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COMPUTATION OF GAUSS-KRONROD QUADRATURE RULES

D. CALVETTI, G. H. GOLUB, W. B. GRAGG, AND L. REICHEL

Abstract. Recently Laurie presented a new algorithm for the computation
of (2n+1)-point Gauss-Kronrod quadrature rules with real nodes and positive
weights. This algorithm first determines a symmetric tridiagonal matrix of or-
der 2n+ 1 from certain mixed moments, and then computes a partial spectral
factorization. We describe a new algorithm that does not require the entries of
the tridiagonal matrix to be determined, and thereby avoids computations that
can be sensitive to perturbations. Our algorithm uses the consolidation phase
of a divide-and-conquer algorithm for the symmetric tridiagonal eigenprob-
lem. We also discuss how the algorithm can be applied to compute Kronrod
extensions of Gauss-Radau and Gauss-Lobatto quadrature rules. Throughout
the paper we emphasize how the structure of the algorithm makes efficient
implementation on parallel computers possible. Numerical examples illustrate
the performance of the algorithm.

1. Introduction

Let dw be a nonnegative measure on the real interval [a, b] with an infinite
number of points of increase, and such that the moments µk :=

∫ b
a
xkdw(x), k =

0, 1, 2, . . . , exist and are bounded. For notational convenience, we assume that
µ0 = 1. An n-point Gauss quadrature rule for the integral

If :=
∫ b

a

f(x)dw(x)(1.1)

is a formula of the form

Gnf :=
n∑
k=1

f(xk)wk(1.2)

with the nodes a < x1 < x2 < · · · < xn < b and positive weights wk chosen so that

Gnf = If ∀f ∈ P2n−1.(1.3)
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Here and throughout this paper Pj denotes the set of polynomials of degree at most
j. The associated Gauss-Kronrod quadrature rule

K2n+1f :=
2n+1∑
k=1

f(x̃k)w̃k(1.4)

has the properties that

{xk}nk=1 ⊂ {x̃k}2n+1
k=1(1.5)

and

K2n+1f = If ∀f ∈ P3n+1.(1.6)

We present a new algorithm for the computation of Gauss-Kronrod quadrature
rules with real nodes and positive weights when such rules exist. Our algorithm
is based on recent results by Laurie [12] on properties of symmetric tridiagonal
matrices associated with Gauss-Kronrod rules.

In typical applications of Gauss-Kronrod quadrature rules, both Gnf andK2n+1f
are evaluated, and this pair of approximations of If is used to estimate the error in
Gnf . Applications in adaptive quadrature routines can be computationally demand-
ing, and therefore it is important to develop accurate and fast algorithms that are
well suited for implementation on a parallel computer for the computation of nodes
and weights of Gauss-Kronrod rules; see [4, 8, 15] for recent discussions. Surveys of
properties of Gauss-Kronrod quadrature rules are presented by Gautschi [7], Laurie
[12] and Monegato [14]; see also Golub and Kautsky [9] for related discussions.

Let {pj}∞j=0 be a sequence of monic orthogonal polynomials with respect to the
inner product

(f, g) :=
∫ b

a

f(x)g(x)dw(x),(1.7)

i.e.,

(pj , pk) = 0, j 6= k.(1.8)

The pj satisfy the recursion relations

pk+1(x) = (x− ak)pk(x)− b2kpk−1(x), k = 1, 2, . . . ,
p1(x) := x− a0, p0(x) := 1,(1.9)

with coefficients

ak :=
(pk, xpk)
(pk, pk)

, k = 0, 1, . . . ,(1.10)

b2k :=
(pk, pk)

(pk−1, pk−1)
, k = 1, 2, . . . .(1.11)

Note that (p0, p0) = µ0 = 1. It follows from (1.11) that

(pk, pk) = b2kb
2
k−1 · · · b21, k ≥ 1.(1.12)

Define the positive quantities bk := (b2k)1/2, k ≥ 1. We refer to the ak and bk as
recursion coefficients for the family of orthogonal polynomials (1.9). The 2n − 1
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coefficients {ak}n−1
k=0 and {bk}n−1

k=1 determine the symmetric tridiagonal matrix

Tn :=


a0 b1
b1 a1 b2

. . . . . . . . .
bn−2 an−2 bn−1

bn−1 an−1

 ∈ Rn×n(1.13)

with spectral factorization

Tn = WnΛnWT
n , Λn = diag[λ1, λ2, . . . , λn], WnW

T
n = I.

(1.14)

Due to the positivity of the off-diagonal entries bk, the eigenvalues λj are distinct
and all entries of the first row of Wn are nonvanishing. Moreover, it is well known
that the nodes and weights of the Gauss rule (1.2) are given by{

xj := λj ,
wj := (eT1 Wnej)2,

1 ≤ j ≤ n,(1.15)

where ej denotes the jth axis vector; see, e.g., [10]. We refer to the sets of
eigenvalues and first or last components of normalized eigenvectors of a matrix
as partial spectral resolution of the matrix. The sets {λj}nj=1 ∪ {eT1 Wnej}nj=1 and
{λj}nj=1∪{eTnWnej}nj=1 are partial spectral resolutions of Tn. We will assume that
the recursion coefficients aj and bj are available. The nodes and weights (1.15)
of the Gauss rule can then be computed in O(n2) arithmetic operations by the
Golub-Welsch algorithm [10].

Our algorithm for the computation of the nodes and weights of the Gauss-
Kronrod rule (1.4) requires that the last entries of the normalized eigenvectors
of Tn also be available. These can be computed simultaneously with the Gauss
weights by modifying the Golub-Welsch algorithm in a straightforward manner.
The operation count for the modified algorithm is also O(n2). The eigenvalues
and first and last components of normalized eigenvectors can also conveniently be
determined by one of the divide-and-conquer algorithms for the symmetric tridi-
agonal eigenproblem presented by Borges and Gragg [3] or Gu and Eisenstat [11].
These algorithms also require O(n2) arithmetic operations, and with n processors
the computations can be carried out in O(n) time steps.

Laurie [12] pointed out that if the Gauss-Kronrod rule (1.4) has distinct real
nodes {x̃k}2n+1

k=1 and positive weights {w̃k}2n+1
k=1 , then there is an associated sym-

metric tridiagonal matrix

T̃2n+1 :=


ã0 b̃1
b̃1 ã1 b̃2

. . . . . . . . .
b̃2n−1 ã2n−1 b̃2n

b̃2n ã2n

 ∈ R(2n+1)×(2n+1),

(1.16)

with spectral factorization

T̃2n+1 = W̃2n+1Λ̃2n+1W̃
T
2n+1, Λ̃2n+1 = diag[λ̃1, λ̃2, . . . , λ̃2n+1], W̃2n+1W̃

T
2n+1 = I,
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such that {
x̃j = λ̃j ,

w̃j = (eT1 W̃2n+1ej)2,
1 ≤ j ≤ 2n+ 1,(1.17)

analogously to (1.15). We refer to the matrix (1.16) as the Gauss-Kronrod matrix.
Let the nodes be ordered according to x̃1 < x̃2 < · · · < x̃2n+1. Monegato [13]
showed that the positivity of the weights w̃k associated with nodes x̃k /∈ {xj}nj=1 is
equivalent with the interlacing property

x̃1 < x̃2 = x1 < x̃3 < x̃4 = x2 < x̃5 < · · · < x̃2n = xn < x̃2n+1.

Proposition 1.1 (Laurie [12]). Let T̂n and T̆n denote the leading and trailing n×
n principal submatrices of T̃2n+1, respectively. Then T̂n and T̆n have the same
eigenvalues. Moreover, for n odd,

ãj−1 = aj−1, b̃j = bj , 1 ≤ j ≤ 3n+ 1
2

,(1.18)

and, for n even, {
ãj = aj , 0 ≤ j ≤ 3n

2 ,

b̃j = bj , 1 ≤ j ≤ 3n
2 .

(1.19)

Proof. Formulas (1.18) and (1.19) express that the first 3n + 1 coefficients of the
matrices T̃2n+1 and T2n+1 agree. This result follows immediately from (1.6). In
particular, T̂n = Tn. This observation and the fact that {λj}nj=1 ⊂ {λ̃j}2n+1

j=1

implies that T̂n and T̆n have the same spectrum, as can be seen by expanding
det(T̃2n+1 − λI) along the (n+ 1)st row; see [12] for details.

It follows from Proposition 1.1 that the existence of a Gauss-Kronrod quadrature
rule with real distinct nodes and positive weights is equivalent to the existence of
a real solution to the following inverse eigenvalue problem.

Corollary 1.2. Let the first n−1 entries of the n×n symmetric tridiagonal matrix

T̆n :=


ãn+1 b̃n+2

b̃n+2 ãn+2 b̃n+3

. . . . . . . . .
b̃2n−1 ã2n−1 b̃2n

b̃2n ã2n

(1.20)

be determined by (1.18) when n is odd, and by (1.19) when n is even. Let the
eigenvalues of T̆n be the eigenvalues of the matrix (1.13). There is a real symmetric
tridiagonal matrix T̆n with these properties if and only if there is a (2n+ 1)-point
Gauss-Kronrod quadrature rule (1.4) with real nodes and positive weights.

Example 1.1. Let n = 1. The entries {ãj}1j=0 and {b̃j}2j=1 of the Gauss-Kronrod
matrix T̃3 are recursion coefficients for the orthogonal polynomials associated with
the measure dw. The entry marked by ∗ is not explicitly known,

T̃3 :=

 ã0 b̃1
b̃1 ã1 b̃2

b̃2 ∗

 .
However, by Proposition 1.1, ã2 = ã0. In particular, any 3-point Gauss-Kronrod
rule associated with a 1-point Gauss rule has real nodes and positive weights.
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Example 1.2. Let n = 2. The entries {ãj}3j=0 and {b̃j}3j=1 of the Gauss-Kronrod
matrix T̃5 are recursion coefficients for orthogonal polynomials associated with the
measure dw, but the entries marked by ∗ are not explicitly known,

T̃5 :=


ã0 b̃1
b̃1 ã1 b̃2

b̃2 ã2 b̃3
b̃3 ã3 ∗

∗ ∗

 .(1.21)

By Proposition 1.1 the leading and trailing principal 2× 2 submatrices of T̃5 have
the same trace. This yields the equation

ã0 + ã1 = ã3 + ã4(1.22)

for ã4. The determinants of the leading and trailing principal 2×2 submatrices are
also the same, and this gives the equation

ã0ã1 − b̃21 = ã3ã4 − b̃24(1.23)

for b̃4. When (1.23) is satisfied by a real positive value of b̃4, a Gauss-Kronrod rule
with real nodes and positive weights exists.

Example 1.3. Let [a, b] = [−1, 1] and dw(x) := 2
π (1− x2)1/2dx. Then the Gauss-

Kronrod matrix (1.21) has the known entries

T̃5 :=


0 1/2

1/2 0 1/2
1/2 0 1/2

1/2 0 ∗
∗ ∗

 .
Equations (1.22) and (1.23) yield a4 = 0 and b4 = 1/2. The eigenvalues and
eigenvectors of this matrix are explicitly known, and we obtain the 5-point Gauss-
Kronrod rule

x̃k = cos(
π

6
k), w̃k =

1
3

sin2(
π

6
k), 1 ≤ k ≤ 5.

This paper describes a new algorithm for computing Gauss-Kronrod quadrature
rules with real nodes and positive weights. The algorithm first determines the
eigenvalues as well as the first and last components of normalized eigenvectors of
the matrix Tn. This yields, in particular, the Gauss quadrature rule (1.15). The
algorithm then proceeds by computing the first components of normalized eigen-
vectors of the matrix T̆n defined in Proposition 1.1. This is described in Section 2.
When n is even, we use a method proposed by Boley and Golub [2]. For n odd,
we apply a closely related method. We remark that our algorithm does not ex-
plicitly determine the tridiagonal matrix (1.20). After these initial calculations,
a consolidation step of the divide-and-conquer algorithm presented by Borges and
Gragg [3] is used to determine the eigenvalues and first components of normal-
ized eigenvectors of the matrix (1.16), and by (1.17) we obtain the Gauss-Kronrod
rule. Relevant details of the divide-and-conquer method are discussed in Section 3.
Our algorithm determines the (2n + 1)-point Gauss-Kronrod rule (1.17) from the
recursion coefficients aj and bj in only O(n2) arithmetic operations, and with n
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processors only O(n) time steps are required. Section 4 describes how the algo-
rithm of Section 3 can be applied to the computation of Gauss-Kronrod-Radau and
Gauss-Kronrod-Lobatto rules. These rules are Kronrod extensions of Gauss-Radau
and Gauss-Lobatto rules, respectively, and find application in adaptive composite
quadrature rules. Section 5 contains numerical examples.

When only the measure dw but not the recursion coefficients aj and bj are
available, the latter can be computed by (1.10) and (1.11). It may be attractive
to evaluate necessary inner products by a Clenshaw-Curtis quadrature rule; see
Gautschi [6] for a discussion.

Laurie [12] presented another algorithm for the computation of (2n + 1)-point
Gauss-Kronrod rules in O(n2) arithmetic operations. This algorithm first deter-
mines certain mixed moments from which the symmetric tridiagonal matrix (1.16)
is determined. The Gauss-Kronrod nodes and weights are then determined by
applying the Golub-Welsch algorithm to the matrix (1.16).

Our algorithm avoids the explicit determination of the matrix (1.16). Experience
from related problems indicates that the computation of the entries of T̃2n+1 can
be sensitive to round-off errors; see, e.g., [5].

2. Computation of eigenvector components of T̆n

We consider the determination of the first components of normalized eigenvectors
of the real symmetric tridiagonal matrix (1.20), which is the trailing principal n×n
submatrix of the Gauss-Kronrod matrix (1.16). The n − 1 first entries of T̆n are
given by (1.18) or (1.19). The remaining diagonal and subdiagonal matrix entries
are not known. The matrix (1.20) is required to have the same eigenvalues λ1 <
λ2 < · · · < λn as Tn. We assume for the moment that such a real symmetric
tridiagonal matrix T̆n with positive subdiagonal elements exists.

We first outline a method due to Boley and Golub [2] that can be applied when
n is even. A modification of this method, described below, can be used for n odd.

Recall that the matrix Tn is associated with a positive measure dw with support
in a real interval [a, b] and with the quadrature rule (1.15). Similarly, we may
associate with the matrix T̆n a nonnegative measure dw̆ with support in a real

interval [ă, b̆] and such that
∫ b̆
ă dw̆(x) = 1. The eigenvalues λj and squares of the

first components of normalized eigenvectors w̆j define a quadrature rule {λj , w̆j}nj=1

associated with the matrix T̆n, such that∫ b̆

ă

xkdw̆ =
n∑
j=1

λkj w̆j , 0 ≤ k < n.(2.1)

We remark that we may choose dw̆ to be the discrete measure defined by the
quadrature rule {λj , w̆j}nj=1.

Let n be even. Then the entries of the leading principal submatrix T̆n/2 ∈
Rn/2×n/2 are explicitly known. Let {x∗j , w∗j }

n/2
j=1 be the Gauss quadrature rule asso-

ciated with the matrix T̆n/2, i.e., the x∗j are eigenvalues and the w∗j are the square
of the first components of normalized eigenvectors of T̆n/2; cf. (1.15). Both quad-
rature rules {x∗j , w∗j }

n/2
j=1 and {λj , w̆j}nj=1 can be regarded as discretizations of the



GAUSS-KRONROD QUADRATURE 1041

measure dw̆. Thus,∫ b̆

ă

xkdw̆(x) =
n/2∑
j=1

(x∗j )
kw∗j =

n∑
j=1

λkj w̆j , 0 ≤ k < n.(2.2)

The equations (2.2) can be expressed in terms of the Lagrange polynomials

`k(x) :=
n∏
j=1
j 6=k

x− λj
λk − λj

, 1 ≤ k ≤ n,(2.3)

and we obtain
n/2∑
j=1

`k(x∗j )w
∗
j =

n∑
j=1

`k(λj)w̆j = w̆k, 1 ≤ k ≤ n.(2.4)

We remark that the equations (2.2) can be formulated as a linear system of equa-
tions with a Vandermonde matrix for the weights w̆j . Numerical experiments re-
ported in [5] indicate that the weights w̆j are computed more accurately by formula
(2.4).

We assumed above that a real symmetric tridiagonal matrix T̆n with positive sub-
diagonal elements, with given spectrum {λj}nj=1 and with a given leading n/2×n/2
principal submatrix exists. However, this is not always the case. For instance, when
dw(x) = e−xdx and [a, b] = [0,∞], the matrix T̆n is for many values of n complex
symmetric, with real diagonal entries and at least one purely imaginary subdiago-
nal element. The measure dw̆ associated with such a matrix T̆n is indefinite, and
at least one weight w̆j is negative. A numerical method for computing complex
symmetric tridiagonal matrices of even order n with real diagonal entries and real
or purely imaginary subdiagonal entries, given its real distinct eigenvalues and its
real symmetric tridiagonal leading principal submatrix of order n/2, is described in
[5].

The present paper is concerned with the computation of Gauss-Kronrod rules
with distinct real nodes and positive weights, and by Corollary 1.2 we may restrict
our attention to real symmetric tridiagonal matrices T̆n with positive subdiagonal
entries. In particular, we are only concerned with the case when the weights w̆j are
positive.

When n is odd, the algorithm described above has to be modified. The entries
{ãj}(3n−1)/2

j=n+1 and {b̃j}(3n+1)/2
j=n+2 of T̆n are known. The largest leading k× k principal

submatrix of T̆n with all entries explicitly known is of order k = (n− 1)/2, and the
Gauss rule associated with this submatrix is not of high enough order to allow the
matching of n moments, analogously to (2.2). Therefore a formula similar to (2.4)
cannot be applied before some preliminary calculations have been carried out.

The computations are divided into two steps. First we compute the diagonal
entry ã(3n+1)/2. Then the leading principal submatrix of order (n + 1)/2 of T̆n is
known, and we can compute the weights w̆j by a formula analogous to (2.4).

Let {p̆j}(n−1)/2
j=0 be the first (n + 1)/2 monic orthogonal polynomials associated

with the inner product

〈f, g〉 :=
∫ b̆

ă

f(x)g(x)dw̆(x).
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These polynomials can be computed from the available recursion coefficients. The
desired diagonal entry of T̆n is given by

ã(3n+1)/2 =
〈p̆(n−1)/2, xp̆(n−1)/2〉
〈p̆(n−1)/2, p̆(n−1)/2〉

,

where
〈p̆(n−1)/2, p̆(n−1)/2〉 = b̃2(3n+1)/2b̃

2
(3n−1)/2 · · · b̃2n+2.

Note that

p̆n(x) =
n∏
j=1

(x− λj)(2.5)

and that xp̆2
(n−1)/2(x) − p̆n(x) ∈ Pn−1. The latter polynomial can be written as

xp̆2
(n−1)/2(x)− p̆n(x) = p̆(n−1)/2(x)

(n−1)/2∑
j=0

c(n−1)/2+j p̆j(x) +
(n−3)/2∑
j=0

cj p̆j(x)

(2.6)

for certain coefficients ck. Integrating (2.6) and using the orthogonality of the
polynomials p̆j yields

〈p̆(n−1)/2, xp̆(n−1)/2〉 = 〈p̆(n−1)/2,

(n−1)/2∑
j=0

c(n−1)/2+j p̆j〉+ 〈
(n−3)/2∑
j=0

cj p̆j , p̆0〉

= cn−1〈p̆(n−1)/2, p̆(n−1)/2〉+ c0〈p̆0, p̆0〉,
and therefore

ã(3n+1)/2 = cn−1 +
c0

b̃2(3n+1)/2b̃
2
(3n−1)/2 · · · b̃2n+2

.(2.7)

It remains to determine the coefficients cn−1 and c0. Note that cn−1 is the leading
coefficient of the polynomial xp̆2

(n−1)/2(x) − p̆n(x) in power form. Straightforward
expansion in terms of powers of x yields

xp̆2
(n−1)/2(x) = xn −

2
(3n−1)/2∑
j=n+1

ãj

 xn−1 +O(xn−2)

and

p̆n(x) = xn −

 n∑
j=1

λj

 xn−1 +O(xn−2).

Therefore

xp̆2
(n−1)/2(x) − p̆n(x) =

 n∑
j=1

λj − 2
(3n−1)/2∑
j=n+1

ãj

xn−1 +O(xn−2).

Comparison with (2.6) shows that

cn−1 =
n∑
j=1

λj − 2
(3n−1)/2∑
j=n+1

ãj .(2.8)

We turn to the computation of the coefficient c0. Determine the Gauss quadra-
ture rule {x∗j , w∗j }

(n−1)/2
j=1 associated with the leading principal n−1

2 ×
n−1

2 submatrix
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of T̆n, all of whose entries are known. We then apply this quadrature rule to the
right-hand side and left-hand side of (2.6) to obtain

c0 = −
(n−1)/2∑
j=1

p̆n(x∗j )w
∗
j ,(2.9)

where p̆n is given by (2.5). In the derivation of (2.9), we have used that the nodes
x∗j are the zeros of p̆(n−1)/2, and that by orthogonality

(n−1)/2∑
j=1

p̆k(x∗j )w
∗
j = 0, 1 ≤ k ≤ n− 3

2
.

Thus, we can evaluate the coefficient ã(3n+1)/2 by using formulas (2.7)–(2.9).
The leading principal n+1

2 ×
n+1

2 submatrix of T̆n is now explicitly known, and
we can determine the weights w̆j analogously as when n is even. Thus, compute
the Gauss rule {x′j , w′j}

(n+1)/2
j=1 associated with the leading principal submatrix of

T̆n of order (n+ 1)/2. Analogously to (2.2), we obtain∫ b̆

ă

xkdw̆(x) =
(n+1)/2∑
j=1

(x′j)
kw′j =

n∑
j=1

λkj w̆j , 0 ≤ k < n,

which, similarly to (2.4), yields the formula for the weights

w̆k =
(n+1)/2∑
j=1

`k(x′j)w
′
j , 1 ≤ k ≤ n,

where the Lagrange polynomials `k are given by (2.3).
The computations described in this section require O(n2) arithmetic operations

and can be carried out in O(n) time steps by n processors when a divide-and-
conquer method is used for computing the required quadrature rules.

3. Computation of Gauss-Kronrod rules

We assume in this section that the eigenvalues and the last components of nor-
malized eigenvectors of the matrix Tn, as well as the first components {w̆1/2

j }nj=1 of
normalized eigenvectors of the matrix T̆n, are available. The computation of these
quantities is discussed in the previous sections. Recall that the matrices Tn and
T̆n have the same eigenvalues. We are now in a position to apply the consolidation
phase of the divide-and-conquer algorithm described in [3] to determine the eigen-
values and first components of normalized eigenvectors of T̃2n+1. The associated
Gauss-Kronrod rule is then obtained from (1.17).

The Gauss-Kronrod matrix (1.16) can be written as

T̃2n+1 :=

 Tn enbn
bne

T
n an bn+1e

T
1

e1bn+1 T̆n

 .(3.1)

The matrix T̆n has the spectral factorization

T̆n = W̆nΛnW̆T
n , W̆nW̆

T
n = I,
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where Λn is defined by (1.14). Introduce

Ũ :=

 Wn

1
W̆n

 ∈ R(2n+1)×(2n+1).

Then

ŨT (T̃2n+1 − λI)Ũ =

 Λn − λI WT
n enbn

bne
T
nWn an − λ bn+1e

T
1 W̆n

W̆T
n e1bn+1 Λn − λI

 .(3.2)

Note that the entries of the vectors eTnWn and eT1 W̆n are known. The matrix on
the right-hand side is the sum of a diagonal matrix and a Swiss cross

ŨT (T̃2n+1 − λI)Ũ =


x

x
x

x
x

+


x
x

x x x x x
x
x

 ,
which we permute to an arrow matrix by a similarity transformation with the per-
mutation matrix P (n+1) = [e1, e2, . . . , en, en+2, . . . , e2n, en+1] ∈ R(2n+1)×(2n+1).
Thus,

(P (n+1))T ŨT (T̃2n+1 − λI)ŨP (n+1)

(3.3)

=

 Λn WT
n enbn

Λn W̆T
n e1bn+1

bne
T
nWn bn+1e

T
1 W̆n an

− λI.
We apply rotation similarity transformations to rows j and j+n, for j = 1, 2, . . . , n,
in order to annihilate the first n entries of row and column 2n+ 1. This process is
sometimes referred to as combo-deflation and yields

GT (P (n+1))T ŨT (T̃2n+1 − λI)ŨP (n+1)G =

 Λn
Λn c
cT an

− λI,
(3.4)

where the matrix G ∈ R(2n+1)×(2n+1) is made up of the product of the n rotations
applied to the matrix (3.3) from the right, and the vector c = [γ1, γ2, . . . , γn] ∈ Rn
consists of the entries in positions n+ 1 through 2n of the vector

(GT [bneTnWn, bn+1e
T
1 W̆n, an])T .

The right-hand side of (3.4) shows that the matrix T̃2n+1 has the diagonal entries
of Λn as eigenvalues, and these are the nodes of the Gauss rule (1.2). Thus, the
computed nodes of the Gauss and Gauss-Kronrod quadrature rules satisfy (1.5).

The remaining n+1 eigenvalues of T̃2n+1 are eigenvalues of the trailing principal
(n + 1) × (n + 1) submatrix of the matrix (3.4), which for λ 6∈ {xj}nj=1 can be
factored according to[

Λn c
cT an

]
− Iλ =

[
I 0

cT (Λn − λI)−1 1

] [
Λn − λI c

0T −f(λ)

]
,
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where f is the spectral function

f(λ) := λ− an +
n∑
j=1

γ2
j

xj − λ
.(3.5)

The n + 1 distinct zeros of f are the Gauss-Kronrod nodes {x̃2j−1}n+1
j=1 , and they

interlace the Gauss nodes {xj}nj=1. A zero finder that yields sequences of cubically
and monotonically convergent approximations of the zeros of f is described in [3].
The computation of the eigenvalues requires O(n2) arithmetic operations. Given
the eigenvalues of T2n+1, the first components of normalized eigenvectors also can
be determined inO(n2) arithmetic operations; see [3] for details. These components
are computed by an approach suggested by Gu and Eisenstat; see [11] and references
therein. Only O(n) time steps are required when n processors are available.

The computations required to compute an n-point Gauss quadrature rule and
the associated (2n+ 1)-point Gauss-Kronrod rule are summarized in the following
algorithm.

Algorithm 1. Computation of Gauss and Gauss-Kronrod rules.

• Input: n, first 3n + 1 recursion coefficients a0, b1, a1, b2, . . . for orthogonal
polynomials associated with a positive measure dw scaled so that µ0 = 1.

• Output: n-point Gauss rule {xj , wj}nj=1 and associated (2n+1)-point Gauss-
Kronrod rule {x̃j , w̃j}2nj=1.
• Compute eigenvalues as well as first and last components of normalized eigen-

vectors of the tridiagonal matrix Tn. The eigenvalues and first components of
the eigenvectors yield the Gauss quadrature rule {xj , wj}nj=1 associated with
the measure dw.
• Compute weights {w̆j}nj=1 of trailing n×n principal submatrix T̆n as described

in Section 2.
• The entries of row and column n+ 1 of the matrix T̃2n, the eigenvalues and

last component of normalized eigenvectors of Tn and the square-root of the
weights {w̆j}nj=1 are used to compute the Gauss-Kronrod rule {x̃j , w̃j}2nj=1 by
application of a consolidation step of a divide-and-conquer algorithm.

4. Generalized Gauss-Kronrod quadrature rules

This section discusses the computation of Gauss-Kronrod rules with one or two
preassigned nodes. We refer to these quadrature rules as Gauss-Kronrod-Radau and
Gauss-Kronrod-Lobatto rules, respectively. Properties of these rules are discussed
by Gautschi [7].

4.1. Gauss-Kronrod-Radau rules. Let dw be the nonnegative measure intro-
duced in Section 1. An (n+ 1)-point Gauss-Radau quadrature rule for the integral
(1.1) with a fixed node at x = a is a formula of the form

Gn+1,af :=
n∑
k=0

f(xk,a)wk,a(4.1)

with nodes a = x0,a < x1,a < · · · < xn,a < b and positive weights wk,a chosen so
that

Gn+1,af = If ∀f ∈ P2n.
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The associated Gauss-Kronrod-Radau quadrature rule

K2n+2,af :=
2n+1∑
k=0

f(x̃k,a)w̃k,a(4.2)

has the properties that
{xk,a}nk=0 ⊂ {x̃k,a}2n+1

k=0

and

K2n+2,af = If ∀f ∈ P3n+2.(4.3)

In addition, we would like the weights w̃k,a to be positive and the nodes x̃k,a to
satisfy a = x̃0,a < x̃1,a < · · · < x̃2n+1,a. The “free” nodes {xk,a}nk=1 of the Gauss-
Radau rule (4.1) are zeros of the nth degree orthogonal polynomial associated with
the measure

dw′(x) := (x− a)dw(x), a ≤ x ≤ b;(4.4)

see, e.g., [9]. Analogously, Gautschi [7] showed that the nodes {x̃k,a}2n+1
k=1 of the

Gauss-Kronrod-Radau rule (4.2) are nodes of a (2n+1)-point Gauss-Kronrod quad-
rature rule

K′2n+1f =
2n+1∑
k=1

f(x̃′k)w̃′k(4.5)

associated with the measure (4.4). We apply Algorithm 1 to compute the nodes x̃′k
and weights w̃′k of (4.5) and thereby the nodes x̃k,a of the Gauss-Kronrod-Radau
rule (4.2). The following proposition shows how to compute the weights w̃k,a of
(4.2) from the weights w̃′k.

Proposition 4.1. Let {w̃′k}2n+1
k=1 be the weights of the Gauss-Kronrod quadrature

rule (4.5) associated with the measure (4.4). The weights w̃k,a of the (2n+ 2)-point
Gauss-Kronrod-Radau rule (4.2) associated with the measure dw are given by

w̃k,a =
w̃′k

x̃k,a − a
, 1 ≤ k ≤ 2n+ 1,(4.6)

w̃0,a = µ0 −
2n+1∑
k=1

w̃k,a.

Proof. Introduce the Lagrange polynomials

`k(x) :=
2n+1∏
j=1
j 6=k

x− x̃j,a
x̃k,a − x̃j,a

and
`k,a(x) := `k(x)

x− a
x̃k,a − a

,

for 1 ≤ k ≤ 2n+ 1. It follows from (4.3)–(4.5) that

w̃k,a = K2n+2,a`k,a =
∫ b

a

`k,a(x)dw(x)

=
1

x̃k,a − a

∫ b

a

`k(x)dw′(x) =
1

x̃k,a − a
K′2n+1`k =

w̃′k
x̃k,a − a

,

for 1 ≤ k ≤ 2n+ 1. The formula for w̃0,a follows from
∑2n+1
k=0 w̃k,a =

∫ b
a dw(x).
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Algorithm 1 requires the first 3n+ 1 recursion coefficients a′0, b
′
1, a
′
1, . . . for the

orthogonal polynomials with respect to the measure (4.4). When dw is a measure
of Jacobi-type

dw(x) := c0(b− x)α(x− a)βdx, a < x < b, α, β > −1,(4.7)

then so is dw′, and explicit formulas for the recursion coefficients a′j and b′j are
available; see, e.g., [16]. The scaling factor c0, where

c−1
0 := (b − a)α+β+1B(α+ 1, β + 1)(4.8)

and B denotes the beta function, secures that µ0 = 1.
When dw is not of Jacobi-type and recursion coefficients aj and bj for orthogonal

polynomials associated with the measure dw are available, a scheme by Golub and
Kautsky [9] can be used to compute recursion coefficients a′j and b′j for orthogonal
polynomials associated with the measure dw′. Let the symmetric tridiagonal matrix
Tm ∈ Rm×m be defined by the first 2m− 1 recursion coefficients aj and bj given by
(1.10)–(1.11); cf. (1.13). Compute the Choleski factorization

Tm − aI = LmL
T
m.(4.9)

Then the matrix

T ′m :=


a′0 b′1
b′1 a′1 b2

. . . . . . . . .
b′m−2 a′m−2 b′m−1

b′m−1 a′m−1

 := LTmLm + aI + γmeme
T
m,

(4.10)

where γm := b2m/(e
T
mLmem)2, contains the first 2m − 1 recursion coefficients for

orthogonal polynomials associated with the measure dw′; see [9, Theorem 3]. The
coefficients a′j and b′j are used as input for Algorithm 1.

4.2. Gauss-Kronrod-Lobatto rules. Let dw be the nonnegative measure intro-
duced in Section 1. An (n+2)-point Gauss-Lobatto quadrature rule for the integral
(1.1) with fixed nodes at x = a and x = b is a formula of the form

Gn+2,a,bf :=
n+1∑
k=0

f(xk,a,b)wk,a,b(4.11)

with nodes a = x0,a,b < x1,a,b < · · · < xn,a,b < xn+1,a,b = b and positive weights
wk,a,b chosen so that

Gn+2,a,bf = If ∀f ∈ P2n+1.

The associated Gauss-Kronrod-Lobatto quadrature rule

K2n+3,a,bf :=
2n+2∑
k=0

f(x̃k,a,b)w̃k,a,b(4.12)

has the properties that
{xk,a,b}n+1

k=0 ⊂ {x̃k,a,b}
2n+1
k=0

and

K2n+3,a,bf = If ∀f ∈ P3n+3.(4.13)
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We would like the weights w̃k,a,b to be positive and the nodes x̃k,a,b to satisfy

a = x̃0,a,b < x̃1,a,b < · · · < x̃2n+1,a,b < x̃2n+2,a,b = b.

The “free” nodes {xk,a,b}nk=1 of the Gauss-Lobatto rule (4.11) are zeros of the
nth degree orthogonal polynomial associated with the measure

dw′′(x) := (b− x)(x − a)dw(x), a ≤ x ≤ b;(4.14)

see [9]. Analogously, Gautschi [7] showed that the nodes {x̃k,a,b}2n+1
k=1 of the Gauss-

Kronrod-Lobatto rule (4.12) are nodes of a (2n+ 1)-point Gauss-Kronrod quadra-
ture rule

K′′2n+1f =
2n+1∑
k=1

f(x̃k,a,b)w̃′′k(4.15)

associated with the measure (4.14). We apply Algorithm 1 to compute the nodes
x̃k,a,b and weights w̃′′k of (4.15) and thereby the nodes of the Gauss-Kronrod-Lobatto
rule (4.12). The following proposition shows how to compute the weights w̃k,a,b of
(4.12) from the weights w̃′′k .

Proposition 4.2. Let {w̃′′k}
2n+1
k=1 be the weights of the Gauss-Kronrod quadrature

rule (4.15) associated with the measure (4.14). The weights w̃k,a,b of the (2n+ 3)-
point Gauss-Kronrod-Lobatto rule (4.12) associated with the measure dw are given
by

w̃k,a,b =
w̃′′k

(x̃k,a,b − a)(b − x̃k,a,b)
, 1 ≤ k ≤ 2n+ 1,(4.16)

w̃0,a,b =
1

b − a

(
bµ0 − µ1 +

2n+1∑
k=1

w̃k,a,b(x̃k,a,b − b)
)
,(4.17)

w̃2n+2,a,b =
1

b − a

(
µ1 − aµ0 −

2n+1∑
k=1

w̃k,a,b(x̃k,a,b − a)

)
.(4.18)

Proof. Formula (4.16) can be shown similarly to (4.6). Integration of x− b by the
rule (4.12) yields

µ1 − bµ0 =
∫ b

a

(x− b)dw(x) =
2n+1∑
k=0

w̃k,a,b(x̃k,a,b − b),

from which (4.17) follows. Similarly, (4.18) is obtained by integrating x− a.

Algorithm 1 requires the 3n+ 1 first recursion coefficients a′′0 , b
′′
1 , a
′′
1 , . . . for the

orthogonal polynomials with respect to the measure (4.14). When dw is a measure
of Jacobi-type (4.7), explicit formulas for these recursion coefficients are available.
Otherwise, we can can determine the coefficients a′′j and b′′j from the matrix (4.10)
as follows. Compute the Choleski factorization

bI − T ′m = L′m(L′m)T .
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Then the matrix

T ′′m :=


a′′0 b′′1
b′′1 a′′1 b′′2

. . . . . . . . .
b′′m−2 a′′m−2 b′′m−1

b′′m−1 a′′m−1


:= bI − (L′m)TL′m + aI + γ′meme

T
m,

where γ′m := (b′m)2/(eTmLmem)2, contains the first 2m− 1 recursion coefficients for
orthogonal polynomials associated with the measure dw′′; see Golub and Kautsky
[9] for details.

5. Numerical examples

The computations were carried out on an HP 9000 workstation in double pre-
cision arithmetic, i.e., with almost 16 significant digits, and in quadruple precision
arithmetic. A Matlab implementation of our divide-and-conquer based algorithm
is referred to as “d+c based alg.” in the tables. This implementation uses double
precision arithmetic and is compared to a Fortran implementation using double
precision arithmetic of the algorithm presented by Laurie [12]. Laurie’s algorithm
is referred to as “mixed moment alg.” in the tables. We used a QR algorithm from
LAPACK [1] to compute the Gauss-Kronrod rule from the matrix (1.16) determined
by Laurie’s algorithm. A Fortran implementation in quadruple precision arithmetic
of Laurie’s algorithm and the QR algorithm were used to compute highly accurate
Gauss-Kronrod quadrature rules. The nodes and weights computed in quadruple
precision were considered exact, and were used to determine the error in the quadra-
ture rules computed by our and Laurie’s algorithms in double precision arithmetic.

In our experiments we computed Gauss-Kronrod and Gauss-Kronrod-Radau
quadrature rules associated with Jacobi measures

dw(x) := c0(1− x)α(1 + x)βdx, −1 < x < 1, α, β > −1,
(5.1)

where the scaling factor c0, given by (4.8) with a = −1 and b = 1, is chosen to
make µ0 = 1. Recursion coefficients for the associated orthogonal polynomials are
explicitly known; see, e.g., [16].

Table 5.1. Errors in computed Gauss-Kronrod weights

d + c based alg. mixed moment based alg.
n α β max max max max

abs. error rel. error abs. error rel. error
10 -0.20 -0.99 8.68 E-16 4.42 E-15 1.29 E-14 2.36 E-13
10 -0.70 1.00 4.18 E-15 2.52 E-14 3.67 E-14 2.61 E-13
15 -0.97 -0.97 3.24 E-14 4.62 E-13 1.35 E-13 2.25 E-12
15 -0.99 -0.50 1.20 E-14 2.16 E-13 1.56 E-13 2.81 E-12
20 -0.60 -0.90 2.38 E-14 1.91 E-13 2.33 E-13 1.87 E-12
20 -0.99 -0.90 4.59 E-15 4.19 E-13 1.21 E-13 2.36 E-12
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Table 5.2. Errors in computed Gauss-Kronrod nodes

d + c based alg. mixed moment based alg.
n α β max max max max

abs. error rel. error abs. error rel. error
10 -0.20 -0.99 5.86 E-16 4.65 E-15 2.50 E-15 2.50 E-15
10 -0.70 1.00 5.46 E-16 7.71 E-15 5.45 E-15 5.65 E-15
15 -0.97 -0.97 1.07 E-15 4.08 E-15 1.26 E-15 4.63 E-15
15 -0.99 -0.50 7.12 E-16 4.74 E-15 4.59 E-15 1.75 E-14
20 -0.60 -0.90 1.24 E-15 2.85 E-15 3.68 E-15 5.00 E-14
20 -0.99 -0.90 1.83 E-15 1.66 E-14 3.64 E-15 2.36 E-14

Table 5.3. Errors in computed Gauss-Kronrod-Radau weights,
α = −0.99, β = −0.9, fixed node at x = −1

d + c based alg. mixed moment based alg.
n max max max max

abs. error rel. error abs. error rel. error
9 3.46 E-15 6.35 E-14 8.12 E-14 1.46 E-12

15 1.62 E-14 2.67 E-13 8.52 E-14 1.58 E-12
21 1.42 E-14 6.22 E-13 2.86 E-13 5.40 E-12

Table 5.4. Errors in computed Gauss-Kronrod-Radau nodes, α =
−0.99, β = −0.9, fixed node at x = −1

d + c based alg. mixed moment based alg.
n max max max max

abs. error rel. error abs. error rel. error
9 4.62 E-16 3.31 E-15 2.74 E-15 5.64 E-15

15 9.89 E-16 1.30 E-14 2.95 E-15 8.63 E-15
21 2.27 E-15 1.08 E-14 4.76 E-15 4.76 E-15

Table 5.5. Errors in computed Gauss-Kronrod rules, α =
−0.9999, β = −0.5

d + c based alg. mixed moment based alg.
max max max max

n abs. error abs. error abs. error abs. error
in weights in nodes in weights in nodes

16 7.87 E-16 9.84 E-16 2.11 E-15 2.64 E-15
32 3.52 E-15 1.07 E-15 1.28 E-14 1.15 E-15
64 1.64 E-15 1.77 E-15 5.50 E-14 4.10 E-15

128 3.80 E-14 2.18 E-15 2.12 E-13 2.43 E-15
256 8.28 E-14 1.52 E-15 2.36 E-12 5.53 E-15
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Our computational results can be summarized as follows. For many choices of α
and β in (5.1) both Laurie’s and our methods yield high accuracy. However, when
at least one of the exponents in (5.1) is fairly close to −1, our method generally
gives smaller errors. The higher accuracy in the computed weights achieved by the
method of the present paper is particularly noteworthy.

Tables 5.1 and 5.2 display the magnitudes of the largest absolute and relative
errors in the computed Gauss-Kronrod nodes and weights. These errors are referred
to as “max abs. error” and “max rel. error”, respectively. We use the notation
5.11E-14 for 5.11 · 10−14. The examples in the tables illustrate the performance of
the methods for a variety of choices of α and β for a few fairly small values of n.
When α = β, the Gauss-Kronrod rule has a node at the origin by symmetry. In
the example with n = 15 and α = β = −0.97, we set the computed node closest to
the origin to zero before computing absolute and relative errors of the nodes.

Tables 5.3 and 5.4 show the errors in a few computed Gauss-Kronrod-Radau rules
associated with the measure (5.1) and a fixed node at x = −1. These rules were
computed by applying Algorithm 1 to the measure (4.4). Due to the scaling (µ0 = 1)
assumed by the algorithm, it follows from (4.8) that the weights determined by
Algorithm 1 have to be scaled by the factor s(α, β) := 2B(1+α, 2+β)/B(1+α, 1+β)
to yield the weights {w̃′j}2n+1

j=1 of the Gauss-Kronrod rule (4.5). These weights are
required in (4.6) to determine the Gauss-Kronrod-Radau weights w̃k,a. Table 5.3
shows the errors in the computed weights {w̃k,a}2n+1

k=0 for the Jacobi measure (5.1)
with α = −0.99 and β = −0.9. For these values of α and β, we have s(α, β) = 20/11.
Table 5.4 shows the error in the computed nodes {x̃k,a}2n+1

k=0 . Finally, Table 5.5
illustrates the performance of the methods for some large values of n.

6. Conclusion

The paper describes a new algorithm for the computation of Gauss-Kronrod
quadrature rules and compares it to an algorithm recently proposed by Laurie. Both
algorithms yield high accuracy for many problems. However, when an exponent in
the Jacobi weight function (5.1) is close to −1, the algorithm of the present paper
typically yields smaller errors. We also show how our algorithm can be applied to
compute Kronrod extensions of Gauss-Radau and Gauss-Lobatto quadrature rules.
The structure of the new algorithm makes efficient implementation in a parallel
computing environment possible. This may be important in certain applications;
see, e.g., [4, 8, 15].
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