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The numerical method of Kahan applied to quadratic differential equations
is known to often generate integrable maps in low dimensions and can in more
general situations exhibit preserved measures and integrals. Computerized
methods based on discrete Darboux polynomials have recently been used
for finding these measures and integrals. However, if the differential system
contains many parameters, this approach can lead to highly complex results
that can be difficult to interpret and analyze. But this complexity can in
some cases be substantially reduced by using aromatic series. These are a
mathematical tool introduced independently by Chartier and Murua and by
Iserles, Quispel and Tse. We develop an algorithm for this purpose and derive
some necessary conditions for the Kahan map to have preserved measures and
integrals expressible in terms of aromatic functions. An important reason for
the success of this method lies in the equivariance of the map from vector
fields to their aromatic functions. We demonstrate the algorithm on a number
of examples showing a great reduction in complexity compared to what had
been obtained by a fixed basis such as monomials.

Keywords: B-series methods, Integrability, Preservation of integrals and measures,
Darboux polynomials, Trees, Aromatic Trees.

1 Introduction

In this paper we combine ideas from two apparently unrelated subfields of computational
mathematics in order to obtain a new compact and equivariant way of characterizing
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certain preserved measures and integrals for the Kahan integration method. In the study
of preserved measures and integrals of birational maps, the method of discrete Darboux
polynomials has been employed recently in several works, see e.g. [4, 3]. On the other
hand, there has been a recent interest in generalising the notion of B-series to include a
larger set called aromatic series going back to [9, 12]. Whereas the aromatic series have
so far been used mostly for classification purposes and no-go theorems, we believe the
present work is the first time these ideas have been used in a constructive manner to
obtain specific objects such as preserved measures and integrals.

Kahan’s method [14], also known as the Hirota–Kimura discretization [11, 16], is a
numerical scheme which has received considerable attention in recent years for its remark-
able numerical, geometric properties and for its ability to yield integrable discretisations
when applied to a large class of integrable ordinary differential equations [20, 22, 5]. For
a quadratic system ẋ = f(x) on Rn, with ith component given as

ẋi = fi(x) =
∑
j,k

aijkxjxk +
∑
j

bijxj + ci, i = 1, . . . , n,

letting xi ≈ xi(tm) and x′i ≈ xi(tm+1), where tm+1 − tm = h, the method takes the form

x′i − xi
h

=
∑
j,k

aijk
xjx

′
k + x′jxk

2
+

∑
j

bij
xj + x′j

2
+ ci, i = 1, . . . , n. (1)

Kahan’s method is linearly implicit and it can be shown [7] that it has the form of a
birational map,

x′ − x

h
= (I − h

2
f ′(x))−1f(x), (2)

thus it is well defined for sufficiently small values of the stepsize h. Petrera et al. [20]
applied the method of Kahan to a large number of integrable quadratic differential
equations, showing that in several examples this yields a discrete integrable map. In the
sequel we shall refer to the map of Rn, Φh : x 7→ x′ as the Kahan map.

Kahan’s method has remarkable geometric properties when applied to quadratic vector
fields, and its merits were discovered and analysed in several articles [15, 23, 20, 6]. A
fundamental property is that it is self adjoint, meaning that Φ−1

h = Φ−h. As we shall see
later, this property also ensures that preserved measures are either even or odd in h. In
[7], general expressions for a preserved integral and measure were found for the Kahan
discretizations of systems with a cubic Hamiltonian and a constant Poisson bracket.
More precisely, for a system

ẋ = J∇H(x) = f(x), (3)

with H a cubic multivariate polynomial and J a constant skew-symmetric matrix, the
Kahan map has a preserved integral with the closed form expression

H̃h(x) = H(x) +
h

3
∇HT (x)(I − h

2
f ′(x))−1f(x), (4)
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and a preserved measure
dx1 ∧ dx2 ∧ · · · ∧ dxn

det(I − h
2f

′(x))
. (5)

In this example, the vector field is divergence-free and exact flow preserves the standard
volume form. In other examples, this need not be the case. Several examples of integrable
maps obtained with Kahan’s method, including examples where div f ̸= 0 can be found
in [5, 21].

The Kahan map coincides with the Runge–Kutta method

x′ − x

h
= −1

2
f(x) + 2f

(
x + x′

2

)
− 1

2
f(x′) (6)

restricted to quadratic vector fields in Rn, [7]. A powerful property of Runge–Kutta
methods in general is that they are equivariant with respect to any affine transformation
between two linear spaces, see [18] for a general discussion of affine equivariance in B-
series methods. The notion of aromas and aromatic series [12, 9] is a generalisation
of B-series, the aromatic series are indexed by graphs that may also include loops and
each graph is called an aroma. An aromatic function can be assigned to a vector field
f and an aroma, an example of such a function is the divergence, div(f). The map
from vector fields to aromatic functions is equivariant with respect to the affine group
acting via pullbacks. In several examples, we have noticed that preserved measures and
integrals of the Kahan method can be expressed in terms of aromatic functions. In
this paper, we outline a method that can be used to search for preserved measures and
integrals in terms of aromatic functions. At present we can in principle determine all
preserved measures whose density is of the form 1/P where P can be expressed in terms
of aromatic functions up to a prescribed order1. We provide several examples of its use
where we show that such preserved measures can actually be determined.

We also present a machinery for analysing this problem by adapting combinatorial
methods treated in a general setting in [12, 1, 19] to the case of Kahan’s method. Finally,
we present some necessary conditions on vector fields for Kahan’s method to possess
preserved measures and first integrals in the desired form of aromatic functions.

To get an idea of this approach, consider first the preserved measure with (reciprocal)
density function det(I − h

2f
′(x)) given by (5). By applying the Newton–Girard formula

for symmetric polynomials, we find

det(I − h

2
f ′(x)) = P (r1, . . . , rd) where ri = Tr(hif ′(x)i),

and where P is some multivariate polynomial. Each term of this polynomial is an
aromatic function.

Writing density functions in terms of aromatic functions has some attractive proper-
ties. The density function of a preserved measure under the Kahan map is itself invariant
under affine transformations of the underlying vector field. By using aromatic functions,

1All calculations are subject to complexity limitations of the computer algebra system used. Our
present implementation uses aromas up to order 6, but this is not a limitation of the algorithm.
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the resulting expression is automatically affine equivariant. As a consequence, density
functions of preserved measures take a much simpler form than would be the case if for
instance a monomial basis had been used.

Furthermore, expressing the preserved measures and first integrals in terms of aro-
mas highlights an interesting property: The preserved measures and first integrals thus
obtained are related to functional dependencies between the derivatives of the vector
field f . Specifically, if kerFf = kerFf̃ (see (12)) for two vector fields f and f̃ , then
Kahan’s method applied to the two vector fields has the same preserved measures and
first integrals.

Although our findings show that not every preserved measure can be written in terms
of aromatic functions, many important ones can. Naturally, the algorithm we propose
can discover only measures that belong to the linear span of aromatic functions. But
when successful this approach typically provides much simpler expressions for the mea-
sures with a transparent connection to the underlying ODE vector field, as opposed to
what can be obtained using for instance a monomial basis.

Just to illustrate the power of the aromatic functions, we mention the inhomogenous
Nambu system which we will discuss in detail in section 4. By parametrizing this problem
by means of a monomial basis our algorithm yields a density function with no fewer than
15806 terms. However, by using aromatic functions we can express this same function
with only 7 terms.

2 The method of Darboux polynomials

Let Φ : Rn → Rn be any map and suppose that there exist a function C and a polynomial
P such that

P ◦ Φ = C · P, (7)

we then call P a (discrete) Darboux polynomial, and C is a corresponding cofactor. If
there are two such Darboux polynomials, P1 and P2 with the same cofactor C, then
clearly by (7)

P1

P2
◦ Φ =

P1 ◦ Φ

P2 ◦ Φ
=

P1

P2
,

so P1
P2

is a first integral of the map Φ. Denote by DΦ the Jacobian of Φ. If it so
happens that P is a Darboux polynomial with cofactor C = detDΦ, then P is in fact
the (reciprocal) density of a preserved measure,

dx1 ∧ dx2 ∧ · · · ∧ dxn
P

.

Differentiating the Runge-Kutta representation of the Kahan map (6), we easily obtain
that detDΦh is a rational function of the form

detDΦh(x) =
det(I + h

2f
′(Φh(x)))

det(I − h
2f

′(x))
. (8)
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In [4] a systematic approach for determining Darboux polynomials was proposed. The
idea is to first factor detDΦh (over Q)

detDΦh(x) =

∏
iNi(x)ri∏
iDi(x)si

,

and then use these factors to form candidate cofactors

C(x) =

∏
iNi(x)r

′
i∏

iDi(x)s
′
i

, r′i, s
′
i ≥ 0.

For a fixed choice of cofactor C(x), we let P ∈ Rp(x) be a multivariate polynomial of
degree p in the variables x with real coefficients, which can be expressed in the basis
{ek}Nk=0,

P (x) =

N∑
k=0

Pkek, (9)

where N ≤ (n+p)!
n!p! . The basis elements ek can for example be chosen to be monomials

of the form xi11 · · ·xinn for non-negative integers i1, . . . , in. With this setup, equation (7)
is turned into a linear system of equations for the coefficients Pk that can (in principle)
always be solved by a finite algorithm.

In this paper, we shall always apply this method with C = detDΦh, but rather than
a monomial basis, we shall search for preserved measures in the linear span of certain
functions called aromas introduced in the next section.

3 Aromas and aromatic series

Before describing aromas and aromatic series, we recall the related concept of B-series
[2, 10].

Every Runge–Kutta method, and many other numerical methods for ODEs can be
expanded in a series involving the vector field f and its derivatives.

For example, the formulation of Kahan’s method in Equation (2) can be expanded as
a geometric series

Φh(x) = x +

∞∑
k=0

hk

2k
(f ′(x))kf(x). (10)

In general B-series are indexed by the set of rooted trees, and take the form

Φh(x) = x +
∑
τ∈T

h|τ |b(τ)

σ(τ)
F (τ)(x),

where T is the set of rooted trees, |τ | is the number of vertices in τ , σ(τ) is the symmetry
coefficient of τ , equal to the cardinality of the symmetry group of τ , and F (τ) is a vector
field depending on f and its derivatives. b(τ) are coefficients depending on the integrator.

5



Expanding (I − hf ′(x))−1 in a power series and substituting in (2), it is easily seen
that in the B-series (10) of Kahan’s method b(τ) is non-zero only on the tall trees:

, , , . . . ,

In fact these represent the vector fields

F ( ) = f, F ( ) = f ′f, F ( ) = f ′f ′f, . . . .

For the tall trees, σ(τ) = 1 and we can see from (10) that Kahan’s method has coefficients

b(τ) =

{
21−|τ | if τ is a tall tree,

0 otherwise.

For the purpose of simplifying certain combinatorial formulas, it is useful to extend
the definition of b to multisets of rooted trees (called rooted forests) by multiplication,
i.e.

b(τ1τ2 · · · τm) : = b(τ1)b(τ2) · · · b(τm).

In B-series, vector fields depending on f and its derivatives are represented by rooted
trees. The measure we aim to preserve has an associated scalar valued density function
which we assume depends on the vector field f as well as its derivatives. We aim to
describe such scalar functions by means of aromas (or loopy trees) and aromatic series.

Aromas and aromatic series were originally introduced by Iserles, Quispel and Tse [12]
and by Chartier and Murua [9] and their structure was investigated by Munthe-Kaas
and Verdier [19] by Bogfjellmo [1], and by Laurent et al. [17]

An aroma is a connected directed graph where each vertex has exactly one outgoing
edge. It can be shown that an aroma has to contain exactly one cycle.

The smallest aromas are

, , , , , , . . . .

To simplify graphics, directions of edges are not shown unless they are necessary to
distinguish between aromas. The edges are oriented so that the ring is a cycle and other
edges are oriented towards the ring.

We will refer to the set of aromas as A′ and the set of multisets (products) of aromas
as A. The empty multiset will be denoted by 1.

Given a vector field f , an aroma λ represents a scalar function F (λ) according to the
following procedure:

1. Label each node i, j, . . . .

2. For each node with label j, form the factor f j
i1i2···im , where i1, i2, . . . , im are the

labels of the nodes pointing towards node j. The upper index on f corresponds to
vector components, and the lower to partial derivatives with respect to coordinate
directions, i.e. f j

i1i2···im = ∂mf j/∂xi1∂xi2 · · · ∂xim .
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3. Finally, take the product of the factors and sum all terms using Einstein’s sum-
mation convention.

The definition of F extends without modification to multisets of aromas, viewed as
disjoint unions of connected graphs.

Example 1. Some examples of F .

F (1) = 1

F
(

i

)
=

∑
i

f i
i = div(f)

F
(

i j k

)
=

∑
ijk

f i
jf

j
ikf

k

The simplest aromas are the cyclic aromas,

, , , , . . .

whose images under F are traces of powers of f ′.
An aromatic series is a series indexed by A. We will normalize these series as

B(γ) : =
∑
α∈A

h|α|γ(α)

σ(α)
F (α),

where |α| is the number of vertices in α and σ(α) is the cardinality of the symmetry
group of the graph α.

Example 2. Some examples of σ are

σ(1) = 1,

σ
( )

= 1,

σ
( )

= 3,

σ
( )

= 8.

In several cases, Darboux polynomials for the discretization of a vector field with
Kahan’s method are expressible as finite aromatic series.

Example 3 (Hamiltonian vector fields). Assume that Kahan’s method is used to dis-
cretize a Hamiltonian vector field with a cubic Hamiltonian. It follows from the results
of [7] that P (x) = det

(
I − h

2f
′(x)

)
is a Darboux polynomial with cofactor detDΦ.

For any fixed dimension, P can be expressed as a polynomial of traces. For example,
when A is a 2 × 2-matrix, we have the identity

det(I −A) = 1 − tr(A) +
1

2

(
tr(A)2 − tr(A2)

)
.
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Thus, when d = 2,

P = det

(
I − h

2
f ′
)

= 1 − h

2
tr(f ′) +

h2

8

(
tr(f ′)2 − tr((f ′)2)

)
= F (1) − h

2
F
( )

+
h2

8

(
F
( )

− F
( ))

.

We refer to Section 4 for a detailed study of examples of the use of this approach.

3.1 Equivariance

One strength of the aromatic approach is that the resulting preserved measures are
obtained through an affine equivariant map on the space of quadratic vector fields.

The evolution of a differential equation ẋ = f(x) on Rn does not depend on the
coordinates we use on Rn. If we limit coordinate changes to affine mappings, neither does
Kahan’s method. Consequently, if Kahan’s method applied to a differential equation
ẋ = f(x) has a preserved measure, then an affine change of coordinates x 7→ Ax+ b will
result in a new differential equation and, when Kahan’s method is applied, a new discrete
dynamical system that also has a preserved measure. In coordinates, this measure will
be different from the original, but it’s expression in terms of aromas stays the same.

We formulate this independence of coordinates as equivariance. Equivariance can be
defined2 in the category of G-sets, the collection of sets on which a common Lie group G
is acting. Let X1 and X2 be two G-sets. A map Φ : X1 → X2, is said to be equivariant
if it is a G-set morphism, i.e. for any g ∈ G and x ∈ X1, Φ(g · x) = g · Φ(x).

In our setting, the group is the affine group, consisting of pairs g = (Ag, bg) where
Ag ∈ GL(n,R) and bg ∈ Rn. This group acts on Rn through g ·x = Agx+bg. It also acts
on X (Rn) and F(Rn), the vector fields and functions on Rn respectively. The (right)
action is by pullback, or more precisely, we have for f ∈ X (Rn), φ ∈ F(Rn) respectively

g · f(x) = A−1
g f(Agx + bg), g · φ(x) = φ(Agx + b).

Lemma 1. Let F : X (Rn) × A → F(Rn) be the map that assigns to a vector field f
and an aroma a the aromatic function F (f, a). Then, for any a ∈ A, the map F (·, a) :
X (Rn) → F(Rn) is equivariant with respect to the affine group.

The proof is omitted, and is based on similar results in [19].

Lemma 2. Let Pf be the (reciprocal) density of a preserved measure for the Kahan
map. Then Pg·f will be the (reciprocal) density of a preserved measure for Kahan’s
method applied to the vector field g · f for any affine transformation g.

Proof: Follows from (7) and (8).

2A slightly different and stronger definition of equivariance was used in [18]
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3.2 Algebraic treatment

We now return to Darboux polynomials, given by the equation (7). We restrict our
attention to Φ being the Kahan map (1), C = detDΦ and P an aromatic series.

For the Kahan map, we have that

det(DΦh(x)) =
det(I + h

2f
′(Φh(x)))

det(I − h
2f

′(x))
=

Nh
2
◦ Φh(x)

N−h
2
(x)

,

with Nh
2
(x) = det(I + h

2f
′(x)). Consequently, the Darboux equation (7) for a Darboux

polynomial P , can be written as

N−h
2
(x) · P

(
Φh(x)

)
− P (x) ·Nh

2

(
Φh(x)

)
= 0. (11)

Our goal is to express this equation in terms of aromatic series. We are therefore inter-
ested in:

1. expressing functions of the form g0(x)g1(x), where both factors are aromatic series
(multiplication),

2. expressing functions of the form g(Φ(x)) where g is an aromatic series and Φ(x) is
a B-series update map, specifically the Kahan map (composition), and

3. expressing Nuh(x) = det(I + uhf ′) as an aromatic series.

3.2.1 Multiplication and composition

The necessary combinatorial formulas can be deduced from the results in [1].
For expressing the formulas, it is convenient to define the free vector spaces generated

by A and F over the field of reals, R⟨A⟩ and R⟨F⟩, their duals R⟨A⟩∗, R⟨F⟩∗ and tensor
products thereof.

Furthermore, we introduce the notation ⟨·, ·⟩ for pairing elements in dual and primal
spaces, especially in the case of tensor products: Let U and V be vector spaces, a ∈ U∗,
b ∈ V ∗ and w ∈ U ⊗ V where w has the decomposition w =

∑n
i=1 ui ⊗ vi, then

⟨a⊗ b, w⟩ =
n∑

i=1

a(ui)b(vi).

The product of two aromatic series is simply a product of formal power series in the
variables α ∈ A′ with a normalization factor3.

Lemma 3 (Multiplication). Let gi(x) =
∑

α∈A
h|α|γi(α)

σ(α) F (α)(x), for i = 0, 1. Then

g0(x)g1(x) =
∑
α∈A

h|α|γ0 · γ1(α)

σ(α)
F (α)(x)

3To be precise, exponential power series in { α
σ(α)

: α ∈ A′}.
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where γ0 · γ1(α) = ⟨γ0 ⊗ γ1,∆⊔(α)⟩, and ∆⊔ : R⟨A⟩ → R⟨A⟩ ⊗ R⟨A⟩ is the binomial
coproduct [13, Section V.2],

∆⊔(α) =
∑
β⊆α

β ⊗ (α \ β),

where the sum is over all submultisets of the multiset α, counting multiplicities.

Example 4.

∆⊔
( )

=1⊗ + 2 ⊗

+ ⊗ + ⊗

+ 2 ⊗ + ⊗ 1.

The composition is given by [1, Theorem 5.1], with appropriate restrictions, as we are
only interested in composing a B-series and an aromatic series.

Lemma 4 (Composition). Let g(x) =
∑

α∈A
h|α|γ(α)
σ(α) F (α)(x) and Φ(x) = x+

∑
τ∈T

h|τ |b(τ)
σ(τ) F (τ)(x).

Then

g(Φ(x)) =
∑
α∈A

h|α|(b⊙ γ)(α)

σ(α)
F (α)(x)

where (b ⊙ γ)(α) = ⟨b ⊗ γ,∆A(α)⟩ and ∆A : R⟨A⟩ → R⟨F⟩ ⊗ R⟨A⟩ is a left comodule
map defined as follows: For a graph α, cut edges that are not included in the cycles to
obtain connected components, some of which are trees and some that are aromas, then
sum over all possible choices of edges to cut.

Example 5.

∆A
( )

= 1⊗ + ⊗

3.2.2 The kernel of F

For a given vector field f , F will send some aromas or linear combinations of aromas to
zero. We call this the kernel of F .

kerF =

{
k ∈ R⟨A⟩∗ such that

∑
α∈A

h|α|k(α)

σ(α)
F (α) = 0

}
(12)

kerF is a description of functional dependencies between the derivatives of f .
Part of kerF is induced by the dimension d of the surrounding space. For example,

when d = 1, F (α) only depends on the number of vertices in α with indegree 0, 1, 2, . . . ,
and is independent of the exact arrangement of edges. As an example in one dimension

F
( )

= F
(

) = (f ′)2.

10



In this article, we only consider quadratic vector fields. These vector fields have all
third derivatives equal to zero. As a consequence, F (α) = 0 for all aromas containing a
node with indegree larger than or equal to 3.

Finally, specific classes of vector fields can have a larger kernel. For example, if f is

a divergence-free vector field, then F (α) = 0 is zero for all aromas that contain as
a subgraph. Or if f is an Hamiltonian vector field, then F (α) = 0 when α is a cyclic
aroma with an odd number of vertices.

The kernel of F turns out to be crucial for the existence of solutions to (7) in the
vector space spanned by aromas.

3.2.3 Girard–Newton formula

Recall that for the Kahan map,

detDΦh(x) =
det(I + h

2f
′(x′))

det(I − h
2f

′(x))
,

holds.
The expression Nuh(x) = det(I + uhf ′(x)) can be written as an aromatic series by

means of combinatorial formulas for symmetric polynomials, related to the Girard–
Newton formula [24, Chapter 7].

Theorem 1. The expression Nuh(x) = det(I + uhf ′) can be written as an aromatic
series

det(I + uhf ′) =
∑
α∈A

h|α|ηu(α)

σ(α)
F (α)

= 1 + uhF ( ) +
u2h2

2

(
F ( ) − F ( )

)
+ · · ·

(13)

In the above expression, ηu is only non-zero if α is a product of cyclic aromas, in which
case ηu(α) = sgn(πα)u|α|, where πα is the permutation on |α| elements defined by the
graph α.
Furthermore, for a fixed dimension d, the terms of the aromatic series (13) with

|α| > d sum to zero.

Proof. Write det(I + uhf ′) =
∏d

i=1(1 + uhλi), where λi are eigenvalues of f ′. The first
claim follows from writing out

det(I + uhf ′) = 1 + uh
∑
i

λi + u2h2
∑
i<j

λiλj + · · · + udhd
∏
i

λi,

and applying [24, Proposition 7.7.6] to each term. The second claim follows from the
fact that

∏d
i=1(1 + uhλi) is a polynomial in uh of degree d.
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3.3 Darboux polynomials and aromatic series

We make the ansatz that P can be written as an aromatic series P = B(γ).
By combining Lemma 3, Lemma 4 and Theorem 1, the left hand side of (11) can then

also be written as an aromatic series.
If P (x) = B(γ) =

∑
α∈A

h|α|γ(α)
σ(α) F (α), then

N−h
2
(x) · P

(
Φh(x)

)
− P (x) ·Nh

2

(
Φh(x)

)
=

∑
α∈A

h|α|⟨Q(γ), α⟩
σ(α)

F (α) (14)

where
⟨Q(γ), α⟩ =

〈
η− 1

2
⊗ ϕ⊗ γ − γ ⊗ ϕ⊗ η 1

2
, (I ⊗ ∆A) ◦ ∆⊔(α)

〉
(15)

If ⟨Q(γ), α⟩ were 0 for all α, then B(γ) would be a Darboux polynomial for all f . This
requirement is very strict and only satisfied when B is zero for all non-empty aromas,
i.e. B(γ) is a constant function.

We are looking for Darboux polynomials for a given f , in which case, the requirement
is

Q(γ) ∈ kerF (16)

where kerF is as in (12).
This means the set of aromatic series Darboux polynomials is a function of kerF , that

is the linear dependencies between the aromas of f .
In the following, we will develop necessary conditions on kerF such that (16) has

nontrivial solutions.

Example 6. To illustrate the calculations of Q(γ), we here display a detailed calculation
of ⟨Q(γ), ⟩.

Step one:
∆⊔( ) = 1⊗ + ⊗ 1.

Step two:

∆A(1) = 1⊗ 1 and ∆A
( )

= 1⊗ + ⊗ .

Therefore

(I ⊗ ∆A) ◦ ∆⊔( ) = 1⊗ ∆A
( )

+ ⊗ ∆A(1)

= 1⊗ 1⊗ + 1⊗ ⊗ + ⊗ 1⊗ 1.

12



Step three:

⟨η− 1
2
⊗ ϕ⊗ γ − γ ⊗ ϕ⊗ η 1

2
, (I ⊗ ∆A) ◦ ∆⊔(α)⟩

=
〈
η− 1

2
⊗ ϕ⊗ γ − γ ⊗ ϕ⊗ η 1

2
,1⊗ 1⊗ + 1⊗ ⊗ + ⊗ 1⊗ 1

〉
=η− 1

2
(1)ϕ(1)γ( ) − γ(1)ϕ(1)η 1

2
( ) + η− 1

2
(1)ϕ( )γ( )

− γ(1)ϕ( )η 1
2
( ) + η− 1

2
( )ϕ(1)γ(1) − γ( )ϕ(1)η 1

2
(1)

=1 · 1 · γ( ) − γ(1) · 1 · 0 + 1 · 1 · γ( ) − γ(1) · 1 · (−1

4
) + 0 · 1 · γ(1)

− γ( ) · 1 · 1

=γ( ) +
1

4
γ(1).

α ⟨Q(γ), α⟩
1 0

−γ(1)

γ( ) − 1
2γ(1)

0

−2γ( )

γ( ) + 1
4γ(1)

γ( ) + 1
2γ( ) − 1

4γ(1)

−1
4γ(1)

γ( ) − γ( ) − γ( ) − 1
4γ(1)

−γ( ) + 1
4γ(1)

−3γ( ) − 1
4γ(1)

Table 1: Calculations of ⟨Q(γ), α⟩ for |α| ≤ 3, see (14) and (15).

Table 1 shows ⟨Q(γ), α⟩ for all aromas with |α| ≤ 3. Using the expressions in Table
1, we can express the series B(Q(γ)) in terms of γ and F .

For B(γ) to be a Darboux polynomial, B(Q(γ)) has to be equal to zero, and specifi-
cally, each homogenous (in h) part has to equal zero.

In the following discussion, we assume that B(γ) is a Darboux polynomial and deter-
mine which consequences this has for γ and F .

The Kahan map is self-adjoint. As a consequence, linearly independent Darboux
polynomials have to be symmetric in h (up to a sign change.) We can therefore simplify

13



our analysis by considering two disjoint classes of γ:

1. γ that are non-zero only on α with an even number of vertices;

2. γ that are non-zero only on α with an odd number of vertices.

Case 1: γ non-zero for even |α|

We start with γ that are non-zero only on α with even number of vertices.
The O(h) term in B(Q(γ)) is〈

Q(γ),
〉
F ( ) = −γ(1)F

( )
.

By our ansatz, this is equal to zero, and therefore γ(1) = 0 or F ( ) = div f = 0.

This condition is an obvious consequence of the fact that the leading term of the
Darboux polynomial defines a preserved quantity for the continuous system. Specifically,
there can only be Darboux polynomial with leading term γ(1) ̸= 0, if div f = 0, which
is equivalent to dx1 ∧ dx2 ∧ · · · ∧ dxn being a preserved quantity for the exact system.

For the O(h2) term, we have〈
Q(γ),

〉
F ( ) +

1

2

〈
Q(γ),

〉
F ( )

+
1

2

〈
Q(γ),

〉
F ( )

=

(
γ( ) − 1

2

)
F ( ) + 0 +

1

2

(
−2γ( )

)
F ( )

= − 1

2
γ(1)F ( ),

where the final equality is due to our assumption that γ(α) is zero when |α| is odd. By
our ansatz, this expression has to be equal to zero, which indicates that either γ(1) = 0
or F ( ) = D(div f) · f = 0.

If div f = 0, then its derivatives are also zero, so this condition is already contained
in the condition γ(1)F ( ) = 0.

For the O(h3) term, we consider the two subcases separately.

Subcase 1a: γ non-zero for even |α|, div f = 0.

First, assume F ( ) = 0, and (without loss of generality) that γ(1) = 1.

All aromas containing as a subgraph are in kerF , so we can disregard all these
terms.

With this simplification, the third order term in B(Q(γ) is〈
Q(γ),

〉
F ( ) +

1

3

〈
Q(γ),

〉
F ( )

=

(
γ
( )

+
1

4

)
F
( )

− 1

12
F
( ) (17)
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This can only be zero if there is a linear dependence between F
( )

and F
( )

,

specifically F
( )

= αF
( )

for some α ∈ R.
We sum up the observation in a theorem.

Theorem 2. If div f = 0 and there exists a Darboux polynomial in aromas B(γ) with
γ(1) = 1, then

F
( )

= αF
( )

.

for some constant α ∈ R. Furthermore, either both F
( )

and F
( )

are equal
to zero, or

γ
( )

=
α− 3

12
.

Subcase 1b: γ non-zero for even |α|, γ(1) = 0.

We now consider the case where γ(1) = 0. By the expressions in Table 1, the third order
term is

γ
( ) (

F
( )

− F
( ))

+ γ
( )(

F
( )

− 1

2
F
( ))

+ γ
( )(

F
( )

− 1

2
F
( ))

.

(18)

The expression is equal to D(p) · f − p div f , where

p = γ
( )

F
( )

+
γ
( )

2
F
( )

+
γ
( )

2
F
( )

.

And we see that (18) is equal to zero if and only if dx1∧dx2∧···∧dxn
p is a preserved measure

for the continuous system ẋ = f(x).
This holds in general: If B(γ) is a solution to (7), then the leading term of B(γ)

defines a preserved measure of the continuous system.

Case 2: Case 1: γ non-zero for odd |α|

We now consider the case where γ is nonzero only for α with odd number of vertices.
In this case the O(h) term is automatically zero. For the O(h2) term, we get

γ( )
(
F ( ) − F ( )

)
= 0. (19)

This implies that either γ( ) = 0 or

F ( ) = F ( ). (20)
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Equation (20) is equivalent to div f2 = D(div f) · f which again is equivalent to the
measure dx1∧dx2∧···∧dxn

div f being a preserved measure for the continuous system ẋ = f(x)

For the O(h3) term, assuming either γ( ) = 0 or F ( ) = F ( )

makes the term simplify to zero.

4 Examples

In this section we shall demonstrate the suggested approach on a number of well-known
examples. All experiments are performed with the computer algebra system Maple. The
algorithm takes any quadratic vector field as input and the Kahan map and its Jacobian
determinant are computed. Then the set of all aroma functions up to a specified order
is calculated, where each aroma function is now a multivariate polynomial. Next, a
maximal linearly independent subset is selected, say {ek}Nk=0. Now, the sought Darboux
polynomial is expressed as in the ansatz (9), and the condition (7) yields a system
of linear equations for the coefficients {Pk}Nk=0 of (9). One may find d ≥ 0 solutions
and thus d linearly independent Darboux polynomials which are density functions of
measures preserved by the Kahan method for the given quadratic vector field.

4.1 Homogeneous Nambu system

Consider the following system in R3, x = [x, y, z]T analysed in [5],

ẋ = ∇H1(x) ×∇H2(x),

where H1 and H2 are quadratic homogeneous polynomials in (x, y, z), i.e. for symmetric
3 × 3-matrices A and B, one has H1(x) = xTAx and H2(x) = xTBx. H1 and H2 are
first integrals of the system. It was found in [5] that with

C = A · adj(B) ·A, H3(x) = xTCx,

the corresponding Kahan map has a preserved measure with reciprocal density function

ḡ1 = (1 + 4h2H3)
2

and two modified first integrals

H̃1 =
H1

1 + 4h2H3
, H̃2 =

H2

1 + 4h2H3
.

Another reciprocal density function independent of h is obtained as

ḡ2 = ḡ1H̃1H̃2 = H1H2

and a h-independent first integral is obtained as H1/H2.
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Using our method of Darboux polynomials and aromas, we find that two linearly
independent density functions are

g1 = 1 − h2

12
F ( ) +

h4

96
F ( ),

g2 = F ( ) − 3F ( ),

so their ratio is a first integral. It can be convenient to replace g1 by g̃1 = g1 + 1
288h

4g2,
i.e.

g̃1 = 1 − h2

12
F ( ) +

h4

288
F ( ).

For any divergence free vector field in R3 it holds that

F ( ) =
1

2

(
F ( )

)2

so that in fact we have

g̃1 =

(
1 − h2

24
F ( )

)2

.

It is possible to prove that F ( ) = 32xTCx where C is given as

C = adj(adj(A) + adj(B)) − adj(adj(A)) − adj(adj(B)) −B · adj(A) ·B −A · adj(B) ·A.

Note that adj(adj(A)) = det(A) ·A. In any case, we see here that C is symmetric in the
arguments A and B, an issue discussed in [5].

Regarding the second measure g2, it is a homogeneous, quartic, h-independent poly-
nomial. Recalling above the h-independent quartic density function ḡ2 = H1H2 and the
rational first integral H̃ := H1/H2, it seems plausible that our g2 is of the form

g2 = ḡ2 · P (H̃), P (z) = αz + β +
γ

z
.

A calculation in Maple shows that there is a unique solution for α, β, γ, but their ex-
pressions are rather complicated.

4.2 A generalised Lotka–Volterra system and the dressing chain

Consider the problem
ẋ = x(βz − γy),

ẏ = y(−αz + γx),

ż = z(αy − βx).

(21)

Clearly I0 = x+y+z is a first integral of the continuous system for any choice of α, β, γ.
Since I0 is linear, it is preserved by any RK method, in particular by the Kahan method.
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4.2.1 Divergence free case α = β = γ = 1

In this case, the ODE has a second preserved integral I1 = xyz . Using the standard
approach, we find the densities

g1 =1 − h2

8
F ( ),

g2 =4F ( ) − 4F ( ) + F ( ) + h2
(
F ( )

− F ( ) + F ( ) − 1

4
F ( )

)
,

so this allows for one first integral. However, augmenting the basis of aroma functions
with e.g. I0F (t) for |t| ≤ 6, we can get two extra density functions

g3 = I0g1, g4 = I0g2,

and we actually recover the general integral I3 = I0 = g3
g1

yielding integrability.
The dressing chain system reads

ẋ = −y2 + z2 − b + c,

ẏ = x2 − z2 + a− c,

ż = −x2 + y2 − a + b,

where a, b and c are free parameters. Invariants of this system are

J1 = x + y + z,

J2 = (x + y)(y + z)(z + x) − ax− by − cz.

We can do the same basis augmentation as before, adding functions of the form J1F (t),
and we obtain preserved measures with densities

g1 =1 − h2

8
F ( ),

g2 =4F ( ) − 4F ( ) + F ( ) + h2
(
F ( )

− F ( ) + F ( ) − 1

4
F ( )

)
,

g3 =J1g1,

g4 =J1g2.

It is interesting to note that the aroma expressions are exactly the same as in the Lotka-
Volterra divergence free example. The reason is that these two systems are linked via a
linear transformation, see Lemma 2.

With α = β = γ = 1 in (21), we have the transformation

x = x̃ + z̃
y = x̃ + ỹ
z = ỹ + z̃

⇒
˙̃x = −ỹ2 + z̃2

˙̃y = x̃2 − z̃2

˙̃z = −x̃2 + ỹ2.
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4.2.2 The case α = β = 1, γ = −1

This is the following particular case of (21)

ẋ = x(y + z),

ẏ = −y(x + z),

ż = z(y − x).

(22)

which is also investigated in [4]. We get

g1 = − 2F ( ) + F ( ),

g2 =4F ( ) − 2F ( ) − 2F ( ) + F ( ),

g3 =2F ( ) − 2F ( ) + F ( ),

g4 = − 8F ( ) + 8F ( ) − 2F ( ) + 4F ( )

− 4F ( ) + F ( ),

g5 =2F ( ) − 4F ( ) + 4F ( ) − 2F ( )

+ F ( ) − 2F ( ).

In this case one may form first integrals e.g. by

Ii =
gi+1

g1
, i = 1, 2, 3, 4,

but only two of them, e.g. I1, I2, are functionally independent. One checks that I1 =
(x+ y+ z)2 = I20 (the square of the general invariant given above). All the measures are
independent of the step size h. We write out the list of densities and invariants:

g1 = −4z2,

g2 = g1I1,

g3 = 16xy(x + z)(y + z),

g4 = g1I
2
1 ,

g5 = g3I1,

I2 = −4xy(x + z)(y + z)

z2
,

I3 = I21 ,

I4 = I1I2.
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4.3 The generalised Ishi problem

We find in [5] the problem

ẋ = −c2x + b2y + b3z,

ẏ = c1x + c2y + c3z,

ż = a11x
2 + a12xy + a22y

2.

The Kahan method preserves volume exactly if the parameters satisfy two conditions,
see [5]. Alternatively, one may express the parameters aij as

a11 = kA2c3, a12 = −k(A1c3 + A2b3), a22 = kA1b3, (23)

where k is an arbitrary parameter. Here

A1 = b2c3 − b3c2, A2 = c2c3 + b3c1, A3 = −(b2c1 + c22).

The continuous system thus obtained has the invariants

H1 = z +
k

2
(c3 x− b3 y)2, (24)

H2 =
k

3
(c3x− b3y)3 +

c1
2
x2 + c2 xy + c3 xz −

b2
2
y2 − b3 yz. (25)

Preserved invariants of the Kahan map have been shown to be

H̃1 = z +
k

2
(c3 x− b3 y)2 − kh2

8

(
A2 x−A1 y

)2
,

H̃2 = H2 +
h2

24

(
A3(−c1x

2 − 2c2xy − 2c3xz + 2b3yz + b2y
2) + (A1c3 −A2b3)z

2

+ k(−2c3A
2
2x

3 + 2A2(b3A2 + 2c3A1)x
2y − 2A1(c3A1 + 2b3A2)xy

2 + 2b3A
2
1y

3)

)
,

see [5]. Using the aroma approach, we find the parameter independent measures

g1 =1,

g2 =F ( ) − 4F ( ) − h2

2
F ( ).

This shows that the volume is exactly preserved by Kahan’s method and there is another
measure with density g2 also preserved, and g2 is therefore also a first integral. It turns
out that g2 only depends on H̃1, we have in fact

g2 = 2A2
3 + 4k(A1c3 −A2b3)

2H̃1

20



4.4 The inhomogeneous Nambu system

We consider two quadratic functions

H(x) = xTHx + hTx,

K(x) = xTKx + kTx,

where H and K are arbitrary symmetric 3 × 3 matrices and h and k are vectors in R3.
The ODE we consider is

ẋ = ∇H(x) ×∇K(x). (26)

A preserved measure of the corresponding Kahan map can be found with density function

g = 1 − 1

12
h2F ( )

+ h4
(

1

36
F ( ) − 1

72
F ( ) − 1

96
F ( )

)

+
1

384
h6

F ( ) − 2F ( )

 .

The general expression for the density function has 15806 terms. Since the aromatic
functions are not generally linearly independent, one has several equivalent representa-
tions, in the sixth order term we have for instance

F ( ) − 2F ( ) =
2

5

F ( ) − 3F ( )


=

1

3

F ( ) − 4F ( )

 .

Similarly, the fourth order term could be replaced by

h4
(

1

12
F ( ) − 1

24
F ( ) − 1

96
F ( )

)
.

Note that the Kahan map of some special cases of the inhomogeneous Nambu system
(4.4) for which the density factorises, were treated in [8, 3].

4.5 Homogeneous quadratic divergence free systems in R3

Finally, we consider the general case of quadratic homogeneous divergence free vector
fields in 3 dimensions. They can be written in the form

ẋ =

 xTAx
xTBx
xTCx

 (27)
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for symmetric matrices A,B and C, where x = (x, y, z)T .
It can be shown that (27) is divergence free if and only if

{a1,1 + b1,2 + c1,3 = 0, a2,1 + b2,2 + c2,3 = 0, a3,1 + b3,2 + c3,3 = 0} .

Based on multiple experiments with randomized A,B and C, we pose the following
conjecture:

Conjecture 1. Let f be a quadratic, homogeneous, divergence free vector field in R3.

Assume that F ( ) ̸= 0 and that

F ( ) = αF ( ) (28)

holds for some α ∈ R. Then there is a preserved measure with density

g = 1 − 3 − α

24
h2F ( ) +

α2

24(3 + α)
h4F ( ). (29)

Remark 1. It might seem like a reasonable idea to try to prove the conjecture simply
by brute force using a CAS such as Maple. However, the calculations become intractable
using the algorithm described in Section 1 when all the matrix elements are treated as
free parameters. One can prove that under the hypotheses of the conjecture

F ( ) =
α

3

(
F ( ) + F ( )

)
.

Several test examples indicate that also the following relation holds

F ( ) = 2F ( ).

These two relations are central in deriving the formula (29).
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