
On the stability of computing polynomial
roots via confederate linearizations

Yuji Nakatsukasa∗and Vanni Noferini†

September 25, 2014

A common way of computing the roots of a polynomial is to find the
eigenvalues of a linearization, such as the companion (when the polynomial is
expressed in the monomial basis), colleague (Chebyshev basis) or comrade
matrix (general orthogonal polynomial basis). For the monomial case, many
studies exist on the stability of linearization-based rootfinding algorithms. By
contrast, little seems to be known for other polynomial bases. This paper
studies the stability of algorithms that compute the roots via linearization in
nonmonomial bases, and has three goals. First we prove normwise stability
when the polynomial is properly scaled and the QZ algorithm (as opposed
to the more commonly used QR algorithm) is applied to a comrade pencil
associated with a Jacobi orthogonal polynomial. Second, we extend a result
by Arnold that leads to a first-order expansion of the backward error when
the eigenvalues are computed via QR, which shows that the method can
be unstable. Finally, we focus on the special case of Chebyshev basis, in
particular the Chebfun rootfinder: we discuss its stability and describe an
optional functionality, made available for improved stability, for computing
the roots of a general continuous function f(x), implemented in the recently
updated version 5. The main message is that to guarantee backward stability
QZ applied to a properly scaled pencil is necessary.

Keywords: polynomial, roots, Chebyshev polynomial, companion matrix, colleague
matrix, comrade matrix, QZ, QR, recurrence relation, perturbation, orthogonal polyno-
mial
MSC classification: 65H04, 65F15, 65G50

∗Department of Mathematical Informatics, University of Tokyo, Tokyo 113-8656, Japan
(vanni.noferini@manchester.ac.uk). Supported by JSPS Scientific Research Grant No. 26870149.

†School of Mathematics, University of Manchester, Manchester, England, M13 9PL
(vanni.noferini@manchester.ac.uk). Supported by ERC Advanced Grant MATFUN (267526).

1

1. Introduction
Let p(x) ∈ R[x]n be a nonzero polynomial of degree at most n with real coefficients. The
rootfinding quest for the set of the solutions of the equation p(x) = 0 can rightly be
deemed one of the eldest mathematical problems that mankind has considered [15, 41].
Since the classical algebraic results by Abel, Galois and Ruffini in the 18th and 19th
centuries, it has been known that, for high degree polynomials (n ≥ 5), the search for a
general algebraic method that gives the exact roots is hopeless. Hence, it is unsurprising
that devising reliable numerical methods for polynomial rootfinding is a central theme in
numerical analysis.
A related problem is that of finding the roots, or some roots, of a general nonlinear

function. Indeed, it is not uncommon to reduce the problem to the polynomial case by
approximation: for instance, a standard way to compute the real roots of a smooth function
f(x) on an interval, as done in Chebfun [48], is to approximate f(x) by a polynomial p(x)
via Chebyshev interpolation, then compute the roots of p(x) =

∑n
i=0 ciTi(x) expressed in

the Chebyshev basis {Ti(x)} by computing the eigenvalues of the linearized colleague
matrix [25], [47, Ch. 18]. This process is known to work well in practice, but no analysis
has been carried out to prove its numerical stability.
More generally, one practical way of finding the roots of a polynomial is to first

construct either a matrix or a matrix pencil whose eigenvalues coincide, with the same
algebraic and geometric multiplicities, with the roots of p(x). This process is known
as a linearization of p(x). The next step is of course approximating the eigenvalues
numerically: usual choices are the QR algorithm, for matrices, or the QZ algorithm, for
matrix pencils. In this paper we refer to these algorithms simply as QR and QZ.
It should be noted that linearization is by no means the only option. Indeed, many

alternative ideas exist: the Durand–Kerner [31], the Ehrlich–Aberth [11], or the Jenkins–
Traub algorithms [29], and Weyl’s method [42] to name but a few.

Some of these alternative methods are strong competitors of the linearization method,
both for computational complexity and for stability (see, e.g., [7, 10, 11] for the Ehrlich–
Aberth method); on the other hand, special technologies, like subdivision [14] or preser-
vation of structures such as quasiseparable [5, 8, 9, 12, 13], can be exploited in order to
reduce the complexity of the linearization method to O(n2). Among the many rootfinding
algorithms available, our goal here is to understand the stability of linearization-based
methods, as they are often easy to implement (given a black-box eigensolver) and widely
used. For instance, the Matlab function roots follows precisely the above described
procedure via the eigenvalues of the companion matrix.
Since the second step of computing the eigenvalues is numerical, it needs to be

investigated whether the roots are computed stably. Specifically, the two standard
backward stable eigensolvers, QR for a matrix C or QZ for a matrix pencil λX + Y [24,
Ch. 7,8], are known to be backward stable with respect to the matrix norms, i.e., they
compute1 the exact eigenvalues of slightly perturbed matrices C + ∆C and λ(X + ∆X) +

1Strictly speaking, we should add: if they converge. For the nonsymmetric case, no formal proof
of convergence of either QR or QZ is known to the authors. In practice, and possibly relying on
randomized shifts when dealing with counterexamples cleverly conceived to embarrass one specific

2

(Y + ∆Y) for ‖∆C‖ ≤ ε‖C‖, ‖∆X‖ ≤ ε‖X‖, ‖∆Y ‖ ≤ ε‖Y ‖, where ε = q̂(n)u for a fixed
unit roundoff u and some low-degree polynomial with moderate coefficients q̂, whose
exact form would depend on the number of iterations before convergence and on the
choice of norms in the bound. However, stability in the matrix norm does not necessarily
imply stability in the polynomial. Specifically, let x̂i be the computed roots. Writing

p(x) =
n∑
i=0

ciφi(x), p̂(x) = α
n∏
i=1

(x− x̂i) =
n∑
i=0

ĉiφi(x) (1.1)

for some scalar α 6= 0, and defining c = [c0, c1, . . . , cn], ĉ = [ĉ0, ĉ1, . . . , ĉn] and ∆c = c− ĉ,
we say that the algorithm performed in a backward stable manner with respect to the
polynomial p if the difference in the coefficients is within O(ε):(‖∆c‖2

‖c‖2
=
) ‖c− ĉ‖2
‖c‖2

= O(ε). (1.2)

Note that the norm depends on the basis {φi(x)} and on the scaling, i.e., p← αp for a
nonzero scalar α. In practice we set α to α = cT ĉ

‖ĉ‖22
, which is the minimizer of ‖c− αĉ‖2.

Throughout we always denote by x̂i the computed roots of p, and by p̂ the polynomial
with exact roots x̂i and ĉ its coefficients.

In this paper we are primarily interested in the normwise backward stability of the
computation of the roots. That is, our goal is to give bounds for the right-hand side
of (1.2). For example, the stability proof in [49] for the use of QZ to compute the roots
of p(x), expressed in the monomial basis, falls into this category, and we extend their
result to other orthogonal polynomial bases in Section 3.

We note that some authors have discussed the more stringent componentwise backward
stability, which for example takes the form maxi |∆ci||ci| [21], [33], (also [46] for matrix
polynomials). However, even in the monomial case no known bound appears to guarantee
componentwise backward stability. For example, the analysis in [21] for monic polynomials,
i.e., cn = 1 expressed in the monomials gives

∆ci−1 =
i−1∑
m=0

cm

n∑
j=i+1

Ej,j+m−i −
n∑

m=i
cm

i∑
j=1

Ej,j+m−i, (1.3)

where E is the backward error in C by QR so that the computed eigenvalues are the
exact eigenvalues of C+E. While (1.3) gives the exact backward error in ci to first order,
it is generally difficult to derive individual bounds for each i. Often, componentwise
bounds (see for instance [33] for QZ in monomials) are not much more informative than
the much simpler normwise bound (obtained as a corollary of (1.3))

‖∆c‖2
‖c‖2

= O(ε)‖C‖2. (1.4)

Here the dependence on n is hidden in O(ε), that is, O(ε) is a constant that has size
q(n)u where q is a modest low-degree polynomial.

implementation, they do converge with no known exception.

3

We note that (1.4) suggests the crucial instability of QR: the backward error is
proportional to ‖C‖, meaning the computation is unstable if ‖c‖2 � 1. Note that this
issue cannot be resolved by a scaling p← αp. A related discussion is given in [33], which
also examines the effect of diagonal balancing for QR and QZ, see Section 4.4.

The authors feel a linearization-based rootfinder generally cannot achieve component-
wise stability unless a special structure is present in p(x) or the basis; indeed we argue
further in the appendix that componentwise backward stability is not achievable by any
method, at least for a generic choice of the polynomial basis and the machine number
system (the monomials are a notable exception). Given the discussion above, we focus
on the normwise stability.
It is worth mentioning another possible definition of stability, which concerns the

individual stability for each computed root. For example, each root computed by the
Ehrlich–Aberth method is known to have a small componentwise backward error [11]
in the monomial case. Specifically, each computed root x̂i satisfies2 p(x̂i) + ∆pi(x̂i) = 0

with ∆pi(x) =
∑n
j=0 ∆C(i)

j φ
(i)
j (x) and |∆c

(i)
j |
|cj | = O(ε); compare this with (1.2), and note

that ∆pi here depends on i. The strongest backward stability would be componentwise
for the whole set of computed roots: |∆ci||ci| = O(ε) for p(x) + ∆p(x) = κ

∏n
i=1(x− x̂i), but

at present we are unaware of any polynomial rootfinder that guarantees this.
When p(x) is expressed in the standard monomial basis, many studies exist on the

stability, or lack thereof, of the linearization-based rootfinders [12, 20, 21, 49]. However,
little seems to be known for p(x) expressed in a nonmonomial basis such as Chebyshev
and other orthogonal polynomials. Such bases are becoming increasingly important
for numerical purposes [22, 38, 47], as particularly exemplified by the prominence of
Chebyshev polynomials in the Chebfun system, in which roots is an important command
called within various polynomial operations such as computing the maxima and the L1
norm, or invoking abs.
In this work we focus on the normwise stability of linearization-based rootfinding

methods for polynomials expressed in certain nonmonomial basis. We will review some
basic notions concerning a commonly used class of linearizations in non-monomial bases
in Section 2.
The paper has three main themes:

1. In Section 3, we show that if p(x) is expressed in certain orthogonal polynomial
bases and the eigenvalues of a linearization of p(x), known as the comrade pencil,
are computed by QZ after scaling the polynomial to have coeffcients O(1), the
process is normwise backward stable. Note that in Chebfun QR, and not QZ, is
used by default for a polynomial scaled to be monic in the Chebyshev basis, and
this may in some circumstances lead to a colleague matrix with a large norm ‖C‖,
which is undesirable in view of (1.4). See also [12, 30] for a discussion for the
monomial basis yielding the similar conclusion that QZ is preferred to QR when
the leading coefficient is small.

2The weaker notion of normwise stability for each root is (p + ∆pi)(x̂i) = 0 with |∆ci|
‖c‖2

= O(ε).

4

2. In Section 4, we discuss QR applied to a monic polynomial, i.e., the leading
coefficient in the considered basis is 1, and in particular we show how some results
in [21] can be extended to other degree-graded bases, including any orthogonal
polynomial basis. The result reconfirms the advantage of QZ over QR, at least
when balancing is not used. In practice, the technique of diagonal balancing often
improves the stability of QR significantly, as we discuss in Section 4.4. However,
as the evidence provided in Section 6 illustrates, even with balancing QR-based
rootfinding can be normwise unstable, whereas we prove QZ-based rootfinding is
stable with a simple initial normalization. Since QZ is empirically about 3 times
more expensive than QR, the choice should be made based on the trade-off between
guaranteed stability (QZ) and speed (QR).

3. In Section 5 we focus on the Chebyshev basis and on the problem of finding the
real roots of a (possibly non-polynomial) function f(x) on an interval as done
in Chebfun, showing that the polynomial approximation preserves the normwise
stability of the computed roots and arguing that the subdivision technique can
improve the accuracy if the original function f(x) is resampled. Based on our
findings we suggest replacing the currently used QR with QZ, or at least providing
QZ as a “safer” option when stability is more important than speed. Indeed,
examples exist for which QR misses real roots that cannot be moved off the real
axis by a small backward perturbation.

2. Preliminaries on confederate linearizations
Clearly, there are uncountably many linearizations of a polynomial p(x). For example, if
C ∈ Rn×n is a linearization and X ∈ GL(R, n), then XCX−1 is also a linearization. Yet,
it is natural to focus only on those that can be easily constructed from its coefficient in
a given basis. Even with this restriction, the number of possibilities in the literature is
huge, particularly in the monomial basis. We will restrict ourselves to the case where
{φi} is a degree-graded basis, that is, deg φi = i, and to a certain class of linearizations,
that, following the nomenclature in [6], we call confederate linearizations. In the following
we assume that we can express p(x) =

∑n
i=0 ciφi(x). We will visualize a few confederate

linearizations by depicting their version for n = 4.
First, we assume that p(x) is expressed in the monomials and that it is monic in such

a basis, i.e., pn = 1 (which is no loss of generality, modulo a global multiplicative scaling).
The archetype of all linearizations is the companion matrix of p(x):

C =

−c3 −c2 −c1 −c0

1 0 0 0
0 1 0 0
0 0 1 0

 . (2.1)

In the literature, there is not a fixed convention on how to define the companion matrix.
Many variants are found, for instance: the transpose of (2.1), the matrix obtained by

5

flipping both rows and columns of (2.1), and the transpose of the latter. Moreover,
while some authors call (2.1) and its variants just “companion” matrices, others call
them “Frobenius companion” matrices, thereby granting the status of “companion” to
other linearizations as well, e.g., Fiedler matrices. All this is, of course, only a matter
of convention: we clarify once and for all that, throughout our theoretical analysis in
Sections 2, 3 and 4, we shall have no companion matrices other than (2.1). We nonetheless
note that the four mathematically equivalent forms can exhibit nontrivial numerical
differences, see Section 6.
The deep algebraic meaning of the companion matrix is that it is nothing but a

representation, in the monomial basis, of the multiplication-by-x operator in the quotient
ring R[x]n/〈p(x)〉 where 〈p(x)〉 is the ideal generated by p(x). In other words, as it is
immediate to verify,

C

xn−1

xn−2

...
x
1

 =

xn − p(x)
xn−1

...
x2

x

 ≡

xn

xn−1

...
x2

x

T

mod p(x).

For more details on this algebraic viewpoint, the reason it yields a linearization, and
some generalizations, see, e.g., [6, Ch. 5], [17, Sec. 10.4], and [40, Sec. 9].
Clearly, this concept is easily generalizable to any other polynomial basis [6]: we

now recall how. In particular, let {φi} be a degree-graded basis with φ0 = 1 and
denote by κ the ratio between the leading coefficients of φn and φn−1, when they are
expressed in the monomial basis. We now assume that p(x) is monic in the basis {φi},
i.e., p(x) = φn(x) +

∑n−1
i=0 ciφi(x). We consider the (unique) matrix Cφ satisfying

Cφ

φn−1(x)
φn−2(x)

...
φ1(x)
φ0

 =

xφn−1(x)− κ−1p(x)

xφn−2(x)
...

xφ1(x)
xφ0

 .

We call Cφ the confederate matrix of p(x) in the basis {φi}. Now we introduce some nota-
tion. LetB be the change of basis matrix such that

[
φn−1(x) φn−2(x) . . . φ1(x) φ0

]T
=

B
[
xn−1 xn−2 . . . x 1

]T
. In particular, since {φi} is degree-graded, B is upper trian-

gular. Moreover, let FRn ⊆ Rn×n be the vector subspace of “first row matrices”, which
we define as those matrices whose rows are all zero except (possibly) the first. We state
some properties of Cφ. Their proof is omitted as it is not difficult, and can be found in
various sources, e.g., [6, Thm. 5.3].

Theorem 2.1 (Properties of confederate matrices). Let p(x) = φn(x) +
∑n−1
i=0 ciφi(x)

and let Cφ be the confederate matrix of p(x) in the degree-graded basis {φi}, and let B be

6

the change of basis matrix between the monomials and {φi}, defined as above. Then, the
following properties hold:

• Cφ = BCB−1;

• if p(µ) = 0 then µ is an eigenvalue of Cφ of geometric multiplicity 1, and the corre-
sponding eigenvector v has Vandermonde structure v =

[
φn−1(µ) . . . φ0(µ)

]T
;

• Cφ = Hφ + Fφ(p), where Hφ is upper Hessenberg and depends only on {φi}, but
not on p(x), while Fφ(p) ∈ FRn and its first row is κ−1

[
−cn−1 . . . −c1 −c0

]
,

where κ is the ratio of the leading coefficients of φn and φn−1, when expressed in
the monomial basis.

Note in the first item that if Cφ = BCB−1 is a confederate matrix for p(x), then C is
the companion matrix for αp(x), where α 6= 0 is some constant. This scaling is needed
because, in general, a polynomial that is monic when represented in one degree-graded
basis needs not be monic when represented in another one.

If {φi} are orthogonal polynomials, the corresponding confederate matrices are called
comrade matrices [6], and have the additional property that Hφ is tridiagonal [6]. Among
orthogonal polynomials, the Chebyshev polynomials of the first kind, traditionally denoted
by {Ti}, have great importance in practical applications. The comrade matrix for the
Chebyshev basis is known as the colleague matrix and we denote it by CT . In its
decomposition CT = HT + FT (p) as in Theorem 2.1, it holds κ = 2 and

HT =

0 1

2 0 0
1
2 0 1

2 0
0 1

2 0 1
2

0 0 1 0

 .
So far, we have assumed that the polynomial p(x) is monic in the basis {φi}, i.e., in its
expansion on the basis of choice its leading coefficient cn = 1. Although, as argued above,
this is no loss of generality, there are some circumstances where cn 6= 1 and one might
find it more convenient not to scale all the coefficients by cn. However, in this case the
corresponding linearizations will not be confederate matrices, but confederate pencils.
For n = 4 the confederate pencil of p(x) =

∑4
i=0 ciφi(x) is

c4 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (xI4 − Cφ),

where Cφ is the confederate matrix of p(x)/c4. Analogously to the monic case, we will
use the expressions, resp., comrade pencil, colleague pencil and companion pencil to refer
to the confederate pencil in, resp., an orthogonal polynomials basis, the first Chebyshev
basis and the monomial basis.

7

Example 2.2. We illustrate the previous definitions with a concrete example. Let
p(x) = x4 + x3 + x2 + x+ 1. Then its companion matrix is

C =

−1 −1 −1 −1
1 0 0 0
0 1 0 0
0 0 1 0

 ,
and, since p(x) is monic in the monomial basis, its companion pencil is xI4 − C. An
easy computation shows that in the Chebyshev basis p(x) = 1

8T4(x) + 1
4T3(x) + T2(x) +

7
4T1(x) + 15

8 T0(x). Although p(x) is not monic in this basis, we may scale it appropriately,
and the colleague matrix associated with the monic (in the Chebyshev basis) polynomial
8p(x) is

CT =

−1 −7/2 −7 −15/2
1/2 0 1/2 0
0 1/2 0 1/2
0 0 1 0

whereas the colleague pencil associated with p(x) is

x

1/8 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

−

−1/8 −7/16 −7/8 −15/16
1/2 0 1/2 0
0 1/2 0 1/2
0 0 1 0

 .
Similarly, if {φi} is the Legendre basis then expanding 35

8 p(x) = φ4(x)+ 7
4φ3(x)+ 65

12φ2(x)+
7φ1(x) + 161

24 φ0(x) we obtain the comrade matrix

Cφ =

−1 −8/3 −4 −23/6
3/5 0 2/5 0
0 2/3 0 1/3
0 0 1 0

 ,
and so on.

We conclude this introductory section with a few comments. In principle, one could
consider any polynomial basis, not necessarily degree-graded. In other words, B needs
not be triangular. Borrowing the terminology once again from [6], one could use the name
congenial matrices (or pencils) for this further generalization of confederate matrices
(or pencils). Note that any matrix similar to the companion (that is, any linearization
consisting of a matrix rather than a pencil) is a congenial matrix in some polynomial
basis. Although some bases of practical interest, e.g., Newton, Lagrange, or Bernstein,
are not degree-graded, we argue that in practice, if the QR algorithm is then used, there
is not much to gain in analyzing congenial matrices that are not confederate. Indeed,
generally a congenial matrix will not be upper Hessenberg, and the first task that QR
performs is to reduce the matrix to Hessenberg form. One can regard this process as
implicitly performing a change of basis towards a degree-graded one.

8

3. Stability of rootfinding via the QZ algorithm applied to the
colleague and a certain class of comrade pencils

In the concluding remark of [49], Van Dooren and Dewilde show that QZ applied to the
companion pencil for computing the roots of a scalar polynomial p(x) =

∑
cix

i such
that maxi |ci| = O(1) yields a normwise backward stable rootfinder. In this section, we
extend this result to the Chebyshev basis, corresponding to the colleague pencil, and to
a certain class of orthogonal polynomials, corresponding to comrade pencils based on
Jacobi polynomials with parameters |α|, |β| ≤ 1

2 .
This is the main technical result of the paper and the argument is not immediate. We

first show that the backward error caused in QZ can be compressed so that the computed
roots can be written as the exact roots of a polynomial with slightly perturbed coefficients
in a slightly perturbed basis. We then prove that orthogonal polynomials on [−1, 1]
defined by a three-term recurrence have roots that are not sensitive to perturbation in
the recurrence relation. We use this to conclude that the computed roots are the exact
roots of a polynomial with slightly perturbed coefficients in the original basis.
For definiteness and simplicity we first derive the results for the Chebyshev basis.

Later we will argue that essentially the same proof carries over more generally to Jacobi
polynomials P (α,β)

n [45, Ch. 4], i.e. polynomials orthogonal with respect to the weight
function (1 − x)α(1 + x)β on [−1, 1], in which we impose the parameters |α|, |β| ≤ 1

2 .
Chebyshev is a special case in which α = β = −1

2 , and other important special cases
include Legendre with α = β = 0, Chebyshev of the second kind with α = β = 1

2 , and
ultraspherical polynomials with α = β (up to normalizing each φi(x) by constants).
Extending the results to polynomials orthogonal on a general real interval [a, b] is
straightforward by an affine mapping.

3.1. Compressing backward error by QZ
Let p(x) be a scalar polynomial expressed in the Chebyshev basis:

p(x) =
n∑
i=0

ciTi(x), ‖c‖2 = 1, (3.1)

where p(x) is normalized so that the vector of coefficients [c1, . . . , cn] have norm 1, as
assumed also in [49]; the essence of what follows remains valid for ‖c‖2 = O(1). Suppose
that p(x) is linearized with the colleague pencil, say, λX + Y . Then, the QZ algorithm is
applied to the latter. This ensures that the eigenvalues of the linearization λX + Y are
computed in a backward stable manner, that is, they are the exact eigenvalues of some
λX̃ + Ỹ , which is a pencil of the form (for n = 6)

λ

c̃6 0̃ 0̃ 0̃ 0̃ 0̃
0̃ 1̃ 0̃ 0̃ 0̃ 0̃
0̃ 0̃ 1̃ 0̃ 0̃ 0̃
0̃ 0̃ 0̃ 1̃ 0̃ 0̃
0̃ 0̃ 0̃ 0̃ 1̃ 0̃
0̃ 0̃ 0̃ 0̃ 0̃ 1̃

− 1

2

−c̃5 c̃6 − c̃4 −c̃3 −c̃2 −c̃1 −c̃0
1̃ 0̃ 1̃ 0̃ 0̃ 0̃
0̃ 1̃ 0̃ 1̃ 0̃ 0̃
0̃ 0̃ 1̃ 0̃ 1̃ 0̃
0̃ 0̃ 0̃ 1̃ 0̃ 1̃
0̃ 0̃ 0̃ 0̃ 2̃ 0̃

. (3.2)

9

Here and below, we adopt the following notation: for any a ∈ R, ã is a real number
satisfying |ã− a| ≤ ε ≤ q̂(n)u for some low degree polynomial q̂, denoting by u the unit
roundoff. In other words, ε represents the actual backward error of the outcome of QZ,
measured in the max-norm, and q̂(n)u is some theoretical upper bound for ε. We now
show that we can apply an equivalence transformation so that (I + E)(λX̃ + Ỹ)(I + F)
is a comrade pencil and, at the same time, a small perturbation of a colleague pencil.
More specifically, it has the form

λ

c̃6 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

− 1

2

−c̃5 c̃6 − c̃4 −c̃3 −c̃2 −c̃1 −c̃0
1̃ 0̃ 1̃ 0 0 0
0 1̃ 0̃ 1̃ 0 0
0 0 1̃ 0̃ 1̃ 0
0 0 0̃ 1̃ 0̃ 1̃
0 0 0 0 2̃ 0̃

. (3.3)

Lemma 3.1. Let λX̃ + Ỹ = λ(X + ∆X) + (Y + ∆Y) be a perturbed colleague pencil as
in (3.2), with |∆Xij |, |∆Yij | ≤ ε. Then there exist matrices E,F with ‖E‖2, ‖F‖2 = O(nε)
such that the equivalent pencil (I + E)(λX̃ + Ỹ)(I + F) has the form as in (3.3).

Proof. The proof is constructive and algorithmic, in the same vein as [49]: we describe
a procedure that generates a pencil of the form (3.3) by an equivalence transformation
starting from one of the form (3.2). The matrices E,F can be chosen so that (I + E) =∏
i(I + Ei) and (I + F) =

∏
i(I + Fi), where I + Ei (resp., I + Fi) represent elementary

row (resp. column) operations. Observe that this immediately implies that I +E and
I + F are nonsingular, so that the outcome (I +E)(λX̃ + Ỹ)(I + F) is indeed equivalent
to the pencil λX̃ + Ỹ . To help the reader follow the algorithm, we first illustrate it
graphically for n = 6: the first subscript denotes the order in which perturbed zeros are
annihilated, whereas the second subscript indicates whether this is done via a row (r) or
a column (c) operation.

λ

c̃ 0̃10,r 0̃10,r 0̃10,r 0̃10,r 0̃10,r
0̃1,c 1̃ 0̃11,r 0̃11,r 0̃11,r 0̃11,r
0̃1,c 0̃3,c 1̃ 0̃13,r 0̃13,r 0̃13,r
0̃1,c 0̃3,c 0̃5,c 1̃ 0̃15,r 0̃15,r
0̃1,c 0̃3,c 0̃5,c 0̃7,c 1̃ 0̃17,r
0̃1,c 0̃3,c 0̃5,c 0̃7,c 0̃9,c 1̃

− 1

2

c̃ c̃ c̃ c̃ c̃ c̃

1̃ 0̃ 1̃ 0̃12,c 0̃12,c 0̃12,c
0̃2,r 1̃ 0̃ 1̃ 0̃14,c 0̃14,c
0̃2,r 0̃4,r 1̃ 0̃ 1̃ 0̃16,c
0̃2,r 0̃4,r 0̃6,r 1̃ 0̃ 1̃
0̃2,r 0̃4,r 0̃6,r 0̃8,r 2̃ 0̃

.

(3.4)
The process perturbs the coefficients terms c and 1, which we do not keep track of in (3.4),
instead simply write c̃ and 1̃.

Here the 0̃ terms (without subscripts) in the second matrix do not get eliminated; they
remain nonzero and O(ε) in absolute value.

The final step is to scale all but the first row in order to obtain 1 (unperturbed), rather
then 1̃, in the diagonal elements in X̃.
A more formal description of the algorithm for a generic n is as follows:

10

1 For j = 1 : n− 2
2 For i = (j + 1) : n
3 Annihilate X̃ij by adding a multiple of ith column to jth column.
4 end
5 For i = (j + 2) : n
6 Annihilate Ỹij by adding a multiple of (j + 1)th row to ith row.
7 end
8 end
9 Annihilate X̃n,n−1 by adding a multiple of nth column to (n− 1)th column.

10 For j = 2 : n
11 Annihilate X̃1j by adding a multiple of jth row to 1st row.
12 end
13 For i = 2 : n− 2
14 For j = (i+ 1) : n
15 Annihilate X̃ij by adding a multiple of jth row to ith row.
16 end
17 For j = (i+ 2) : n
18 Annihilate Ỹij by adding a multiple of (i+ 1)th column to jth column.
19 end
20 end
21 Annihilate X̃n−1,n by adding a mutliple of nth row to (n− 1)th row.
22 For i = 2 : n
23 Set X̃ii = 1 by scaling the ith row.
24 end

Now we represent each single operation in the pseudocode above either as I + Ei or
as I + Fi, according to whether it is a row or column operation. Observe the two key
features of the process that (i) once a zero element is created, it is never subsequently
perturbed again and (ii) to annihilate an element we always add a small multiple of 1̃,
ensuring that Ei and Fi are indeed small (this might not be the case if we needed to add
a multiple of some c̃). This guarantees that eventually the form (3.3) can be obtained.
Each Ei, Fi has only one nonzero element, of absolute value bounded by ε. Moreover,
examining lines 6, 11, 15 and 21 of the pseudocode we see that the nonzero elements
always are in different positions in each Ei, and the same is true for each Fi.

Hence, E =
∑
iEi +O(ε2) and F =

∑
i Fi +O(ε2) are both bounded, to first oder, by

ε in the max-norm. But in turn this implies [27, Ch. 5] that for the spectral norm we
have ‖E‖2, ‖F‖2 ≤ nε+O(ε2).

Remark 3.2. Although, for definiteness, we have chosen to give the statement of Lemma
3.1 in the spectral norm, similar results are as easily obtainable for other choices of norms.
For example, a simple modification of the proof shows that ‖E‖, ‖F‖ ≤ n1.5ε + O(ε2)
where ‖ · ‖ is any unitarily invariant norm, e.g., the Frobenius norm, or the nuclear
norm [27, Sec. 5.6].

11

As a consequence of Lemma 3.1, we see that QZ gives the exact roots of

p̂(x) =
n∑
i=0

c̃iT̃i(x), (3.5)

which, with respect to the original p(x) in (3.1), is a polynomial with slightly perturbed
coefficients in a slightly perturbed basis T̃i(x). Concerning the coefficients c̃i in (3.5), by
the assumptions on the outcome of QZ and by Lemma 3.1 one can check that they satisfy

max
i
|c̃i − ci| = O(q1(n)u), (3.6)

where q1 is some slowly growing function ≤ αn
1
2 +τ where τ = deg q̂(n), the error by QZ,

and α is a moderate constant. Note the factor n
1
2 instead of ‖E‖2, ‖F‖2 ≈ n, which we

obtain since only one row or column of E and F affect each c̃i. On the other hand, the
perturbed Chebyshev polynomials T̃i(x) satisfy the perturbed recurrence relation

2xT̃i(x) = (1 + εi,i+1)T̃i+1(x) + εi,iT̃i(x) + (1 + εi,i−1)T̃i−1(x), (3.7)

which is a slight perturbation of the original Chebyshev recurrence relation

2xTi(x) = Ti+1(x) + Ti−1(x). (3.8)

In (3.7), the εi,j terms are modest multiples of the unit roundoff u, satisfying max |εi,j | ≤
q2(n)u. Here again q2(n) ≤ αn

1
2 +τ . To simplify notation, we also introduce a third slowly

growing function q(n) = max(q1(n), q2(n)) and define (note that we distinguish ε and ε)

ε = |q(n)u|. (3.9)

Observe that by definition we have maxi |c̃i− ci| ≤ ε and |εi,j | < ε. The exact exponent of
n in q(n) might in principle be obtained by using strict error bounds for QZ and keeping
track of each step in the proof of Lemma 3.1. Such a bound might be obtainable by
applying with some care the results of [26, Ch. 19], and would clearly also depend on
the number of iterations3. However, here we will not go into such level of detail. We
just assume in the following that, for a given unit roundoff u, n is moderate so that
ε = |q(n)u| � n−2.

The question therefore is whether the roots of p̂(x) in (3.5) can be regarded as backward
stably computed roots of p(x). We prove this in the affirmative:
Theorem 3.3. Let T̃i(x) be perturbed Chebyshev polynomials defined by (3.7), and let
p̂(x) be as in (3.5) with maxi |ci− c̃i| ≤ ε. Suppose moreover that ε� n−2. Then we can
write

(p̂(x) =)
n∑
i=0

c̃iT̃i(x) =
n∑
i=0

ĉiTi(x) (3.10)

for some ĉi, which satisfy ‖ĉ− c‖2 = O(n2.5ε), where ε is defined by (3.9).
The proof of Theorem 3.3 needs some tools from the theory of orthogonal polynomials.

These tools are used in Section 3.2 to develop some intermediate results: building on
these, we will then prove Theorem 3.3 in Section 3.3.

3It is commonly observed that, in practice, the number of iterations is ≈ 2n. Again, no rigourous proof
of this fact for a general pencil is, to our knowledge, currently available.

12

3.2. Orthogonal polynomials with perturbed recurrence relation
For definiteness we will first focus on the Chebyshev polynomial of the first kind. We
will then discuss how to extend the results to certain Jacobi orthogonal polynomials [45,
Ch. 4].
Let {T̃i(x)}i≤n be the perturbed Chebyshev polynomials satisfying (3.7). Letting

K = [−1, 1], we show that
‖T̃k − Tk‖K = O(k2ε). (3.11)

Here and below ‖p‖K := maxx∈K |p(x)| denotes the L∞ norm of a continuous function
p(x) on the compact interval K. We prove (3.11) via the following steps:

1. Prove the roots of T̃k(x) are within O(ε) of those of Tk(x).

2. Prove the polynomial value T̃k(x) is stable under perturbation in the roots: ‖T̃k −
Tk‖K = O(k2ε).

Our results extend previous studies on perturbed orthogonal polynomials [28, 34, 35]
in that we consider perturbation in any of the recurrence relations.

3.2.1. Roots of orthogonal polynomials are insensitive to perturbation in the
recurrence relations

For the orthogonal polynomials {T̃i(x)} defined by the recurrence relation (3.7) the
following statement holds [23, 51]: for all j = 0, . . . , n− 1, the roots of T̃j+1(x) are the
eigenvalues of the (j + 1)× (j + 1) Jacobi matrix

1
2

−2εj,j 1 + εj,j−1
1 + εj−1,j −2εj−1,j−1 1 + εj−1,j−2

. . .
. . .

. . .

1 + ε1,2
. . . 1 + ε1,0

2 + 2ε0,1 −2ε0,0

, (3.12)

where εij are the same as in (3.7). Let ε be as in (3.9). Then (3.12) can be easily
transformed into a symmetric tridiagonal matrix plus an O(ε) perturbation via a diagonal
similarity transformation defined by the matrix D = diag(In−1,

√
1
2). It is known that

simple eigenvalues of a symmetric matrix are well-conditioned, even under nonsymmetric
perturbation [44, Sec. IV.5.1]. Specifically, the perturbation in the roots is linear, with
constant γ of magnitude ≈ 1, in the spectral norm of the perturbation matrix ∆T . The
latter is O(ε), due to the tridiagonal structure, as can be verified via Gerschgorin’s
theorem applied to (∆T)T∆T . To summarize, labelling the roots of Tj(x) (resp. T̃j(x)
as r(j)

i (resp. r̃(j)
i), we can write

max
j=1,...,n

max
i=1,...,j

|r(j)
i − r̃

(j)
i | := η ≤ ρε (3.13)

13

where ρ is a small constant independent of n. Furthermore, if the perturbation is real,
as always happens if p has real coefficients, then the roots will stay real unless the
perturbation is large enough to make the roots collide, which does not happen under
our assumption ε = |q(n)u| � n−2, because the roots of Tj(x) are separated by at least
a distance O(n−2) [45, Thm. 6.21.2]. We note that for Chebyshev polynomials Tj(x)
whose roots are cos(iπ2j) a simple argument improves the separation to 4

n2 , as can be seen
by adapting (B.2) in the appendix to the specific case of Chebyshev polynomials. This
allows for a slightly larger ε (i.e. the results are applicable to larger n).

3.2.2. Values of Chebyshev polynomials are insensitive to perturbation in the roots

As a preliminary, we need to prove a technical lemma involving the digamma function [1,
Sec. 6.3].

Lemma 3.4. Let ψ(y) be the digamma function and consider the smooth function

y ∈ [0, 1] 7→
{
f(y) = −ψ(y) sin(πy) if y > 0,
f(0) = π.

The following properties hold:

1. For any y ∈ [0, 1/4], f(y) < 3.2222;

2. For any y ∈ [1/4, 1], f(y) is decreasing.

Proof. Note first that f(y) > 0 for all y ∈ [0, 1], being the product of two positive
functions. It is immediate that f(y) is decreasing in [1/2, 1], because it is the product of
two positive decreasing functions. We claim, and will prove later, that f(y) is concave on
[0, 1/2]. Observe that by the expansion [1, eq. (6.3.5),(6.3.14)]

−ψ(y) = 1
y

+ γ −
∞∑
n=2

(−1)nζ(n)yn−1,

where γ ≈ 0.5772 is the Euler-Mascheroni constant and ζ(x) is Riemann’s zeta function,
it is straightforward to show that f ′(0) = γ > 0. Similarly, from [1, eq. (6.4.4)] one
can prove f ′(1/2) = −π2/2 < 0. Therefore, f(y) has a unique maximum in (0, 1/2).
Both f(y) and f ′(y) can be reliably evaluated numerically [3, 37], and hence, we may
approximate the maximum and its value with arbitrary precision, e.g., by finding the
unique root of f ′(y) by the bisection method. With this technique, it is readily estimated
that f ′(y∗) = 0 for y∗ ' 0.089638 < 1/4. Therefore f is decreasing for any y > y∗, and a
fortiori for any y > 1/4. To conclude the proof, from a numerical approximation of f(y∗)
up to the desired precision we obtain |f(y)| ≤ f(y∗) < 3.2222.
It remains to prove that f(y) is concave on [0, 1/2]. By [1, eq. (6.3.16)],

f(y) = −ψ(y) sin(πy) = γ sin(πy)− sin(πy)
∞∑
n=1

y − 1
n(n+ y − 1)

14

Writing gn(y) = sin(πy) y−1
n(n+y−1) , we can show that gn(y) is convex for n ≥ 2. Indeed,

we have

g′′n(y) = 2nπ(n+ y − 1) cos(πy) +
(
−2n

(
1 + π2(1− y)2)+ n2π2(1− y) + π2(1− y)3) sin(πy)
n(n+ y − 1)3

Since y ∈ [0, 1/2], the numerator is larger than sin(πy)hn(1− y) where

hn(z) = n2π2z − 2n
(
1 + π2z2

)
+ π2z3,

having performed the simple change of variable 1− y =: z ∈ [1/2, 1]. We get

hn+1 − hn = (2n+ 1)π2z − 2n
(
1 + π2z2

)
≥ 0 ∀n, ∀z ∈ [1/2, 1],

as is clear because the above is a concave function of z that takes the values, resp.,
nπ2 − 2 > 0 and (2n− 1)π2 − 2 > 0 at, resp., z = 1/2 and z = 1. Hence together with
h2(1−y) > 0 for y ∈ [0, 1/2] (which can be verified easily) we conclude that hn(1−y) > 0
for all n ≥ 2 and y ∈ [0, 1/2]. Since the first term in the sum sin(πy)

∑∞
n=1

y−1
n(n+y−1)

is not convex, it remains to prove that for a partial sum sin(πy)
(∑k

n=1
y−1

n(n+y−1) − γ
)

is convex on [0, 1/2] for some k. This is true for k = 2, as can be verified by direct
calculation, and hence, the claim is proved.

Now, for any interval I, we denote the L∞(I) norm of a continuous function by ‖ · ‖I ;
also, recall K := [−1, 1]. Let Tn(x) be the Chebyshev polynomial of degree n; recall that
‖Tn‖K = 1. Observe that we can write Tn(x) = α

∏
i(x− ri) where α > 0 depends on n

(more precisely α = 1 for n ≤ 1 and α = 2n−1 otherwise). Here and below, ri are the
roots of the nth Chebyshev polynomial. Suppose each root of Tn(x) is perturbed by ηi,
and let T̃n(x) = α

∏
i(x− ri− ηi). We denote ~r = [r1, . . . , rn] ∈ Rn, ~η = [η1, . . . , ηn] ∈ Rn,

η = ‖~η‖∞.
Our goal is to prove that the perturbation in the polynomial value ‖Tn− T̃n‖K/‖Tn‖K

is insensitive to perturbation in the roots. In particular, we will prove the following

Theorem 3.5. Let Tn ∈ R[x] be the Chebyshev polynomial of degree n, and T̃n defined
as above. ‖T̃n − Tn‖K ≤ ηn2‖Tn‖K + O(η2). Moreover, the constant is tight, i.e., for
any c < 1 there exists a choice of ~η such that ‖~η‖∞ ≤ η and ‖T̃n − Tn‖K > cηn2‖Tn‖K .

Proof. Let us consider the function f(~y;x) = α
∏
i(x − yi) : Rn → R. Noting that

Tn(x) = f(~r;x) and expanding f in a Taylor series around ~y = ~r we get

T̃n(x)− Tn(x) = ∇f(~r;x) · ~η +O(η2).

Observe that
∣∣ ∂f
∂yi

∣∣ =
∣∣ f
x−yi

∣∣. Hence, to first order in η, ‖Tn − T̃n‖K ≤ η
∑
i ‖

Tn(x)
x−ri ‖K .

Hence, we only need to estimate the function

P(x) :=
∑
i

|Tn(x)|
|x− ri|

.

15

This function satisfies the property that P(ri) = |T ′n(ri)| for all i, and furthermore
P(±1) = |T ′n(±1)|. Observe further that P(x) is even, so it suffices to study it for
0 ≤ x ≤ 1.
Clearly, since the involved absolute values can be resolved with a unique choice of

signs in each interval of the form [rj+1,rj], we have that P(x) is piecewise polynomial
and equal to T ′n(x) for x ≥ r1. Furthermore it is equal to

(−1)j
T ′n(x) + 2

j∑
i=1

Tn(x)
ri − x

for all rj+1 ≤ x ≤ rj . We may limit our study to j ≤ n/2, by symmetry.

Moreover note that for n = 1, 2 we have, resp., P(x) = 1 and 2P(x) = |x− 1√
2 |+ |x+

1√
2 | ≤ 2, and hence, we may assume n ≥ 3 in the following.
Now let us parametrize x = cos(2j−1+2y

2n π) for y ∈ [0, 1], except if n is even and
j = n/2: in this case y ∈ [0, 1/2]. Then, recall T ′n(x) = nUn−1(x). We can use
Tn(x) = cos(n acos(x)) = cos(n(2j−1+2y

2n π)) = cos(2j−1+2y
2 π) = (−1)j sin(πy) and sim-

ilarly, using Un−1(x) = sin(nacos(x))
sin(acos(x)) we have sin(2j−1+2y

2n π)Un−1(x) = sin(2j−1+2y
2 π) =

(−1)j+1 cos(πy). Thus we have

P(x) = −n cos(πy)
sin(2j−1+2y

2n π)
+

j∑
i=1

sin(πy)
sin(i+j−1+y

2n π) sin(j−i+y2n π)
. (3.14)

We distinguish the cases j = 1 and j > 1. Let first j = 1, then

P(x) = −n cos(πy)
sin(1+2y

2n π)
+ sin(πy)

sin(1+y
2n π) sin(y

2nπ)
.

Suppose first y ≤ 1/2. Then 1+y
2n ≤

1
4 implying sin(1+y

2n π) ≥
√

2(1+y)
n , and similarly

from y
2n ≤

1
12 we see that sin(y

2nπ) ≥ 3(
√

3−1)y√
2n . Therefore we get the upper bound

P(x) ≤ n2
(

π

3(
√

3− 1)(1 + y)
− 2 cos(πy)
π(1 + 2y)

)
,

and studying the function between brackets it is revealed that its maximum in [0, 1/2] is
achieved at y = 1/2 and therefore we have the upper bound

P(x) ≤ 2π
9(
√

3− 1)
n2 . 0.954n2 < n2.

Now suppose 1/2 ≤ y ≤ 1. In this case 1+y
2n π ≤

1
3π so we can estimate sin(1+y

2n π) ≥
3
√

3(1+y)
4n , sin(y

2nπ) ≥ 3y
2n , and sin(1+2y

2n π) ≥ 1+2y
n , yielding the upper bound

P(x) ≤ n2
(

8 sin(πy)
9
√

3y(1 + y)
− cos(πy)

1 + 2y

)
,

16

and once again studying this function we see that its maximum is achieved at y = 1/2,
where it is

P(x) ≤ 32
27
√

3
n2 . 0.685n2,

concluding the analysis for j = 1.
For j ≥ 2, defining δ = j − i we estimate the second term in P(x) by

j∑
i=1

sin(πy)
sin(i+j−1+y

2n π) sin(j−i+y2n π)
≤ n2 sin(πy)√

2

j−1∑
δ=0

1
2j − 1− δ + y

1
δ + y

.

Recall that the digamma function ψ(z), satisfies [1, eq. (6.3.5),(6.3.6)]

ψ(j + z)− ψ(z) =
j−1∑
δ=0

1
δ + z

, (3.15)

and note that we can write

(2j + 2y − 1)
j−1∑
δ=0

1
2j − 1− δ + y

1
δ + y

=
j−1∑
δ=0

1
δ + y

+
j−1∑
δ=0

1
j + y + δ

,

where in the second summation we have relabelled δ → j − 1 − δ. Thus, using (3.15)
twice, we obtain

j−1∑
δ=0

1
2j − 1− δ + y

1
δ + y

= ψ(2j + y)− ψ(y)
2j − 1 + 2y . (3.16)

Hence
j∑
i=1

sin(πy)
sin(i+j−1+y

2n π) sin(j−i+y2n π)
≤n2 sin(πy)√

2
ψ(2j + y)− ψ(y)

2j − 1 + 2y .

From [1, eq. (6.3.2)] we see that ψ(2j+y)
2j+2y−1 ≤

H2j−1−γ
2j−1 , with γ the Euler-Mascheroni

constant and Hj the jth harmonic number. It is easy to verify that H2j−1−γ
2j−1 is a decreasing

function of j, and so using j ≥ 2 we get

ψ(2j + y)
2j + 2y − 1 ≤

H3 − γ
3 = 11− 6γ

18 .

By Lemma 3.4, −ψ(y) sin(πy) < 3.2222 on y ∈ [0, 1]. Hence for any y ∈ [0, 1/4], since
sin(πy) ≤ 1√

2 , the summation (3.16) is bounded by

n2
(3.2222

6 + 11− 6γ
36

)
< 0.74644n2 < n2,

yielding a bound for P(x) in (3.14) because the cosine term is negative. If 1/4 ≤
y ≤ 1/2, we cannot bound the sine other than with 1, but we can use the better

17

bounds −ψ(y) sin(πy) ≤ −ψ(1/4) sin(π/4) = π+6 log 2+2γ
2
√

2 , by Lemma 3.4, and ψ(2j+y)
2j+2y−1 ≤

2H3−γ
7 = 11−6γ

21 . These yield the upper bound

P(x) ≤ n2
(
π + 6 log 2 + 2γ

14 + 11− 6γ
21
√

2

)
< 0.9n2 < n2.

Finally, when y ≥ 1/2 we must also control the cosine term, since it is positive.
This is easily done since 2j − 1 + 2y ≥ 2j ≥ 4 and hence sin(2j−1+2y

2n π) ≥ 4
n , yielding

−n cos(πn) csc(2j−1+2y
2n π) ≤ | cos(πy)|n2

4 . Note the improved bounds −ψ(y) sin(πy) ≤
−ψ(1/2) sin(π/2) = 2 log 2 + γ and ψ(2j+y)

2j−1+2y ≤
H2j−1−γ

2j ≤ 11−6γ
24 . Hence we get the bound

n2
(1

4 + γ + 2 log 2
4
√

2
+ 11− 6γ

24
√

2

)
< 0.81922n2,

and we are done.
Finally, for the tightness, since ‖T ′n‖K = n2‖Tn‖K = n2, and this is achieved at

x = 1 [36, Ch. 2] this is the best bound we can get. Note that it is realizable by choosing
ηi = η in the definition of p̂.

Finally, we must slightly weaken one assumption in Theorem 3.5. Indeed, T̃k(x) might
not have the same leading coefficient as Tk(x). Let c̃k and ck denote the respective
leading coefficients. By (3.7) we deduce that c̃k ≤ (1 + ε)k, hence c̃k ≤ (1 + kε)ck +O(ε2).
Therefore

‖T̃k − Tk‖K ≤ ‖T̂k − Tk‖K + ‖(c̃k
ck
− 1)T̂k‖K

≤ ‖T̂k − Tk‖K + kε(‖T̂k − Tk‖K + ‖Tk‖K)
≤ k2η + kε+O(ε2) ≤ 2ρk2ε,

recalling from the discussion in Section 3.2.1 that η = ρε for a moderate constant ρ.

3.3. Proof of Theorem 3.3
Now we prove (3.10). We have

p̂(x) =
n∑
i=0

c̃iT̃i(x) =
n∑
i=0

c̃iTi(x) +
n∑
i=0

c̃i(T̃i(x)− Ti(x)) =: p1(x) + p2(x),

where p2(x) is a polynomial of degree n or lower. To bound ‖p2‖K we use Theorem 3.5
together with ‖c‖2 = 1 +O(ε) to obtain ‖p2‖K ≤

∑n
k=0 2|c̃i|ρk2ε ≤ ρn2.5ε+O(ε2) where

ρ′ is some moderate constant. Therefore by Chebyshev interpolation we can write

p2(x) =
n∑
i=0

diTi(x).

Denote by ‖p‖L2 the L2(K) norm with weight function 1√
1−x2 ,

√
2
π

∫ 1
−1 |p(x)|2 dx√

1−x2 .
Then by the orthogonality of the Chebyshev polynomials it is immediate that ‖p2‖2L2 =

18

2d2
0 +

∑n
i=1 d

2
i ≥ d2

0 +
∑n
i=1 d

2
i = ‖d‖22 where d = [d0, d1, . . . , dn]. By standard Lp norms

embedding inequalities [2, Thm. 2.14], [50, Thm. 2] we then have ‖d‖2 ≤ ‖p2‖L2 ≤√
2‖p2‖K ≤

√
2ρ′n2.5ε. We conclude that

p̂(x) =
n∑
i=0

(c̃i + di)Ti(x) =
n∑
i=0

ĉiTi(x),

where ĉi := c̃i + di satisfies ‖ĉ − c‖2 ≤ ‖ĉ − c̃‖2 + ‖c̃ − c‖2 = ‖d‖2 + ‖c̃ − c‖2 ≤√
2ρ′n2.5ε+

√
nε+O(ε2) = O(n2.5ε).

This completes the proof of Theorem 3.3.

3.4. Generalizing the argument to Jacobi orthogonal polynomials
Extending the results more generally to comrade pencils based on Jacobi orthogonal
polynomials {P (α,β)

i (x)} with |α|, |β| ≤ 1
2 can be done essentially by following the same

argument as above. The key properties that we need in P (α,β)
i (x) are

(i) ‖P (α,β)
n ‖K = O(1) or a slowly growing function of n; indeed we have ‖P (α,β)

n ‖K ≤
nmax (α,β) [45, Thm. 7.32.1] for Jacobi (due to the difference in normalization,
the bound is 1 and n for Chebyshev polynomials of the first and second kinds
respectively).

(ii) {P (α,β)
i } is defined by a three-term recurrence xP (α,β)

i (x) = aiP
(α,β)
i+1 (x)+biP (α,β)

i (x)+
diP

(α,β)
i−1 (x), with ai, bi, di all being O(1).

(iii) The roots of P (α,β)
n (x) lie in the interval [−1 +O(1

n2), 1−O(1
n2)].

Regarding (iii), indeed the ith root of any Jacobi polynomial of degree n lies in the
interval [cos(2i

2n+1π), cos(2i−1
2n+1π)] and furthermore for the ultraspherical case α = β it

lies in [cos(iπ
n+1), cos((i − 1

2)πn)] [45, Thm. 6.3.2]. Hence, one can prove an analogue of
Theorem 3.5. The proof is deferred to the appendix, in Theorem B.2.

We outline the proof for comrade pencils, highlighting the differences. The elimination
order stays the same in (3.4), in which the tridiagonal elements of the second matrix are
replaced by {ai, bi, di}, which all remain O(1). The resulting perturbed polynomials (3.5)
and recurrence relation (3.7) are modified respectively to p̃(x) =

∑n
i=0 c̃iP̃

(α,β)
i (x), and

xP̃
(α,β)
i (x) = (ai + εi,i+1)P̃ (α,β)

i+1 (x) + (bi + εi,i)P̃ (α,β)
i (x) + (di + εi,i−1)P̃ (α,β)

i−1 (x).

The corresponding matrix of the form (3.12) is still easily converted to a symmetric
tridiagonal plus O(ε) perturbation, so we obtain the counterpart of (3.11) as ‖P̃ (α,β)

k (x)−
P

(α,β)
k (x)‖K = O(k3ε) (where one extra power k comes from ‖P (α,β)

k ‖K > 1), thus
showing

p̃(x) =
n∑
i=0

c̃iP̃
(α,β)
i (x) =

n∑
i=0

ĉiP
(α,β)
i (x), (3.17)

19

hence the computed roots are exact roots of a polynomial with slightly perturbed
coefficients ‖ĉ− c̃‖2 = O(n3.5‖c‖2ε) in the same basis {P (α,β)

i (x)}, proving the normwise
backward stability of algorithms based on QZ applied to comrade pencils.

To summarize, a comrade pencil for polynomials p(x) expressed in a Jacobi polynomial
basis {P (α,β)

i (x)} with parameters |α|, |β| ≤ 1
2 gives a small backward error for the roots

if p(x) is scaled to have coefficients ‖c‖2 = O(1) in that basis and QZ is used to compute
the eigenvalues.

4. Stability of rootfinding via the QR algorithm for confederate
matrices

In this section, we analyze the stability of rootfinding via QR. To this goal we will extend
to some nonmonomial basis a geometric result of Arnold [4] and its ramifications in
numerical analysis [21].

4.1. Arnold transversality theorem for confederate matrices
We first briefly summarize Arnold’s theorem.

Let Λ,M be smooth manifolds [32] and N ⊂ M a smooth submanifold [32, Ch. 5];
let A : Λ→M be a smooth mapping [32, pp. 34]. Following Arnold [4], A is said to be
transversal to N at the point c ∈ N if it holds

TcM = dA(TA−1(c)Λ) + TcN ,

where TxY denotes the tangent space [32, pp. 54] to Y at x and dA is the pushforward
[32, pp. 55,63] of A.

Now we take Λ = Rn andM = Rn×n, and we let A be the smooth mapping from the
non-leading coefficients of a monic polynomial φn(x) +

∑n−1
i=0 ciφi(x) to the associated

confederate matrix Cφ. Thus, Im(A) is the set of confederate matrices in the basis
{φi}. Let N be the orbit under similarity of Cφ ∈ Im(A). Then a first-order expansion
shows that the tangent space of N at Cφ is the set of commutators TCφN = {[Cφ, X]
for some X ∈ Rn×n}. On the other hand, it is known that TCφM is isomorphic toM
and TA−1(Cφ)Λ is isomorphic to Λ [32, pp. 51], while by Theorem 2.1 one can see that
dA(TA−1(Cφ)Λ) ∼= FRn. Hence, the interpretation of the statement “the mapping A is
transversal to N at Cφ” is the following (see also [20, 21]): “given any matrix Y ∈ Rn×n
and a specific confederate matrix Cφ, it is possible to find X ∈ Rn×n, and F0 ∈ FRn,
such that

Y = αF0 + β[Cφ, X] (4.1)

for some α, β ∈ R”.
Arnold states this result for companion matrices [4]. A proof is not explicitly given by

Arnold, but is easy to obtain constructively, e.g., by setting α = β = 1 and by forming X
and F0 given Y and Cφ. Specifically, we can let the last row of X be zero (or arbitrary),
and since CφX − XCφ and Y are the same except for the first row, this determines

20

the (n − i)th row of X inductively for i = 1, . . . , n − 1. Thus the whole matrix X is
determined, and F0 is obtained directly by the first row of (4.1).

We now claim that the theorem holds more generally for confederate matrices. Indeed,
letM ∈M and suppose that Cφ is a confederate matrix. Denote byB the upper triangular
change of basis matrix from the monomials {xi}i=0,...,n−1 to the basis {φi}i=0,...,n−1. Then
C := B−1CφB is a companion matrix. Hence, there exist F0 ∈ FRn and X ∈ Rn×n such
that B−1MB = F0 + [C,X]. Therefore, M = BF0B

−1 + [Cφ, BXB−1]. Note that, since
B is upper triangular, G0 := BF0B

−1 ∈ FRn. Formally, we can state:

Theorem 4.1 (Arnold’s transversality theorem for confederate matrices). Let A : γ0 =[
cn−1 . . . c0

]T
∈ Rn 7→ A(γ0) = Cφ ∈ Rn×n, where Cφ is the confederate matrix in the

basis {φi} of p(x) = φn(x)+
∑n−1
i=0 ciφi(x). Then A is transversal to N = {XCφX−1|X ∈

GLn(R)} at any point Cφ ∈ Im(A).

Arnold also notes that universality holds, that is, the decomposition in (4.1) is unique
for the companion case once α and β are fixed, and this holds also for confederate
matrices.
An important consequence of Theorem 4.1 is that if εE is a small perturbation, then

εE = εG0 + ε[Cφ, X]. Therefore, Cφ + εE = (I − εX)(Cφ + εG0)(I + εX) + O(ε2).
Observing that Cφ + εG0 is in turn a confederate matrix for another polynomial p̂, we
deduce that a small perturbation of the confederate matrix of p is similar (to first order
in the norm of the perturbation) to the confederate matrix of a perturbation of p.

Going even further, Edelman and Murakami [21] exploit Arnold’s transversality theorem
to show that, if F = F0 + [C,X] for some companion matrix C and F0 ∈ FRn, then the
elements of F0 are affine functions of the coefficients of p(x). Now we argue that this
property also extends to any degree-graded basis. Write E = G0 + [Cφ, Y]. Then, F =

F0 + [C,X] where F = B−1EB, F0 = B−1G0B, C = B−1CφB. Let B̂ =
[
ν ?
0 B

]
be the

change of basis matrix from {xi}i=0,...,n to {φi}i=0,...,n; the symbol ? denotes elements not
relevant for the discussion. Let p(x) =

[
1 µ0

]
[xn, . . . , x0]T = ν−1

[
1 γ0

]
B̂[xn, . . . , x0]T ,

i.e., the coefficients of p(x) in the monomial basis are
[
1 µ0

]
, and the coefficients of

νp(x) in the basis {φi} are
[
1 γ0

]
. Now, G0 = BF0B

−1 is an affine function of F0,
which by [21, Thm 2.1] is an affine function of µ0, which in turn, by construction, is
an affine function of γ0. Now it suffices to recall that the composition of affine maps is
an affine map. Summarizing, we conclude that for any degree-graded basis we have the
following theorem.

Theorem 4.2 (Edelman–Murakami theorem for confederate matrices). Let Cφ be a
confederate matrix in the degree-graded basis {φi} and E ∈ Rn×n. Denote by p(x) (resp.,
p̂(x)) the characteristic polynomial of Cφ (resp., Cφ + εE). Then it holds

p̂(x)− p(x) = ε
n−1∑
i=0

δiφi(x) +O(ε2),

21

where δi are polynomials in the coefficients of p(x) in the basis {φi}, and in the Eij.
Moreover, for each i, δi is an affine function of the coefficients of p(x) and, separately,
of the elements of E.

We have stated Theorem 4.2 in terms of the characteristic polynomial, which is usually
defined to be monic in the monomial basis. Note that with this convention p(x) may
not be monic in the basis {φi}: as explained in Section 2, the elements in the first row
of Cφ are the coefficients of νκ−1p(x), where νκ−1 is the leading coefficient of φn−1(x)
expressed in the monomial basis. In the statement of Theorem 4.2, any scaling factor
can be absorbed in the δi. However, for our goals it is simpler to absorb this factor into
p(x) and p̂(x): therefore, from now on we slightly modify the definition of characteristic
polynomial, scaling by νκ−1.

4.2. Backward error when approximating roots by QR
Suppose that a backward stable eigensolver is applied to Cφ. It will compute the
eigenvalues of a slightly perturbed Cφ + εE, ‖E‖ ≤ ‖Cφ‖, for some small constant ε. The
eigenvalues of Cφ+ εE are the roots of p̂(x), and the previous theorem yields (recall (1.2))

‖ĉ− c‖2
‖c‖2

≤ kε.

Here, k depends on the basis, on the degree of p, and (linearly) on the norm of E, which
is O(max{‖c‖2, α}), where α = ‖Hφ‖2 is the norm of the constant part of the confederate
matrix (recall Theorem 2.1), and generally α = O(1) in all the polynomial bases we
consider. Therefore,

‖ĉ− c‖2 ≤ εk′‖c‖2 max{‖c‖2, α}. (4.2)

Note the quadratic dependence on ‖c‖2 when ‖c‖2 > α, in which case ‖ĉ−c‖2‖c‖2 ≤ εk
′‖c‖2,

suggesting the backward error can be much larger than O(ε) if ‖c‖2 � 1.
Observe that Theorem 4.2 does not necessarily imply that k′ is of moderate size. It only

says that, if p(x) = νκ−1(φn(x)+
∑n−1
i=0 ciφi(x)), then δi is of the form δi =

∑
i,j,` βij`c`Eij .

In principle, it could happen that |βij`| � 1: the only way to check is to carry out the
specific calculations in the given basis. From [21], we know that in the case of monomials
max |βij`| = 1. From the similarity argument that we used, it is possible to obtain bounds
for any degree-graded basis, but they involve a factor cond(B), which may be large (for
instance, for the Chebyshev basis cond(B) ∼ 2n). In practice, it could happen that, by a
more elaborate argument working directly in a specific basis, much better bounds may
be obtained. For example, we verified algebraically that, in the Chebyshev basis and
for n = 5, max |βij`| = 2; numerical experiments corroborate the hypothesis that in this
basis, just like in the monomials, βijk do not grow with n.

One difficulty in bounding |βij`| lies in the fact that the Horner shift matrices appearing
in the backward error representation [21] can have norms growing with n for bases other
than monomials. It appears therefore that further work would be required to obtain
sharp bounds for |βij`|.

22

However, we will not pursue a more detailed theoretical analysis because, even if
k′ = O(1), our main point is that for QR, unlike QZ, the backward error ‖ĉ− c‖2 depends
superlinearly (more precisely, quadratically) on ‖c‖2 when ‖c‖2 > 1. Note that while we
regarded E as an arbitrary perturbation matrix, in [21], it is advocated that a “more
realistic model of errors” in which E has structure such as upper Hessenberg can possibly
predict a much better performance of QR. Nonetheless, even for nonmonomial bases, we
verified that QR often gives accurate answers. Yet, counterexamples exist where QR
performs much worse than QZ, as we illustrate in Section 6.

4.3. Why Theorem 4.2 does not hold for Fiedler matrices
In [20] a study appears of an extension of Arnold’s theorem to Fiedler linearizations,
and its relations to rootfinding stability. In principle, Fiedler matrices can be viewed as
congenial matrices of p(x) in a certain basis that, unlike all other basis considered in this
paper, depends on p(x) itself. To see this, recall the second statement in Theorem 2.1,
which although stated for confederate matrices, can easily be generalized to congenial
matrices: the right eigenvector of a congenial matrix takes the form [φn(xi), . . . , φ0(xi)]T
for each root xi. Analytic formulae for the eigenvectors of Fiedler linearizations are known
[19, Sec. 7]: they involve the so-called Horner shifts of p(x). Hence, the polynomial basis
in which a Fiedler matrix is a congenial linearization is also explicitly known. Such a basis
is “almost” degree-graded, in the sense that deg φi = σ(i), where σ is some permutation
of {0, 1, . . . , n− 1} (a proof of this fact is not difficult to obtain from the results in [19]).
Hence, any Fiedler matrix is permutation similar to a confederate linearization, and it is
tempting to conjecture that the arguments of the previous section could be generalized.
Tempting, yet wrong: because of the presence of the Horner shifts, in this case the change
of basis matrix B depends on p(x) itself, whereas in the derivation of Theorem 4.2 it was
tacitly assumed that B is independent of p and E.

Remarkably, Arnold’s transversality theorem is true for Fiedler also when they are seen
as linearizations of p(x) expressed in the monomial basis (as opposed to the Horner shift
basis in which they are congenial linearizations), as shown in [20, Thm 5.4]. However,
the authors of [20] conclude that there is a cubic, as opposed to quadratic, dependence
on ‖c‖2, thus showing that indeed, when B is not constant, nonlinearity can occur. To
summarize, QR-based rootifinding is unstable also for Fiedler linearizations.

4.4. Diagonal balancing
Balancing is a technique to improve the accuracy of computed eigenvalues by reducing
the matrix norm, which initially applies a similarity transformation

Ĉ := XCX−1,

with the hope that the eigenvalues of the resulting Ĉ are better conditioned. Diagonal
balancing [43] is employed by default in Matlab’s command eig.
Lemonnier and Van Dooren [33] investigate the effect of balancing the companion

matrix. For QR, they show that when one allows non-diagonal balancing the optimal

23

balancing is the one that diagonalizes C (they tacitly make the generic assumption that
there are no double roots), that is, when X is the eigenvector matrix. Of course in
practice the eigenvector matrix is unknown, and [33] shows that diagonal balancing still
attempts to find a reduction of ‖C‖ within diagonal similarity transformations. A similar
argument is given there for QZ applied to the companion pencil.
However, even if balancing is applied to the confederate matrix, ‖Ĉ‖ is never smaller

than the largest eigenvalue of C. This is true with anyX, not necessarily diagonal. In some
cases such as in Chebfun, one may be looking for roots of p(x) in a certain interval and
those outside are irrelevant for the application. In such cases the presence of an irrelevant
but large root causes ‖Ĉ‖ to be large, and this impairs the stability of the relevant roots.
This suggests that polynomials with a large second leading coefficient, which is the only
contributor (besides the leading coefficient) to the diagonals of confederate matrices, are
problematic for QR stability. We investigate and confirm this effect in the experiments
in Section 6.

5. Chebyshev basis and the Chebfun rootfinder
In this section we focus on the Chebyshev basis, particularly the Chebfun rootfinder.

5.1. Polynomial approximation preserves normwise backward stability
Chebfun is capable of dealing with a general continuous function f(x) that is not
necessarily a polynomial. It first approximates f(x) by a polynomial p(x) via Chebyshev
interpolation [47]. Then approximate roots of f(x) are obtained by computing the roots
of p(x). The second step can be done in a normwise stable manner, as we proved in
Section 3.
Here we claim that provided that Chebyshev interpolation gives an accurate approxi-

mant such that on the interval of interest K

‖f − p‖K = ε1‖p‖K , (5.1)

where ε1 = q1(n)u (here and below qi denotes a modest polynomial), an algorithm that
stably computes the roots of p is in turn a backward stable rootfinder for f . This can
be verified as follows: as shown in Section 3, QZ applied to a colleague pencil for a
normalized polynomial in the Chebyshev basis computes the roots of a polynomial p̂ with

‖p− p̂‖K ≤ ε2‖p‖K , ε2 = q2(n)u. (5.2)

Together with (5.1) we obtain

‖f − p̂‖K ≤ ‖f − p‖K + ‖p̂− p‖K = (ε1 + ε2)‖f‖K .

Overall this means that Chebfun computes the roots of f(x) in a backward stable
manner.

24

5.2. Accuracy estimate of computed roots
So far our discussion has been on the backward stability of rootfinding algorithms. Here
we turn to the forward stability; see [26, Ch. 1] for a discussion on backward and forward
stability. Consider the computed approximation x̂ to a root x0 of p(x) such that p(x0) = 0.
By the first-order expansion around x0 we have

p(x̂) = p(x0) + p′(x0)(x̂− x0) +O(x̂− x0)2,

so the absolute accuracy ∆x = x̂− x0 is estimated by |∆x| ≈ |p(x̂)|
|p′(x0)| . To estimate |p(x̂)|

|p′(x0)|
we first examine the value |p(x̂)|. Assuming a stable rootfinder such as QZ is used, the
computed roots are exact roots of p̂ satisfying (5.2) so we have

|p(x̂)| = |p(x̂)− p̂(x̂)| ≤ ‖p̂− p‖K = q̂2(n)ε‖p‖K . (5.3)

For the denominator |p′(x0)|, we use the fact that for sufficiently smooth f(x), ap-
proximation in the function value (5.1) also implies approximation in the derivatives
p′(x) ≈ f ′(x) [47, Thm. 21.1]. We conclude that the accuracy |∆x| of the computed root
is

|∆x| ≈ |p(x̂)|
|p′(x0)| . q̂(n)ε ‖f‖K

|f ′(x0)| . (5.4)

This shows that the computed roots are accurate if the function value on the interval
‖f‖K is not too large relative to the derivative |f ′(x0)| at the roots. Conversely, roots at
which |f ′(x0)| � ‖f‖K may not be computed reliably. For an illustrative example, the
famous Wilkinson polynomial f(x) =

∏20
i=1(x− i) makes |f ′(x0)| too small for roots in

the middle compared with maxx∈[0,20] |f(x)|, thus a normwise backward stable algorithm
fails to compute accurate roots. A related discussion is given in [14], under the name
“dynamical range".

5.3. Cause for inaccurate roots and remedy by subdivision

The above observation indicates that roots x0 for which ‖f‖K
|f ′(x0)| � 1 generally cannot be

computed accurately by a polynomial rootfinder that is normwise backward stable. We
next argue that sometimes the accuracy can be improved4.
We discuss two possible remedies for this issue, besides the obvious attempt of using

higher-precision arithmetic. The first idea is to attempt to reduce the value of ‖f‖K on
the whole interval. This can be done for example by introducing a weighting function
w(x) > 0, and finding the roots of g(x) := f(x)w(x), which has the same roots as f(x).
If w(x) is chosen in such a way that ‖g‖K

|g′(x0)| is not too large at the roots, the roots can be
computed accurately. Clearly the question is how to find such a w(x). A suggestion is
made in [14] for the Wilkinson polynomial, but in general constructing an effective w(x)
is nontrivial.

4We do not discuss algorithms that may achieve componentwise stability such as the Ehrlich–Aberth
method in the monomial basis (for each root), but rather focus on improving the accuracy using a
normwise stable algorithm.

25

The second remedy is to subdivide the interval into smaller pieces. Since the O(n3)
cost of computing the eigenvalues of the colleague matrix for a polynomial p(x) is
high when the degree n is large, especially when compared with the O(n2) cost of
other rootfinders such as Ehrlich–Aberth, in Chebfun a technique called subdivision is
employed. The idea, simply put, is to divide the interval of interest [−1, 1] into two
(or more) subintervals [−1, δ] and [δ, 1], and find the roots in each by approximating
p(x) by lower-degree polynomials p1(x), p2(x) such that p1(x) ≈ p(x) on [−1, δ] and
p2(x) ≈ p(x) on [δ, 1], then computing the roots of p1, p2 via the eigenvalues of two
colleague matrices. This results in cost reduction provided that the degrees of p1, p2 are
lower than

(
1
2

)1/3
n ≈ 0.79n, which is typically the case [14].

Here we argue that subdivision can be beneficial also for improving the accuracy of
the computed roots, especially if we resample the original function f(x) instead of the
polynomial interpolant p(x) to obtain p1(x), p2(x), as done in Chebfun.
For definiteness, suppose the original interval is [−1, 1] and after subdivision we work

with the interval [a, b]. Then the same argument as above shows that the accuracy of a
computed root is

|∆x| = O
(
ε
maxx∈[a,b] |f(x)|
|f ′(x0)|

)
.

The crucial difference from (5.4) is that the interval is replaced by a smaller [a, b], so the
numerator maxx∈[a,b] |f(x)| is smaller than in (5.4), hence so is the error estimate. Clearly
the difference is significant if maxx∈[a,b] |f(x)| � maxx∈[−1,1] |f(x)|. See Section 6.3 for
an example where subdivision improves the accuracy significantly.
In practice, it may be difficult to determine a priori how to subdivide in order to

achieve good accuracy. One strategy is to first find the Chebyshev interpolant to f(x)
on the whole interval, find the roots, and for roots x̂i for which

maxx∈[−1,1] |f(x)|
|f ′(x)| is large,

recompute the roots in intervals [ai, bi] 3 x̂i chosen small enough so that maxx∈[ai,bi] |f(x)|
|f ′(x)|

is moderate.
We note that the whole argument assumed that the evaluation of the original function

f(x) can be done with high (relative) accuracy. If this is not the case, and evaluating
f(x) involves an error of size δ, then taking |p(x̂)| ≈ δ in (5.4) shows that the accuracy
of x̂i is limited by δ

|f ′(x0)| .
In Chebfun, p1, p2 are obtained by sampling the global polynomial approximant p on

each interval, not the original f . This means that generally the accuracy of the roots
cannot be improved by subdivision, because the value of p(x) generally contains an error
‖p − f‖K = O(ε‖p‖K). Thus our result suggests a possible improvement for Chebfun
when high accuracy is a priority: resample the original function f instead of p when
subdividing.

We note that a related statement is given in [39], in which subdivision is shown to be
important for accuracy when computing common roots of two bivariate functions. In
that case subdivision helps even when the polynomial approximant is resampled, as the
conditioning depends on the square of the polynomial norms.

To summarize this section: roots with small derivatives may be computed inaccurately

26

by a normwise stable algorithm, and one way to improve the accuracy is to subdivide the
interval and work in intervals in which the functions have values comparable with the
derivatives at the roots. In addition, subdivision also has the additional accuracy benefit
from the reduced degree, hence reduced matrix size n; see the experiments in Section 6.2.

5.4. Improving Chebfun rootfinder?
Our discussion suggests two possible improvements for the Chebfun roots command,
both of which should lead to a more robust rootfinder:

1. Replacing QR with QZ to guarantee normwise stability.

2. Resampling the original function f(x) when subdividing to improve accuracy
further.

For the first improvement, in Section 6 we show an example where QZ gives significantly
better stability than Chebfun roots, illustrating that indeed there exist cases where QZ
is certainly recommended over QR, even with the increased cost of about a factor three.
However, the instability issue in QR caused by a large second-leading coefficient (recall
Section 4.4) typically does not arise in Chebfun, because the higher-degree coefficients
decay for polynomial approximants of smooth functions, and usually Chebfun truncates
the leading coefficients if they are of size O(

√
u‖c‖2). This observation explains the

resounding success of the Chebfun rootfinder observed in practice, even without QZ.
See [18] for an explanation on why balancing can be expected to successfully reduce
the norm of the colleague matrix ‖CT ‖ in practice. In conclusion, the choice between
QR and QZ should be made based on the trade-off between guaranteed stability and
speed. Following the analysis presented in this paper, the developers of Chebfun have
introduced, starting from version 5, an option in the roots command to call QZ by the
flag roots(f,’qz’) [48]. It is worth noting that the speed loss is benign: in Chebfun the
speed difference between QR and QZ is typically less than 30%, much less than the factor
≈ 3 for computing matrix eigenvalues. This is due to the preprocessing steps before the
eigensolvers are invoked, including subdivision.
Regarding the second improvement, resampling f(x) would pose a major change to

how Chebfun works, and defies the philosophy of Chebfun that everything should be
polynomialized. Hence this technique might be best reserved for a rootfinder of f(x) in a
non-Chebfun environment.

6. Numerical experiments
All the experiments were carried out in Matlab version R2013a on a desktop machine
with Intel Core i7 Processor and 16GB RAM, using IEEE double precision arithmetic.

6.1. Balancing and QR vs. QZ
The discussion in Section 4.4 suggested that rootfinding based on QR applied to a
comrade matrix may be unstable if the second leading coefficient is large. To illustrate

27

this observation we test the following linearization-based rootfinders using the Chebyshev
basis:

1. QR applied to the colleague matrix CT , without balancing.

2. QR applied to the colleague matrix CT , with balancing.

3. Chebfun command roots.

4. Chebfun command roots(p,’qz’), which invokes the option of using QZ.

5. QZ applied to the colleague pencil λX + Y .

The default Chebfun roots algorithm is based on QR for the colleague matrix CT ,
with balancing and subdivision, along with other techniques; however, subdivision is used
for reducing the complexity for polynomials of degree ≈ 100 or higher, so it is not used
for the low-degree problems presented below. Section 3 established that the bottom two
algorithms are backward stable.

For comparison purposes, we also show results with the Ehrlich–Aberth method [10, 11],
modified to work in the Chebyshev basis (we have coded our own implementation, which
is not highly optimized), shown as ChebEA in the tables below.

Small leading coefficient, large trace As a test polynomial we construct the degree
eight polynomial

p(x) =
n∑
i=0

ciTi(x), c = [− 1
10 ,−

1
10 ,−

1
10 ,−

1
10 ,−

1
10 ,−

1
10 , 10−10, 1, 10−20], (6.1)

and attempt to compute its seven roots on the interval [−1, 1] by the four methods; there
is another “irrelevant” root well off the interval. The construction of p(x) is not too
special: any coefficient vector c for which the leading coefficient is small and the second
leading coefficient is large would show similar behaviors.

Figure 1 plots p(x) and shows the roots computed by each method. The roots computed
by QR are visibly inaccurate, with or without balancing, and in fact in this case balancing
appears to do more harm than good. QZ, ChebEA and Chebfun roots (with QR and
QZ) computed all roots accurately5.
Table 1 shows the backward errors ‖c−ĉ‖2‖c‖2 , in which ĉ is the coefficients of the degree

eight polynomial p̂ whose roots are the computed x̂i, scaled p̂ ← αp̂ with α = cT ĉ
‖ĉ‖22

,
which minimizes ‖c− αĉ‖2. We also show the values at the computed roots maxi |p(x̂i)|,
which is a measure of the individual backward errors: if p(x̂) = ε then p̂(x̂) = 0 with
p̂(x) =

∑n
i=0 ciTi(x) − εT0(x), so ‖p̂ − p‖K = ε. The latter is the smallest possible

backward error in coefficients ‖c − αĉ‖2 such that p̂(x̂i) = 0, because |Ti(x)| ≤ 1 for
x ∈ [−1, 1].

5 The reason Chebfun roots differs from that of QR with balancing appears to be that the former first
removes very small leading coefficients if present. We also note that Chebfun uses the colleague form
with coefficients in the first column, not the first row.

28

−1 −0.5 0 0.5 1
−1.5

−1

−0.5

0

0.5

1

1.5

 QR nobalance
QR balance
QZ
Chebfun roots

Figure 1: A degree eight polynomial p(x) as in (6.1) and its computed roots by QR
with/witout balancing, and QZ. QZ computes stable results while QR does not,
and balancing does not help.

Table 1: Normwise backward error ‖c−ĉ‖2‖c‖2 and |p(x̂i)| for p(x) in (6.1).

method ‖c−ĉ‖2
‖c‖2 |maxi p(x̂i)|

QR no balancing 2.6e-01 4.7e-01
QR balancing 3.7e-01 5.6e-01
Chebfun roots 1.1e-14 2.4e-14

Chebfun roots(p,’qz’) 1.3e-14 1.5e-14
QZ 9.0e-15 1.6e-14

ChebEA 7.1e-16 1.0e-15

29

Recall from Section 2 that three possible variants of the colleague matrix are avail-
able: namely, CTT , PCTP and PCTT P , where P is the antidiagonal permutation matrix.
Although for our theoretical analysis we argued that the choice of one of these four
possibilities was just a matter of convention, we now note that numerically it can have
nontrivial consequences for the stability of QR. In the above example, QR for CTT gave
normwise backward error 9.2e-01 without balancing and 4.0e-05 with balancing, for
PCTP the error was 1.4e+00 and 1.3e+00 respectively, and 2.4e-01 and 5.4e-04 for
(PCTP)T . Generally, the form that has the coefficients in the last row never seems to
be the most accurate, but among the other three, the best choice appears to depend on
p(x). This difference is not observed with QZ, which is stable regardless of the choice;
indeed essentially the same argument as in Theorem 3.3 proves stability for each variant.

Unstable results with Chebfun roots In the last example QR failed but the default
Chebfun roots worked well. Although extensive experiments suggest that Chebfun
roots usually gives backward error of size O(u), there are examples where QZ (or adding
the optional flag ’qz’) gives significantly better accuracy. Table 2 shows the results for
a polynomial obtained by changing the leading coefficient c8 from 10−20 to 10−10 and c6
from 10−10 to −10−20.

Table 2: Normwise backward error ‖c−ĉ‖2‖c‖2 and |p(x̂i)|, second example.

method ‖c−ĉ‖2
‖c‖2 maxi |p(x̂i)|

QR no balancing 8.4e-15 4.9e-15
QR balancing 7.9e-09 9.9e-09
Chebfun roots 1.5e-10 3.6e-10

Chebfun roots(p,’qz’) 1.1e-14 1.1e-14
QZ 2.3e-15 3.8e-15

ChebEA 8.8e-16 1.1e-15

Overall, the two QZ-based algorithms (QZ and roots(p,’qz’)) and ChebEA per-
formed stably in all our experiments. Among the stable methods, Ehrlich–Aberth has the
advantage of typically giving slightly better accuracy and having O(n2) cost, while the
advantage of QZ includes its robustness and ease of implementation (and the observed
cost is O(n2) when subdivision is employed).

Missed solutions with Chebfun roots We present an example where the large backward
error by QR can cause a solution to be missed. We form a degree three polynomial p(x)
by p = chebfun(@(x)1e− 10 ∗ x.3 + x.2 − 1e− 12).
p(x) has two real roots near ±10−6, and their condition number is such that an O(u)

perturbation in p(x) cannot move them off the real line, which means a stable algorithm
should successfully find the roots. QZ for the colleague pencil does this with |p(x)| = O(u)

30

at both roots. However, Chebfun roots, which by default looks for real roots, misses
both solutions because QR applied to the colleague matrix finds two nonreal roots near 0
with imaginary parts O(

√
u). The explanation is that the large backward error in QR

caused eigenvalues to coalesce and then move off the real line. Again, with the QZ option
roots(p,’qz’) computed the two roots stably.

Forward error The next example concerns the forward error. Our results show, and the
above examples illustrate, that QZ is to be preferred to guarantee backward stability.
In applications, however, one might be interested more in the forward errors of the
computed roots |xi − x̂i|. Somewhat surprisingly, sometimes QR gives smaller forward
error for some roots than QZ, even with a larger backward error. For example, consider
the polynomial p whose exact roots are

x = [−1, 0.1, 1, 1010, 2× 1010, 1015]. (6.2)

Table 3 shows the results; we do not show the results with Chebfun, because due to some
preprocessing step such as truncation, it computed a wrong number of roots (even with
the ’all’ flag); note that a small perturbation in p on [−1, 1015] can change the number
of roots.

Table 3: Backward error ‖c−ĉ‖2‖c‖2 and relative forward errors |x̂i−xi||xi| for i = 1, . . . , 6 for
polynomial whose roots are (6.2). “Inf” means the computed root was infinity.

method back err. i = 1 i = 2 i = 3 i = 4 i = 5 i = 6
QR no balancing 2.8e-07 9.9e-11 2.2e-09 1.2e-10 4.0e-15 4.2e-15 1.3e-16
QR balancing 6.0e-10 7.6e-08 4.8e-07 5.5e-08 5.7e-16 1.9e-16 1.3e-16

QZ 1.2e-15 3.3e-16 0 0 3.3e-01 Inf Inf
ChebEA 3.2e-16 0 2.8e-16 0 9.5e-16 5.7e-16 2.5e-16

We observe that while QZ is backward stable, the forward error can be much worse
than QR for some roots, in particular for |xi| � 1. This is unsurprising as an O(u)
perturbation in the coefficients is enough to alter the roots by this amount, because Tn(x)
grows rapidly for |x| > 1. What is surprising is the accuracy that QR achieves for such
large roots. We do not have a clear explanation to this; we conceive that the structure of
the colleague matrix is playing a role. Moreover, at least in our experiments, ChebEA
seems to get the best of both worlds, both backward and forward errors being small.

This is not necessarily bad news for QZ, at least for computing roots on [−1, 1] as done
in Chebfun; its proven backward stability, together with the fact |Tn(x)| ≤ 1 on [−1, 1],
guarantee that these roots are computed with accuracy O(u

|p′(xi)|).

31

6.2. Error growth with n for colleague pencil
In Section 3 we analyzed the backward stability of rootfinding algorithms based on QZ
applied to the colleague pencil, and derived the bound O(n2.5ε). Clearly, the analysis
accounts for the worst-case bound, which usually gives a significant overestimation.

To examine the tightness of the bound, we computed the roots of the degree n Chebyshev
polynomial Tn(x) for varying n by forming the n× n colleague pencil and computing the
eigenvalues. We then compute the backward error by forming p̂(x) =

∏n
i=1(x− x̂i) and

expressing it in the Chebyshev basis p̂(x) = α
∑n
i=0 ĉiTi(x) and normalizing α = cT ĉ

‖ĉ‖22
as

before, then computing the backward error ‖c− ĉ‖2. The exact roots are xi = cos((2i−1)π
2n)

for i = 1, . . . , n, and we also computed the forward error as maxi |xi − x̂i|.

10 100 500

10
−14

10
−12

10
−10

10
−8

degree

 back error
forward error

Trend O(n2.5)

Trend O(n3)
Trend O(n)

Figure 2: Backward and forward error for computing the roots of Tn(x).

Figure 2 shows the resulting backward and forward errors for n ∈ [10, 750], which
illustrates that the backward error grows like O(n2.5). The forward error grew like O(n)
in the experiment.
We note that the overall error of QZ for colleague consists of (i) the backward error

resulting from QZ, (ii) error compression to preserve the colleague nonzero structure,
and (iii) error from perturbation in the orthogonal polynomial basis and coefficients. We
gave a quantitative bound O(n2.5) for the third error, but the contribution from the first
two are, resp., nτ and n

1
2 , so altogether our analysis gives a bound O(n3+τ).

6.3. Improving accuracy by subdivision
In Section 5 we argued that if f(x) varies widely in magnitude on [−1, 1], then the
accuracy of the computed roots of f(x) can be improved by subdivision and resampling
f(x). To verify this we consider the function

f(x) = xe20x, (6.3)

which clearly has one root at x = 0. Chebfun approximates f(x) on [−1, 1] by a
polynomial p(x) of degree 41, which satisfies ‖f −p‖K ≤ ε‖f‖K , and computes nine roots

32

of p(x) (i.e., eight spurious roots), the one closest to 0 being ≈ −9.9× 10−8. This is an
issue caused by the ill-conditioning of the problem, not the stability of the algorithm,
and using QZ here does not improve the accuracy.

We can resolve this inaccuracy as follows: subdivide [−1, 1] into ten intervals of width
0.2 (or any width sufficiently smaller than 1 would suffice) and let Chebfun compute the
roots of the polynomial approximant of f(x) on each interval. This results in a single
computed root at −5 × 10−16. Note that resampling f(x) instead of the polynomial
approximant is crucial: if the polynomial approximant p(x) is resampled on each interval,
Chebfun computed two roots, the smaller being −7.3× 10−8.

Acknowledgements
With our companion and colleague Alex Townsend we shared and discussed many ideas;
in particular, he observed the implicit change of basis by QR and QZ at the end of
Section 2, and provided helpful comments on a preliminary manuscript. We thank Froilán
Dopico and Fernando De Terán for useful discussions, including how to potentially
obtain a rigorous backward error bound for QZ and the permuted degree-graded nature
of eigenvectors of Fiedler matrices. We also thank the Chebfun team for testing and
implementing the QZ option in their roots command.

A. Impossibility of a generic coefficientwise backward stable
root-finder

In the introduction we mentioned several types of stability that we can consider for
a rootfinding algorithm. This paper focused on the normwise backward stability for
all the computed roots. Here we argue that the more stringent stability of requiring
coefficientwise backward stability maxi |∆ci||ci| = O(q(n)u) is generically not possible.
For instance, consider the Chebyshev polynomial Tn(x) for n ≥ 2, whose exact roots

are xi = cos((2i−1)π
2n) for i = 1, . . . , n. Now suppose the computed roots x̂i are obtained

with high relative accuracy satisfying |xi − x̂i| = O(u)|xi|, which (if xi are not machine
representable) is the best one can hope for in finite precision arithmetic. Then the
computed roots are the exact roots of the polynomial T̂n(x) = α

∏n
i=1(x − x̂i) for

any constant α > 0. Expressing T̂n(x) in the Chebyshev basis T̂n(x) =
∑n
i=0 ĉiTi(x)

necessarily involves ĉi 6= 0 for some i < n. Since the original coefficient is ci = 0 for
all i < n, this implies that no algorithm is able to compute the roots of Tn(x) with
coefficientwise backward stability in finite precision arithmetic.

Note that the above argument holds even when one is looking for the looser condition
of coefficientwise stability for each root, because x̂i is not an exact root of (1 + ε)Tn(x)
for any scalar ε.

The argument generalizes easily to give the conclusion that, for almost every arbitrary
polynomial basis (the crux being that almost any polynomial bases will have roots that are
not machine representable), there exists a polynomial for which coefficientwise backward
stability cannot be obtained in finite precision arithmetic. It is worth mentioning that

33

nonetheless the argument fails when the polynomials in the basis have roots that are
representable in finite precision arithmetic. A notable example of this kind is when the
polynomial basis is the monomials.

B. An analogue of Theorem 3.5 for Jacobi orthogonal
polynomials

Here we extend Theorem 3.5 to Jacobi orthogonal polynomials with parameters |α|, |β| ≤
1
2 . The constant we obtain is larger and not necessarily tight, but the main message
remains valid that polynomial value is insensitive to perturbation in the roots. We start
with a technical lemma applicable to any polynomial q.

Lemma B.1. Let q ∈ R[x] be a polynomial of degree n ≥ 1. Suppose moreover q(r) = 0
for some r ∈ K = [−1, 1] and let J = [r − n−2, r + n−2] ⊆ K. Then∥∥∥∥ q(x)

x− r

∥∥∥∥
J
≤ (e− 1)n2‖q‖K .

Proof. Expanding q(x) around x = r we get

q(x)
(x− r) =

n∑
j=1

q(j)(r)
j! (x− r)j−1.

Hence, we need a bound for |q(j)(r)|. To this end we invoke Markov brothers’ inequal-
ity [16], which states that for q(x) ∈ R[x]n,

max
x∈[−1,1]

|q(j)(x)| ≤ γj;n max
x∈[−1,1]

|q(x)|, γj;n = n2(n2 − 1)(n2 − 4) · · · (n2 − (j − 1)2)
(2j − 1)!! .

Observing that γj;n ≤ n2j , we conclude that ‖q(j)‖J ≤ ‖q(j)‖K ≤ n2j‖q‖K . Therefore
we get ∥∥∥∥ q(x)

(x− r)

∥∥∥∥
Ji

≤
n∑
j=1

‖q(j)‖Ji
j! n2−2j ≤ n2‖q‖K

n∑
j=1

1
j! ≤ (e− 1)n2‖q‖K .

Now we specialize to the case where p(x) is a Jacobi polynomial of degree n with
parameters |α|, |β| ≤ 1

2 , such that we can write p(x) =
∏
i c(x − ri) for some nonzero

scalar c. We adopt the same notation as in Section 3.2.2: ri are the roots of the nth
Jacobi polynomial. Suppose each root is perturbed by ηi, and let p̃(x) = c

∏
i(x− ri− ηi).

We denote ~r = [r1, . . . , rn] ∈ Rn, ~η = [η1, . . . , ηn] ∈ Rn, η = ‖~η‖∞.

Theorem B.2. Let p ∈ R[x] be a Jacobi polynomial of degree n ≥ 5 with parameters
|α|, |β| ≤ 1

2 , and p̃ defined as above. Then it holds ‖p− p̃‖K/‖p‖K ≤ 20.22n2η +O(η2).

34

Proof. For simplicity of discussion we prove the statement for the scaled variant in which
c = 1, i.e., p(x) :=

∏
i(x− ri).

As in Theorem 3.5 we consider the function f(~y;x) =
∏
i(x − yi) : Rn → R. Noting

that p(x) = f(~r;x), we have

p̃(x)− p(x) = ∇f(~r;x) · ~η +O(η2).

Hence, to first order in η, ‖p− p̃‖K ≤ η
∑
i ‖

p(x)
x−ri ‖K , so we only need to estimate ‖ p(x)

x−ri ‖K .
It is known [45, Thm. 6.3.2] that the ith root of any Jacobi polynomial of degree n with
|α|, |β| ≤ 1

2 lies in the interval [cos(2i
2n+1π), cos(2i−1

2n+1π)]. Define Ji = [ri − n−2, ri + n−2].
We first make two simple observations. First, i 6= j ⇒ Ji ∩ Jj = ∅. Indeed, the distance
between any two roots is bounded from below by 2n−2. To see this observe that, for any
i < j,

cos(2iπ
2n+ 1)− cos((2j − 1)π

2n+ 1) = 2 sin(
(i+ j − 1

2)π
2n+ 1) sin(

(j − i− 1
2)π

2n+ 1), (B.1)

so using (B.1) and sin(θ) > 2π−1θ for any θ ∈ (0, π/2), we obtain the lower bound

|ri − rj | ≥ 2 5
2n+ 1

1
2n+ 1 = 10

(2n+ 1)2 >
2
n2 . (B.2)

For the last inequality we used the assumption n ≥ 5. The second observation is: Ji ⊂ K
∀i. By symmetry, it suffices to check this for 1 − r1 ≥ n.2. But again, 1 − cos(π2n) =
2 sin2(π4n) ≥ 1

n2 .
Let us now fix a particular x ∈ K = [−1, 1], and let j ∈ {0, . . . , n} be the unique index

such that rj+1 < x < rj (if j = 0 or j = n, this condition reduces to just x > r1 or
x < rn). From the above, we have

|p(x)− p̃(x)| ≤ η
∑
i

|p(x)|
|x− ri|

+O(η2), (B.3)

so we see that we essentially need to bound
∑
i |p(x)||x − ri|−1, which is bounded by

‖p‖K
∑
i |x− ri|−1.

Now, there are three cases: either x ∈ Jj , or x ∈ Jj+1, or x is in the complement of all
Ji. We claim that this implies

|p(x)|
|x− rj |

+ |p(x)|
|x− rj+1|

≤ en2‖p‖K . (B.4)

To obtain this bound we have used Lemma B.1 and the fact that at least one of |x− rj |
and |x− rj+1| is bounded below by n−2, thus the sum (B.4) is bounded by en2‖p‖K . To
handle the special cases j ∈ {0, n}, one may just formally define |p(x)|

|x−rn+1| = |p(x)|
|x−r0| = 0, so

that the bound clearly remains valid.
It remains to find an upper bound for∑

i<j

1
|x− ri|

+
∑
i>j+1

1
|x− ri|

≤
∑
i<j

1
|ri − rj |

+
∑
i>j+1

1
|rj+1 − ri|

.

35

To do so we use the following bounds: for i+ j − 1
2 ≤ n+ 1

2

|ri − rj | ≥ 2
(i+ j − 1

2)(j − i− 1
2)

(2n+ 1)2 ⇒ 1
|ri − rj |

≤ (2n+ 1)2

2(i+ j − 1
2)(j − i− 1

2)
,

and for i+ j − 1
2 > n+ 1

2 we have

|ri−rj | ≥ 2
(2n+ 1− i− j + 1

2)(j − i− 1
2)

(2n+ 1)2 ⇒ 1
|ri − rj |

≤ (2n+ 1)2

2(2n− i− j + 3
2)(j − i− 1

2)
.

Now observe that we can split the summation (if 2j < n+ 3 the second summation is
empty and the first one actually stops at i = j − 1):

∑
i<j

1
|ri − rj |

=
n+1−j∑
i=1

1
|ri − rj |

+
j−1∑

i=n+2−j

1
|ri − rj |

,

and defining δ = j − i this can be bounded by

j−1∑
δ=2j−n−1

(2n+ 1)2

2
1

δ − 1
2

1
2j − δ − 1

2
+

2j−n−2∑
δ=1

(2n+ 1)2

2
1

δ − 1
2

1
2n+ 3

2 + δ − 2j

≤ (2n+ 1)2

2

j−1∑
δ=1

1
(j + 1

2)(δ − 1
2)

+
∞∑
δ=1

1
δ2 − 1

4

 ≤ (2n+ 1)2

2

(4
5 + 2

)

≤ 35
4 n

2.

Here we have used the facts that
∑j−1
δ=1

1
(j+ 1

2)(δ− 1
2) is a decreasing function of j on [1,∞),

and
∑∞
δ=1

1
δ2− 1

4
= 2

∑∞
δ=1

(
1

2δ−1 −
1

2δ+1

)
= 2(1− 1

3 + 1
3 −

1
5 + 1

5 · · ·) = 2. By symmetry
we can bound the term

∑
i>j+1

1
|rj+1−ri| analogously by 35

4 n
2. Putting it all together we

obtain ∑
i

1
|x− ri|

≤
(
e+ 35

2

)
n2 ≤ 20.22n2,

hence together with (B.3) we obtain

|p(x)− p̃(x)|
‖p‖K

≤ 20.22n2η +O(η2),

as required.

The assumption n ≥ 5 is a technical one needed to get the separation bound 2
n2 in

(B.2). For n ≥ 2 we can obtain the bound 1
n2 , with which we can proceed similarly to

obtain a result with a slightly larger constant. However, little is lost in focusing on n ≥ 5,
since otherwise exact algebraic formulae for the roots are available.

36

References
[1] M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions: with

Formulas, Graphs, and Mathematical Tables. Number 55. Courier Dover Publications,
1972.

[2] R. A. Adams and J. J. F. Fournier. Sobolev Spaces. Academic Press, New York,
1975.

[3] D. E. Amos. Algorithm 610: A portable FORTRAN subroutine for derivatives of
the psi function. ACM Trans. Math. Softw., 9(4):494–502, December 1983.

[4] V. I. Arnold. On matrices depending on parameters. Russian Mathematical Surveys,
26(2):29–43, 1971.

[5] J. L. Aurentz, R. Vandebril, and D. S. Watkins. Fast computation of roots of
Companion, Comrade, and related matrices. BIT, 54(1):85–111, 2014.

[6] S. Barnett. Polynomials and Linear Control Systems. Marcel Dekker Inc., 1983.

[7] D. A. Bini and G. Fiorentino. Design, analysis, and implementation of a multipreci-
sion polynomial rootfinder. Numer. Algorithms, 23(2–3):127–173, 2000.

[8] D. Bini, L. Gemignani, and V. Y. Pan. Fast and stable QR eigenvalue algorithms for
generalized companion matrices and secular equations. Numer. Math., 100:373–408,
2005.

[9] D. Bini, L. Gemignani, and V. Y. Pan. Fast QR eigenvalue algorithms for Hessenberg
matrices which are rank-one perturbations of unitary matrices. SIAM J. Matrix
Anal. Appl., 29(2):556–585, 2007.

[10] D. A. Bini and L. Robol. Solving secular and polynomial equations: A multiprecision
algorithm. J. Comput. Appl. Math., 2013.

[11] D. A. Bini. Numerical computation of polynomial zeros by means of Aberth’s
method. Numer. Algorithms, 13(2):179–200, 1996.

[12] P. Boito, Y. Eidelman, and L. Gemignani. Implicit QR for companion-like pencils.
arXiv preprint 1401.5606, 2014.

[13] P. Boito, Y. Eidelman, and L. Gemignani. Implicit QR for rank-structured matrix
pencils. BIT, 54(1):85–111, 2014.

[14] J. P. Boyd. Computing real roots of a polynomial in Chebyshev series form through
subdivision. Appl. Numer. Math., 56:1077–1091, 2006.

[15] C. A. Boyer. A History of Mathematics. Wiley, 1968.

[16] E. W. Cheney. Introduction to Approximation Theory. Chelsea, New York, second
edition, 1982.

37

[17] D. A. Cox, J. Little, and D. O’Shea. Using Algebraic Geometry, volume 185 of
Graduate Texts in Mathematics. Springer, New York, second edition, 2005.

[18] D. Day and L. Romero. Roots of polynomials expressed in terms of orthogonal
polynomials. SIAM J. Matrix Anal. Appl., 43(5):1969–1987, 2005.

[19] F. De Terán, F. M. Dopico, and D. S. Mackey. Fiedler companion linearizations
and the recovery of minimal indices. SIAM J. Matrix Anal. Appl., 31(4):2181–2204,
2009/10.

[20] F. De Terán, F. M. Dopico, and J. Pérez. Backward stability of polynomial root-
finding using fiedler companion matrices. MIMS EPrint 2014.38, 2014. preprint.

[21] A. Edelman and H. Murakami. Polynomial roots from companion matrix eigenvalues.
Math. Comp., 64(210):763–776, 1995.

[22] C. Effenberger and D. Kressner. Chebyshev interpolation for nonlinear eigenvalue
problems. BIT, 52:933–951, 2012.

[23] G. H. Golub and J. H. Welsch. Calculation of Gauss quadrature rules. Math. Comp.,
23(106):221–230, 1969.

[24] G. H. Golub and C. F. Van Loan. Matrix Computations. The Johns Hopkins
University Press, 4th edition, 2012.

[25] I. J. Good. The colleague matrix, a Chebyshev analogue of the companion matrix.
The Quarterly Journal of Mathematics, 12(1):61–68, 1961.

[26] N. J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM, Philadelphia,
1996.

[27] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press, second
edition, 2012.

[28] E. K. Ifantis and P. D. Siafarikas. Perturbation of the coefficients in the recurrence
relation of a class of polynomials. J. Comput. Appl. Math., 57(1):163–170, 1995.

[29] M. Jenkins and J. Traub. A three-stage variable-shift iteration for polynomial zeros
and its relation to generalized Rayleigh iteration. Numer. Math., 14(3):252–263,
1970.

[30] G. F. Jónsson and S. Vavasis. Solving polynomials with small leading coefficients.
SIAM J. Matrix Anal. Appl., 26(2):400–414, 2004.

[31] I. O. Kerner. Ein Gesamtschrittverfahren zur Berechnung der Nullstellen von
Polynomen. Numer. Math., 8(3):290–294, 1966.

[32] J. M. Lee. Introduction to Smooth Manifolds. Springer, 2003.

38

[33] D. Lemonnier and P. Van Dooren. Optimal scaling of companion pencils for the QZ
algorithm. In Proceedings SIAM Applied Linear Algebra Conference, 2003.

[34] E. Leopold. Perturbed recurrence relations. Numer. Algorithms, 33(1-4):357–366,
2003.

[35] F. Marcellán, J. S. Dehesa, and A. Ronveaux. On orthogonal polynomials with
perturbed recurrence relations. J. Comput. Appl. Math., 30(2):203–212, 1990.

[36] J. C. Mason and D. C. Handscomb. Chebyshev Polynomials. CRC Press, 2010.

[37] NAG Ltd. The NAG C Library Manual, Mark 7. The Numerical Algorithms
Group, 2002. http://www.nag.co.uk/numeric/cl/manual/pdf/G05/g05cac.pdf
and http://www.nag.co.uk/numeric/fl/manual/pdf/G05/g05kaf.pdf.

[38] Y. Nakatsukasa, V. Noferini, and A. Townsend. Vector spaces of linearizations for
matrix polynomials: a bivariate polynomial approach. The Mathematical Institute,
University of Oxford, Eprints Archive 1638, 2013.

[39] Y. Nakatsukasa, V. Noferini, and A. Townsend. Computing the common zeros of
two bivariate functions via Bézout resultants. Numer. Math., 2014. to appear.

[40] V. Noferini and F. Poloni. Duality of matrix pencils, Wong chains and linearizations.
2014. Preprint, submitted.

[41] V. Y. Pan. Solving a polynomial equation: Some history and and recent progress.
SIAM Rev., 39(2):187–200, 1997.

[42] V. Y. Pan. Approximating complex polynomial zeros: Modified Weyl’s quadtree
construction and improved Newton’s iteration. Journal of Complexity, 16(1):213–264,
2000.

[43] B. N. Parlett and C. Reinsch. Balancing a matrix for calculation of eigenvalues and
eigenvectors. Numer. Math., 13(4):293–304, 1969.

[44] G. W. Stewart and J.-G. Sun. Matrix Perturbation Theory (Computer Science and
Scientific Computing). Academic Press, 1990.

[45] G. Szegő. Orthogonal polynomials. AMS Colloquium Publications, 1992.

[46] F. Tisseur. Backward error and condition of polynomial eigenvalue problems. Linear
Algebra Appl., 309(1):339–361, 2000.

[47] L. N. Trefethen. Approximation Theory and Approximation Practice. SIAM, Philadel-
phia, 2013.

[48] L. N. Trefethen et al. Chebfun Version 5. The Chebfun Development Team, 2014.
http://www.maths.ox.ac.uk/chebfun/.

39

http://www.nag.co.uk/numeric/cl/manual/pdf/G05/g05cac.pdf
http://www.nag.co.uk/numeric/fl/manual/pdf/G05/g05kaf.pdf

[49] P. Van Dooren and P. Dewilde. The eigenstructure of an arbitrary polynomial
matrix: computational aspects. Linear Algebra Appl., 50:545–579, 1983.

[50] A. Villani. Another note on the inclusion Lp(µ) ⊂ Lq(µ). The American Mathematical
Monthly, 92(7):485–487, 1985.

[51] H. S. Wilf. Mathematics for the Physical Sciences. Courier Dover Publications,
2013.

40

