0

G(ξ∗j )−
∫ T

−T

G(x) dx

2


= E


 ∑

k∈Z\{0}
k≡0 (mod M⋆ )

e2πikδ/M⋆
√
2TĜ(k)


2

= 2T E

 ∑
k,ℓ∈Z\{0}

k,ℓ≡0 (mod M⋆ )

e2πi(k−ℓ)δ/M⋆ Ĝ(k)Ĝ(ℓ)


=

2T

n− 1− ⌊n/2⌋

n−2∑
m⋆=⌊n/2⌋

∑
k,ℓ∈Z\{0}

k,ℓ≡0 (mod m⋆)

Ĝ(k)Ĝ(ℓ)

∫ 1

0

e2πi(k−ℓ)δ/m⋆ dδ

=
2T

n− 1− ⌊n/2⌋

n−2∑
m⋆=⌊n/2⌋

∑
k∈Z\{0}

k≡0 (mod m⋆)

|Ĝ(k)|2

=
2T

n− 1− ⌊n/2⌋
∑

k∈Z\{0}

|Ĝ(k)|2
n−2∑

m⋆=⌊n/2⌋

χm⋆|k,
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where, in the last line, χm⋆|k is equal to 1 ifm⋆ divides k and is equal to 0 otherwise.
The last sum overm⋆ counts the number of divisors of k in {⌊n/2⌋, . . . , n−2}, which
we denote by τn−2

⌊n/2⌋(k). Then, Hölder’s inequality leads to

E


 2T

M⋆

M⋆−1∑
j=0

G(ξ∗j )−
∫ T

−T

G(x) dx

2


=
2T

n− 1− ⌊n/2⌋
∑

k∈Z\{0}

|Ĝ(k)|2τn−2
⌊n/2⌋(k)

=
2T

n− 1− ⌊n/2⌋
∑

k∈Z\{0}

|Ĝ(k)|2
(
2πk

2T

)2α(
2T

2πk

)2α

τn−2
⌊n/2⌋(k)

≤ 2T

n− 1− ⌊n/2⌋

 ∑
k∈Z\{0}

|Ĝ(k)|2
(
2πk

2T

)2α
 sup

k∈Z\{0}

(
2T

2πk

)2α

τn−2
⌊n/2⌋(k)

≤ 2T 2α+1

π2α(n− 1− ⌊n/2⌋)
∥G∥2α,[−T,T ] sup

k∈Z\{0}

τn−2
⌊n/2⌋(k)

k2α
,

where we used Parseval’s identity for the last inequality; see [9, Proof of Lemma 4.1].
We trivially have τn−2

⌊n/2⌋(k) = 0 for any |k| < ⌊n/2⌋. For the case |k| ≥ ⌊n/2⌋, since
m⋆ divides k if and only if k/m⋆ is an integer, τn−2

⌊n/2⌋(k) is bounded above by the

number of integers contained in the interval[
|k|
n− 2

,
|k|

⌊n/2⌋

]
.

Therefore, we have

τn−2
⌊n/2⌋(k) ≤

|k|
⌊n/2⌋

− |k|
n− 2

+ 1 ≤ |k|
n/2− 1

− |k|
n− 2

+ 1 =
|k|
n− 2

+ 1.

Using this bound, noting α ≥ 1, the supremum over k above is bounded by

sup
k∈Z\{0}

τn−2
⌊n/2⌋(k)

k2α
≤ sup

k≥⌊n/2⌋

1

k2α

(
k

n− 2
+ 1

)
=

1

⌊n/2⌋2α

(
⌊n/2⌋
n− 2

+ 1

)
≤ 22α+1

n2α
,

which, together with Lemma 3.6.3 and Lemma 3.5, yields

E


 2T

M⋆

M⋆−1∑
j=0

G(ξ∗j )−
∫ T

−T

G(x) dx

2
 ≤ ∥G∥2α,[−T,T ]

22α+2T 2α+1

π2α(n− 1− ⌊n/2⌋)n2α

≤ (C∗
α,λ)

2∥f∥2α
22α+4T 2α+1

π2αn2α+1
.

Now that we have obtained upper bounds on the two terms of (13), we complete
the proof. □

The benefit of choosing the number of nodesM⋆ randomly manifests itself in the
proof of Lemma 3.8. As indicated in (15), the trapezoidal rule with a fixed number

of nodes m does not give exact values for integrating Fourier modes ϕ
[−T,T ]
k =

exp(2πik(x+T )/(2T ))/
√
2T , k ̸= 0, if k is a multiple of m. Thus, if the number of
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nodes is fixed, due to the amplitude of the k-th Fourier coefficient of the periodized
function G with k being a multiple of m, the best RMSE attainable is already of
order m−α and not less (cf. the proof of [9, Lemma 4.1]). Although this rate is
optimal in the sense of the (deterministic) worst-case error (3) (cf. [9]), in view of
the lower bound in Theorem 2.1 we need a half rate extra for An,T to be optimal in
the sense of the worst-case RMSE. By choosing M⋆ randomly, on average we can
avoid the situation where k is a multiple of m, which leads to an improved, optimal
rate of the RMSE.

Not all quadratures require randomization of the number of nodes to achieve the
optimality. Indeed, using (scaled) higher-order scrambled digital nets from [6] for
the nodes ξ∗j , instead of the equispaced points as in (6), following a similar argument
as above, the same rate (up to a logarithmic factor) turns out to be achievable. Note
however that constructing higher-order nets requires the smoothness parameter α as
an input to attain the optimal rate of the RMSE for smooth non-periodic functions,
which makes it hard for the resulting randomized algorithm to be free from α in
the construction. Algorithm 3.1 compares favorably in this regard, as we discuss
later in Remark 3.11.

Lemma 3.9 (Upper bound on the RMSE for tails). Let α ≥ 1, n ≥ 4, and T > 0
be given. For any f ∈ Hα, the second and third terms of (12) are bounded as

E

(Φ(−T )f(ξ∗left)− ∫ −T

−∞
f(x)ρ(x) dx

)2
 ≤ ∥f∥2α

1√
2πTeT 2/2

,

and

E

[(
(1− Φ(T ))f(ξ∗right)−

∫ ∞

T

f(x)ρ(x) dx

)2
]
≤ ∥f∥2α

1√
2πTeT 2/2

,

respectively.

Proof. We give a proof only for the bound on the second term of (13) since the
bound on the third term can be proven in the same way.

From the proof of Lemma 3.2

E [Φ(−T )f(ξ∗left)] =
∫ −T

−∞
f(x)ρ(x) dx,

holds, and thus

E

(Φ(−T )f(ξ∗left)− ∫ −T

−∞
f(x)ρ(x) dx

)2


= E
[
(Φ(−T )f(ξ∗left))

2
]
−

(∫ −T

−∞
f(x)ρ(x) dx

)2

≤ E
[
(Φ(−T )f(ξ∗left))

2
]
= Φ(−T )

∫ −T

−∞
|f(x)|2ρ(x) dx

≤ Φ(−T )∥f∥2L2
ρ
≤ Φ(−T )∥f∥2α,
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in which we have

Φ(−T ) = 1√
2π

∫ −T

−∞
e−x2/2 dx =

1√
2π

∫ ∞

T

e−x2/2 dx

≤ 1√
2π

∫ ∞

T

x

T
· e−x2/2 dx =

e−T 2/2

T
√
2π

.

This proves the result. □

Applying the results from Lemma 3.8 and 3.9 to (12), we obtain

E
[(
AM⋆,δ

n,T (f)− I(f)
)2]

≤ 3(C∗
α,λ)

2∥f∥2α
(
2α2 max{1, (2T )2α}

e(1−λ)T 2 +
22α+5T 2α+1

π2αn2α+1

)
+ ∥f∥2α

6√
2πTeT 2/2

,

so that

ermse(An,T ,Hα) = sup
f∈Hα

∥f∥α≤1

(
E
[(
AM⋆,δ

n,T (f)− I(f)
)2])1/2

≤
(
3(C∗

α,λ)
2

(
2α2 max{1, (2T )2α}

e(1−λ)T 2 +
22α+5T 2α+1

π2αn2α+1

)
+

6√
2πTeT 2/2

)1/2

.

Choosing the cut-off parameter T according to (10), we have T > 1 and

ermse(An,T ,Hα) ≤
Tα+1/2

nα+1/2

(
3
(
22α+1α2 + π−2α22α+5

)
(C∗

α,λ)
2 +

6√
2π

)1/2

(16)

=
(lnn)α/2+1/4

nα+1/2

√(
2α+ 1

1− λ

)α+1(
3 (22α+1α2 + π−2α22α+5) (C∗

α,λ)
2 +

6√
2π

)
,(17)

which completes the proof of Theorem 3.3.

Remark 3.10. The quadrature for the tail Φ(−T )f(ξ∗left) + (1− Φ(T ))f(ξ∗right) in

the algorithm (6) are utilized only to make the estimator unbiased and thus to obtain
the empirical error estimator (9). Indeed, the rate O(n−α−1/2(lnn)α/2+1/4) as in
Theorem 3.3 can be established even without these nodes, since under the decay of
the integrands assumed, the dominant error comes from the integration error on
[−T, T ] as in Lemma 3.8.

Remark 3.11. In Theorem 3.3, the cut-off parameter T depends on the smoothness
parameter α. This may be a problem in practice, since the smoothness of the target
integrand may be unknown. One way to make the algorithm independent of α,
as we did in [9, Corollary 4.4], is to replace α in (10) with any slowly increasing
function γ : N → [0,∞), such as γ(n) = ln(n) or γ(n) = max{ln(ln(n)), 0}. The
resulting randomized trapezoidal rule does not require any information about α, but
still achieves the optimal rate up to a factor of (γ(n) lnn)α/2+1/4.

4. Numerical experiments

We conclude this paper with numerical experiments for our randomized trape-
zoidal rule An,T . In what follows, all computations are carried out in double pre-
cision arithmetic using MATLAB 2020a. Let us consider the following three test
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Figure 1. Mean-squared error for f1 with various values of p. In
the left panel, the cut-off parameter T is chosen as in (10); in the
right panel, T is chosen independently of α.

functions with different smoothness:

f1(x) = f1,p(x) = (max{x, 0})p, with p = 1, 2, 3,

f2(x) =

{
e−1/(1−x2) for |x| < 1,

0 otherwise,

f3(x) = (tanh(x))2.

The function f1 = f1,p satisfies f1 ∈ Hp and f1 /∈ Hp+1, which we exploit to check
how well our theory explains the error that the estimator estimates. The functions
f2 and f3 go beyond our theory, in that the Sobolev class does not capture their
smoothness; they are infinitely differentiable and bounded on R and thus are in Hα

for any α ∈ N. Note that f3 is analytic, while f2 is not.
Throughout the following experiments, we set λ = 0.51. We estimate the mean-

squared error by following (9) with r = 50 and n being powers of 2. The reason
why we estimate the mean-squared error instead of the RMSE is only because of
the fact that the square root of (9) is not an unbiased estimator of the RMSE. We
also stress that, even though f2 and f3 go beyond our theory, the practical error
estimator (9) is still valid.

For f1, we test two cut-off strategies to choose the value of T . One way is
choosing T depending on α and we set α = p for f1 = f1,p; see (10) in Theorem 3.3.
Another way is to use our α-free cut-off, in which we replace α in (10) with γ(n) =
max{ln(ln(n)), 0}; see Remark 3.11. Figure 1 presents error decays for f1 with
varying values of p, with two cut-off strategies outlined above. As expected from
the theory, the convergence rate of n−2p−1 is achieved for each value of p. Moreover,
we see that our α-free choice of the cut-off parameter does not deteriorate the
performance of the randomized trapezoidal rule, which supports our theory.

For the functions f2 and f3, we conduct the experiments only for the α-free choice
of the cut-off parameter T . Figure 2 shows the results. Since the functions are
infinitely smooth, the mean-squared error is expected to decay at least at the rate
n−2α−1 for any finite α. In fact, we observe that the error decays super-algebraically
fast until it drops down to around 2−100. This error decay is consistent with our
theory. Nevertheless, it does indicate that our theory may not be suitable for
providing sharp error estimates for infinitely smooth functions. For such functions,
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Figure 2. Mean-squared error for f2 and f3.

it may be useful to employ function classes used to analyze e.g., analytic functions.
We refer to [21, 22] for error estimates of a deterministic trapezoidal rule for analytic
functions. Setting the theory aside, we again stress that the crucial advantage of
our randomized rule is that it allows for an error estimation, which is quite hard
for deterministic quadrature rules.
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