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ADAPTIVE LAGRANGE–GALERKIN METHODS
FOR UNSTEADY CONVECTION-DIFFUSION PROBLEMS

PAUL HOUSTON AND ENDRE SÜLI

Abstract. In this paper we derive an a posteriori error bound for the
Lagrange–Galerkin discretisation of an unsteady (linear) convection-diffusion
problem, assuming only that the underlying space-time mesh is nondegener-
ate. The proof of this error bound is based on strong stability estimates of an
associated dual problem, together with the Galerkin orthogonality of the finite
element method. Based on this a posteriori bound, we design and implement
the corresponding adaptive algorithm to ensure global control of the error with
respect to a user-defined tolerance.

1. Introduction and preliminaries

The modelling of the interaction between convective and diffusive processes is
of fundamental importance in many areas of applied mathematics; in particular,
meteorology, oil reservoir simulation, aerodynamics and physiology, for example. In
many such applications convection essentially dominates diffusion, which leads to
a “nearly” hyperbolic set of governing partial differential equations. Typically, so-
lutions to these equations exhibit localised phenomena, such as propagating “near-
shocks” and sharp transition layers, and their numerical approximation presents a
challenging computational task; indeed, it is well documented that many standard
numerical methods, developed for diffusion-dominated processes, often behave very
poorly when applied to these types of problems. Moreover, the presence of local
singularities in the solution may lead to a global deterioration of the numerical ap-
proximation. Hence, in order to resolve such localised features, in an accurate and
efficient manner, it is essential to implement an adaptive algorithm that is capa-
ble of automatically refining the discretisation within regions of the computational
domain where these transition layers are located.

This paper is concerned with the development of adaptive Lagrange–Galerkin
methods for singularly perturbed unsteady convection-diffusion problems. The
Lagrange–Galerkin method is based on combining the method of characteristics
with the standard Galerkin finite element method. This procedure gives rise to
both a highly accurate and stable numerical scheme for transient problems (see
Bercovier & Pironneau [3], Douglas & Russell [6] and Pironneau [19], for example).
The adaptive algorithm for the Lagrange–Galerkin method developed here is driven
by a residual-based a posteriori error bound. In particular, we shall derive an a
posteriori error bound in the norm of the function space L2(0, T ;L2(Ω)), where
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T > 0 is a final time and Ω denotes the spatial domain. The proof of this error
bound is based on strong stability estimates of an associated dual problem, together
with the Galerkin orthogonality of the finite element method, based on the gen-
eral theoretical framework of a posteriori error estimation developed by Eriksson
& Johnson [7, 8], Eriksson et al. [9] and Hansbo & Johnson [11], for example.

It is worth noting that many of the a posteriori error bounds derived in the
literature for unsteady problems are based on the assumption that the spatial mesh
function h is continuously differentiable on Ω̄ and that the gradient of h is uniformly
bounded by a constant µ, where µ is assumed to be sufficiently small, cf. [7, 8, 15].
Clearly, these conditions do not preclude the use of nonuniform meshes; however,
the variation in the size of the elements in the mesh must be very smooth, so that
the change in h is sufficiently small to guarantee that |∇h(x)| ≤ µ for all x in Ω̄.
For practical computations in two or three space-dimensions, such a restriction on
h may be unrealistic.

The a posteriori error analysis presented in this paper will assume only that
the underlying space-time mesh is nondegenerate. To achieve this, the key part of
the proof of the error bound relies on the definition in space of the function φh
introduced using the Galerkin orthogonality of the finite element method. We note
that for a given φ ∈ L2(Ω) there are essentially two main requirements that must
be satisfied by the mapping φ 7→ φh. Firstly, that it is stable in the L2(Ω) norm,
i.e., there exists a positive constant C, independent of h, such that

‖φh‖ ≤ C‖φ‖.(1.1)

Secondly, that the approximation error between the solution φ of a suitable dual
problem and the corresponding φh (measured in some appropriate norm) can be
bounded locally on an element κ (or on a patch of elements surrounding κ), so that
the spatial mesh may be arbitrarily nonuniform.

In [7, 8, 15], φh is defined to be the space-time L2-projection of φ. Clearly, this
choice automatically satisfies (1.1) with C = 1. However, the spatial projection
error cannot be bounded locally due to the global nature of projecting onto con-
tinuous piecewise polynomial functions. Hence, it is first necessary to bound the
weighted projection error (weighted with powers of h) by the weighted interpolation
error. Then, the latter can be locally estimated on each element κ in the mesh.
Unfortunately, this process assumes that the weighting factor inside the norm sat-
isfies certain regularity assumptions, which in turn induce the restrictions on the
mesh function h mentioned above.

In this paper we propose to define φh to be the L2-projection of φ in time, but
in space we shall define φh to be a quasi-interpolant of φ. This quasi-interpolation
operator will be constructed in such a way that (1.1) will hold, along with optimal
approximation results on arbitrarily nonuniform meshes.

In the final part of this paper, we consider the design and implementation of an
adaptive algorithm, driven by our a posteriori error bound, for determining both
the spatial and temporal mesh parameters in order to ensure global control of the
discretisation error with respect to a user-defined tolerance. Numerical experiments
indicate that while the norm of the residual of the underlying partial differential
equation may be used to bound the error on a global basis (i.e., over the whole com-
putational domain), the norm of the residual, calculated on an individual element,
may give a poor estimate of the local error on that element. This is particularly
evident when convection dominates diffusion, since the residual of the underlying
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partial differential equation is dominated by the (direction dependent) hyperbolic
part of the differential operator.

The outline of this paper is as follows. In Section 2, we state the model problem
to be considered and formulate its Lagrange–Galerkin approximation. Then, in
Section 3 we derive an a posteriori bound for the error in the norm of the function
space L2(0, T ;L2(Ω)). Based on this error bound, in Section 4 we design an adaptive
algorithm to ensure global control of the error with respect to a fixed tolerance.
Then, in Section 5 we present the proof of the a posteriori error bound. Next, in
Section 6 we present some numerical experiments to illustrate the performance of
our adaptive strategy. Finally, in Section 7 we summarise the work presented in
this paper and draw some conclusions.

Before we proceed, let us introduce some notation. Let N denote the set of
positive integers, N0 the set of nonnegative integers and R the set of real num-
bers. Let ω be a bounded open subset of Rd (d ∈ N) with a Lipschitz continuous
boundary ∂ω. We write Lp(ω), 1 ≤ p ≤ ∞, to denote the usual Lebesgue space of
real-valued functions with norm ‖ · ‖Lp(ω). In the case p = 2, we denote the usual
L2(ω) inner product by (·, ·)ω . In particular, for ω = Ω, where Ω will be specified
later, we denote ‖ · ‖L2(Ω) by ‖ · ‖, and (·, ·)Ω by (·, ·). In the following we shall use
the classical Sobolev spaces Wm,p(ω) and Wm,p

0 (ω), m ∈ N0, 1 ≤ p ≤ ∞, endowed
with the norm ‖ · ‖Wm,p(ω) and seminorm | · |Wm,p(ω). For p = 2, Wm,2(ω) will be
denoted by Hm(ω) and we drop the subscript p = 2 in the corresponding norms
and seminorms. The dual space of Hm

0 (ω) will be denoted by H−m(ω).

2. The Lagrange–Galerkin finite element method

Given a final time T > 0, we shall consider the following unsteady convection-
diffusion problem. Given that f ∈ L2(0, T ;H−1(Ω)) and u0 ∈ L2(Ω), find u such
that

ut + a · ∇u − ε∆u = f, x ∈ Ω, t ∈ (0, T ],(2.1a)

u(x, t) = 0, x ∈ ∂Ω, t ∈ [0, T ],(2.1b)

u(x, 0) = u0(x), x ∈ Ω,(2.1c)

where Ω is a bounded convex polygonal domain in R2 with boundary ∂Ω. Further,
we assume that the diffusion coefficient ε > 0, the velocity vector a lies in the
function space C([0, T ];C1

0(Ω̄)2) and that a is incompressible, i.e., ∇ · a = 0 ∀x ∈
Ω, t ∈ (0, T ).

Remark 2.1. The assumption that the velocity vector a is incompressible is not
essential to the a posteriori error analysis presented in the proceeding sections.
However, this restriction leads to “sharper” stability bounds for the corresponding
dual or adjoint problem (cf. Section 5.3). In the case of compressible a, such
stability estimates have been derived for a system of convection-diffusion problems
in [12].

The Lagrange–Galerkin method for (2.1) is based on combining the method of
characteristics with the standard Galerkin finite element method (cf. Bercovier &
Pironneau [3], Douglas & Russell [6] and Pironneau [19], for example). To define
this method, let 0 = t0 < t1 < · · · < tM < tM+1 = T be a subdivision (not
necessarily uniform) of [0, T ], with corresponding time intervals In = (tn−1, tn]
and time steps kn = tn − tn−1. For each n, 0 ≤ n ≤ M + 1, let Tn = {κ} be
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an admissible subdivision of Ω into closed triangles κ, with corresponding mesh
function hn satisfying

c1h
2
κ ≤ meas(κ) ∀κ ∈ Tn,(2.2a)

c2hκ ≤ hn(x) ≤ hκ ∀x ∈ κ ∀κ ∈ Tn,(2.2b)

where hκ = diam(κ) and c1 and c2 are positive constants independent of hn. Fur-
ther, h is defined to be the global mesh function given by h(x, t) = hn(x), for
(x, t) ∈ Ω × In and we define the corresponding time step function k = k(t) by
k(t) = kn for t ∈ In.

For n = 0, . . . ,M + 1, we associate with Tn the set En = {τ} consisting of those
line segments in R2 which appear as an edge of some κ ∈ Tn. We also denote by
En,i, those τ in En which are interior to Ω̄ (i.e., not part of ∂Ω).

Let Sn = Ω× In; for r ∈ N we define the following finite element spaces:

Shn = {v ∈ C0(Ω) : v is a polynomial of degree at most r on each κ in Tn} ,
Vhn = {v ∈ C(Sn) : v is constant in time and v(·, t) ∈ Shn for each t in In} ,
Vh = {v : v(x, t)|Sn ∈ Vhn , n = 1, . . . ,M + 1} .

We note that if v ∈ Vh, then v is continuous in space at any time, but may be
discontinuous in time at the discrete time levels tn. To account for this, we introduce
the notation vn± := lims→0+ v(tn ± s) and [vn] := vn+ − vn−.

The construction of the Lagrange–Galerkin method involves writing problem
(2.1) in a Lagrangian form. To this end, we define the particle trajectory (or
characteristic curve), X(x, s; ·) for x ∈ Ω̄ and s ∈ (0, T ], as the solution of the
initial value problem

d
dt

X(x, s; t) = a(X(x, s; t), t),(2.3a)

X(x, s; s) = x.(2.3b)

Further, the material derivative Dtu may be defined as

Dtu(x, s) :=
d
dt
u(X(x, s; t), t) |t=s

=
∂

∂t
u(x, s) + a(x, s) · ∇u(x, s) ∀x ∈ Ω, s ∈ (0, T ].

Hence, using the material derivative, equation (2.1a) may be rewritten in the fol-
lowing (weak) form. Find u(t) ∈ V , such that

(Dtu(·, t), v) + (ε∇u(·, t),∇v) = (f(·, t), v) ∀v ∈ V,
(u(·, 0), v) = (u0(·), v) ∀v ∈ V,

where V = H1
0 (Ω) and, for the sake of simplicity, we shall assume that f ∈

C([0, T ];L2(Ω)). The Lagrange–Galerkin time-discretisation involves approximat-
ing the material derivative by a divided difference operator. The simplest appro-
priate discretisation is the backward Euler method, giving for n = 0, . . . ,M :(

u(·, tn+1)− u(X(·, tn+1; tn), tn)
kn+1

, v

)
+(ε∇u(·, tn+1),∇v) ≈ (f(·, tn+1), v) ∀v ∈ V,(2.5a)

(u(·, 0), v) = (u0(·), v) ∀v ∈ V.(2.5b)
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If we now define unh to be the Galerkin finite element approximation to u(·, tn)
at time tn, then applying the finite element method to (2.5) yields the Lagrange–
Galerkin discretisation of (2.1) as follows. Find un+1

h ∈ Shn+1 for 0 ≤ n ≤ M such
that (

un+1
h − unh(X(·, tn+1; tn))

kn+1
, v

)
+ (ε∇un+1

h ,∇v) = (fn+1, v) ∀v ∈ Shn+1 ,(2.6a)

(u0
h, v) = (u0, v) ∀v ∈ Sh0 ,(2.6b)

where fn+1(·) := f(·, tn+1).
Further, integrating (2.6a) with respect to t over In+1, we may write the La-

grange–Galerkin method in the following compact form. Find uh such that, for
n = 0, 1, . . . ,M , uh|Sn+1 ∈ Vhn+1 and satisfies

(Dh
t uh, v)n+1 + (ε∇uh,∇v)n+1 = (f̄ , v)n+1 ∀v ∈ Vhn+1 ,(2.7a)

(u0
h−, v) = (u0, v) ∀v ∈ Sh0 ,(2.7b)

where

Dh
t uh|Sn+1 := (uh−(x, tn+1)− uh−(X(x, tn+1; tn), tn))/kn+1,

f̄ |Sn+1 := f(·, tn+1), and for v, w ∈ L2(In+1;L2(Ω)), we have used the notation

(v, w)n+1 :=
∫ tn+1

tn

(v, w)dt.

3. A posteriori error analysis

In this section we state an a posteriori bound for the error e = u − uh, in
the L2(0, T ;L2(Ω)) norm, where u and uh are the solutions of (2.1) and (2.7),
respectively. However, before we proceed, we first need to introduce some notation.
For v, w ∈ L2(0, T ;L2(Ω)) and Q := Ω× (0, T ), we define

(v, w)Q :=
M∑
n=0

∫ tn+1

tn

(v, w)dt, ‖v‖Q := ((v, v)Q)1/2
.

Given n, 0 ≤ n ≤ M + 1, and τ ∈ En,i, let nτ denote the unit normal to τ in
the outward direction to κ, and define for v ∈ Shn ,[

∂v

∂nτ

]
= lim

s→0+
(∇v(x + snτ )−∇v(x − snτ )) · nτ , x ∈ τ ;

that is, [∂v/∂nτ ] is the jump across τ in the normal component of ∇v. Finally, we
introduce the discrete second derivatives

D2
hv|κ =

∑
τ∈∂κ∩En,i

∥∥∥∥[ ∂v∂nτ

]∥∥∥∥
L∞(τ)

1
hκ
, κ ∈ Tn.

We may then state the following a posteriori error bound for problem (2.1),
which we shall prove in Section 5.

Theorem 3.1. Let u and uh be solutions of (2.1) and (2.7), respectively, and
suppose that Tn, 0 ≤ n ≤M + 1, satisfies (2.2). Then

‖e‖Q ≡ ‖u− uh‖Q ≤
◦
E(uh, h, k, f),(3.1)
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where
◦
E(uh, h, k, f) = E(uh, h, k, f) + E0(u0, u

0
h−, h),

E(uh, h, k, f) = C1‖h2R1‖Q + C2‖kR1‖Q + C3‖h2R2‖Q
+C4‖kR3‖Q + C5‖kR4‖Q,

E0(u0, u
0
h−, h) = C6‖u0 − u0

h−‖,

and

R1|κ = [unh]/kn+1 + a · ∇uh − ε∆uh − f, for κ ∈ Tn+1,

R2 = D2
huh,

R3|Sn+1 = (Dh
t uh − f̄ − ([unh]/kn+1 + a · ∇uh − f))/kn+1,

R4|Sn+1 = [unh]/kn+1.

Furthermore, the Ci, i = 1, . . . , 6, are (computable) positive constants; namely we
have C1 = Ci,1

√
Cs,2 /ε, C2 = Ci,2

√
Cs,3/

√
2, C3 = Ci,1Ct

√
Cs,2 /(2c2), C4 =

Ci,2
√
Cs,1T , C5 =

√
Cs,3 and C6 =

√
Cs,1. Here, Ci,1 and Ci,2 are (quasi-)

interpolation constants depending on c1 and c2 (see Lemma 5.1), Ct (= 4
√

2 /c1)
is a trace constant (see Lemma 5.4) and Cs,1, Cs,2 and Cs,3 are stability constants
of the corresponding dual problem (see subsection 5.3).

Remark 3.2. In general it may not be possible to calculate the particle trajectories
X satisfying (2.3) exactly. Instead, an approximation X̃ to X is computed; the
Lagrange–Galerkin method will then be defined as in (2.7) with Dh

t uh replaced by
D̃h
t uh, where

D̃h
t uh|Sn+1 := (uh−(x, tn+1)− uh−(X̃(x, tn+1; tn), tn))/kn+1,

for n = 0, . . . ,M . Thus, the a posteriori error bound stated in Theorem 3.1 will still
hold with the residual term R3 defined analogously with Dh

t uh replaced by D̃h
t uh.

To ensure that the term ‖kR3‖Q in the a posteriori error bound (3.1) converges to
zero as h and k tend to zero, we assume that the approximate particle trajectories
X̃ are constructed so that they converge to X as the space-time mesh is refined. For
example, the Runge–Kutta method of order four could be used in the calculation
of X̃.

The next section describes the implementation of this a posteriori error bound
into an adaptive finite element algorithm.

4. Adaptive algorithm

For a given tolerance TOL, we now consider the problem of finding a discretisa-
tion in space and time Sh = {(Tn, tn)}n≥0 such that:

1. ‖u− uh‖Q ≤ TOL;
2. Sh is optimal in the sense that the number of degrees of freedom is

minimal.
In order to satisfy these criteria we shall use the a posteriori error bound (3.1) to
choose Sh such that:

1.
◦
E(uh, h, k, f) ≤ TOL;

2. The number of degrees of freedom of Sh is minimal.
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The term E0(u0, u
0
h−, h) is easily controlled at the start of a computation, so here

we shall only consider the problem of constructing Sh in an efficient way to ensure
that

E(uh, h, k, f) ≤ TOL′,

where TOL = TOL′ + E0(u0, u
0
h−, h). To solve this problem, we first write E

symbolically in terms of two residual terms: one that controls the spatial mesh and
one that controls the temporal mesh, i.e., let

E(uh, h, k, f) ≡ C′1‖h2R′1‖Q + C′2‖kR′2‖Q.

Similarly, we split the tolerance TOL′ into a “spatial part”, TOLh, and a “temporal
part”, TOLk. Thus, for reliability we now require that the following two conditions
hold:

C′1‖h2R′1‖Q ≤ TOLh,(4.1)
C′2‖kR′2‖Q ≤ TOLk.(4.2)

To design the space-time mesh Sh at each time level tn, we “split up” the norm in
(4.1) over each element κ ∈ Tn, and the norm in (4.2) over the domain Ω at time
tn. We do this as follows:

C′1‖h2R′1‖Q ≤ C′1
√
T max

1≤n≤M+1
‖h2

nR
′
1(unh)‖

≤ C′1
√
NnT max

1≤n≤M+1

(
max
κ∈Tn

‖h2
nR
′
1(unh)‖L2(κ)

)
,

C′2‖kR′2‖Q ≤ C′2
√
T max

1≤n≤M+1
‖knR′2(unh)‖,

where Nn is the number of elements in the spatial mesh at time tn. Thus, if

C′1
√
NnT ‖h2

nR
′
1(unh)‖L2(κ) ≤ TOLh ∀κ ∈ Tn, for n = 1, . . . ,M + 1,

C′2
√
T ‖knR′2(unh)‖ ≤ TOLk, for n = 1, . . . ,M + 1,

are satisfied, then (4.1) and (4.2) will automatically hold, cf. [23].
For the practical implementation of this method, we consider the following adap-

tive algorithm for choosing Sh, assuming that the final time T is fixed: for each
n = 1, 2, . . . ,M + 1, with Tn,0 a given initial mesh and kn,0 an initial time step, de-
termine meshes Tn,j withNn,j elements of size hn,j(x) and time steps kn,j and corre-
sponding approximate solution unh,j defined on In,j such that, for j = 0, 1, . . . , n̂−1,

C1‖h2
n,j+1R1(unh,j)‖L2(κ) + C3‖h2

n,j+1R2(unh,j)‖L2(κ) =
TOLh√
Nn,jT

∀κ ∈ Tn,j ,

(4.3a)

C2‖kn,j+1R1(unh,j)‖+ C4‖kn,j+1R3(unh,j)‖

+C5‖kn,j+1R4(unh,j)‖ =
TOLk√

T
,(4.3b)

where In,j = (tn−1, tn−1 + kn,j ] and TOL′ = TOLh + TOLk. We define Tn = Tn,n̂,
kn = kn,n̂ and hn = hn,n̂, where for each n, the number of trials n̂ is the smallest
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integer such that for j = n̂, the stopping condition

C1‖h2
n,n̂R1(unh,n̂)‖L2(κ) + C3‖h2

n,n̂R2(unh,n̂)‖L2(κ) ≤
TOLh√
Nn,n̂T

∀κ ∈ Tn,n̂,(4.4a)

C2‖kn,n̂R1(unh,n̂)‖ + C4‖kn,n̂R3(unh,n̂)‖

+C5‖kn,n̂R4(unh,n̂)‖ ≤ TOLk√
T

,(4.4b)

is satisfied.

Remark 4.1.

a) By construction, the stopping condition (4.4) will guarantee reliability of the
adaptive algorithm. For efficiency, we try to ensure that (4.4) is satisfied with
near equality.

b) We should note that because we assume that the final time T is fixed, the time
step given by (4.3b) may need to be limited to ensure that tM + kM+1,n̂ = T .

c) For the implementation of this adaptive algorithm, we shall assume that
Tn,0 = Tn−1 for n = 1, 2, . . . .

d) The multiplicative factors of
√
T arising in (4.3) are introduced by switching

from the L2 norm to the L∞ norm in time. This is not an unrealistic growth in
time since the same factor is observed in the case of the ordinary differential
equation analogue of a constant coefficient hyperbolic problem with purely
imaginary eigenvalues, cf. Eriksson et al. [9, p. 137].

5. Proof of the a posteriori error estimate

In this section we present the proof of the a posteriori error bound stated in
Theorem 3.1. The proof is based on the general theoretical framework of a posteriori
error estimation developed by Eriksson & Johnson [7, 8], Eriksson et al. [9] and
Hansbo & Johnson [11], for example.

The basic structure of the proof of the a posteriori error bound is as follows:

1. Representation of the error in terms of the residual of the finite element
approximation and the solution of the dual problem;

2. Use of Galerkin orthogonality;
3. Local interpolation (projection) error estimates for the solution of the

dual problem;
4. Strong stability estimates for the dual problem.

5.1. Error representation formula. The (backward) dual or adjoint problem
takes the following form. Find φ such that

−φt −∇ · (aφ) − ε∆φ = e ≡ u− uh, x ∈ Ω, t ∈ [0, T ),(5.1a)

φ(x, t) = 0, x ∈ ∂Ω, t ∈ [0, T ],(5.1b)

φ(x, T ) = 0, x ∈ Ω.(5.1c)

We note that for Ω convex, problem (5.1) admits a unique solution φ which lies in
the function space H1(0, T ;L2(Ω)) ∩ L2(0, T ;H1

0(Ω) ∩H2(Ω)), cf. [12].
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We shall now proceed to prove an error representation formula. Multiplying
(5.1a) by e and integrating by parts in both space and time, we get

‖e‖2Q = (e,−φt −∇ · (aφ) − ε∆φ)Q

= (et + a · ∇e, φ)Q + (ε∇e,∇φ)Q −
M∑
n=0

([unh], φ(tn)) + (u0 − u0
h−, φ(0))

= (f − a · ∇uh, φ)Q − (ε∇uh,∇φ)Q −
M∑
n=0

([unh], φ(tn)) + (u0 − u0
h−, φ(0)),

where we have used (2.1a). If we now let φh ∈ Vh, then using (2.7) we have

‖e‖2Q = (f − a · ∇uh, φ)Q + (ε∇uh,∇(φh − φ))Q +
M∑
n=0

∫ tn+1

tn

(Dh
t uh − f̄ , φh)dt

−
M∑
n=0

([unh], φ(tn)) + (u0 − u0
h−, φ(0)) ∀φh ∈ Vh.(5.2)

Finally, we rearrange the terms on the right-hand side of (5.2) in order to ensure
that each expression appearing in the error representation formula is of the correct
asymptotic form, thereby guaranteeing that the final a posteriori error bound is
sharp. To this end, we get the following error representation formula:

‖e‖2Q =
M∑
n=0

∫ tn+1

tn

∑
κ∈Tn+1

([unh]/kn+1 + a · ∇uh − ε∆uh − f, φh − φ)κ dt

+
M∑
n=0

∫ tn+1

tn

 ∑
κ∈Tn+1

(ε∆uh, φh − φ)κ + (ε∇uh,∇(φh − φ))

 dt

+
M∑
n=0

∫ tn+1

tn

(Dh
t uh − f̄ − ([unh]/kn+1 + a · ∇uh − f), φh)dt

+
M∑
n=0

∫ tn+1

tn

([unh]/kn+1, φ− φ(tn))dt+ (u0 − u0
h−, φ(0))

≡ I + II + III + IV + V ∀φh ∈ Vh.(5.3)

So far, φh has been an arbitrary element of Vh. In the next section we make a
specific choice of φh as the interpolant/projection of the dual solution φ.

5.2. Interpolation/projection estimates for the dual problem. In this sec-
tion we shall define φh ∈ Vh in (5.3) to be the quasi-interpolant of φ in space and
the L2-projection of φ in time. However, before we proceed let us first describe how
the quasi-interpolation operator is constructed.

Here, we consider the construction of the quasi-interpolation operator I based
on a modification of the generalised interpolation operators developed by Scott
& Zhang [21] and Brenner & Scott [4], Section 4.8; see also Verfürth [24]. The
nodal values will be defined by locally averaging the function over an element κ.
However, these nodal values will be modified in order to fit homogeneous boundary
conditions; this modification is employed in order to ensure that I is bounded in
L2, cf. Lemma 5.1 below. For further details, see [12, 17].



86 PAUL HOUSTON AND ENDRE SÜLI

For a given n, 0 ≤ n ≤M + 1, we have the triangulation Tn of Ω; for simplicity
let us drop the subscript/superscript “n”, and simply denote Tn by T . We let
Nh = {ai}Li=1 denote the set of interpolation nodes of T and {φi}Li=1 denote the
set of nodal basis functions of Sh (i.e., Shn).

For each node ai ∈ Nh we choose an element κ (recall that κ is closed) such that
ai ∈ κ, and we let σi = κ. We note that there may be many such element domains,
but we pick just one. Let us denote by n1 the dimension of Pr(σi). Further, let
ai,1 = ai and {ai,j}n1

j=1 be the set of nodal points in σi. For the nodal basis {φi,j}n1
j=1

for σi, we have the corresponding L2(σi)-dual basis {ψi,j}n1
j=1 defined by∫

σi

ψi,j(x)φi,k(x)dx = δjk, for j, k = 1, 2, . . . , n1,

where δjk is the Kronecker delta. To simplify notation, we let

ψi = ψi,1 ∀ai ∈ Nh.
Hence, it follows that for any nodal basis function φj of Sh, we have∫

σi

ψi(x)φj(x)dx = δij , for i, j = 1, 2, . . . , L.

We now define the quasi-interpolation operator I : L1(Ω)→ Sh by

Iv(x) =
L∑
i=1

Iv(ai)φi(x),(5.4)

where

Iv(ai) = χΩ(ai)
∫
σi

ψi(y)v(y)dy,

and χΩ is the characteristic function for Ω, i.e., if ai ∈ ∂Ω then Iv(ai) = 0.
Following the ideas of [21], the quasi-interpolation operator I can be shown to be

a projection from L1(Ω) to Sh, cf. [12, 17]. Furthermore, I can be shown to satisfy
the following optimal approximation property and stability estimate (see [12, 17]
for details).

Lemma 5.1. Given that v ∈ H1
0 (Ω) ∩ Hs(Ω), 1 ≤ s ≤ r + 1, and T satisfies

conditions (2.2), there exist positive constants Ci,1 and Ci,2, independent of h,
such that

‖h−s(v − Iv)‖ + |h1−s(v − Iv)|H1(Ω) ≤ Ci,1|v|Hs(Ω),

‖Iv‖ ≤ Ci,2‖v‖.

Remark 5.2. We note that the interpolation constants Ci,1 and Ci,2 arising in
Lemma 5.1 depend on the mesh regularity constant c1 defined by (2.2a).

We shall now proceed to define φh ∈ Vh; here, we now return to the sub-
script/superscript “n” notation to distinguish between different time levels tn. Let
us first define the operators

In : L1(Ω)→ Shn , πn : L2(In)→ P0(In),

in space and in time, by (5.4) and∫ tn

tn−1

(πnφ− φ)v dt = 0 ∀v ∈ P0(In),(5.5)
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respectively. Then, we can define (locally) φh|Sn ∈ Vhn by letting

φh|Sn = Inπnφ = πnInφ ∈ Vhn ,

where φ = φ|Sn . Further, if we introduce I and π by

(Iφ)|Sn = In(φ|Sn),(5.6a)

(πφ)|Sn = πn(φ|Sn),(5.6b)

then we let φh ∈ Vh be

φh = Iπφ = πIφ ∈ Vh.(5.7)

It follows from this definition (using Lemma 5.1) that

‖φh‖Q ≤ Ci,2‖φ‖Q.(5.8)

We next provide error estimates for the operators I and π in order to estimate
φ− φh = φ− Iπφ. However, let us first give the following stability result (see [10,
p.43, Theorem 2.2.1] and [12, 15]) and trace lemma (see [12, 15]).

Lemma 5.3. Given that Ω is a bounded convex polygonal domain in R2, then

|v|H2(Ω) ≤ ‖∆v‖ ∀v ∈ H1
0 (Ω) ∩H2(Ω).

Lemma 5.4. Given n, 0 ≤ n ≤ M + 1, let κ ∈ Tn, where Tn satisfies conditions
(2.2). If v ∈ W 1,1(κ), then there exists a positive constant Ct such that∫

τ

|v|ds ≤ Ct
(∫

κ

|∇v|dx + h−1
κ

∫
κ

|v|dx
)
, τ ⊂ ∂κ ∀κ ∈ Tn,

where Ct = 4
√

2 /c1.

Lemma 5.5. Suppose that R ∈ L2(0, T ;L2(Ω)) and v ∈ Vh then

|(R, Iφ− φ)Q| ≤ Cp,1‖h2R‖Q‖∆φ‖Q,(5.9a) ∣∣∣∣∣∣
M∑
n=0

∫ tn+1

tn

 ∑
κ∈Tn+1

(ε∆v, In+1φ− φ)κ + (ε∇v,∇(In+1φ− φ))

 dt

∣∣∣∣∣∣
≤ Cp,2‖h2D2

hv‖Q‖ε∆φ‖Q,(5.9b)

where Cp,1 = Ci,1, Cp,2 = Ci,1Ct/(2c2) and Ct = 4
√

2/c1.

Proof. First, we consider (5.9a): using the Cauchy–Schwarz inequality, we get

|(R, Iφ− φ)Q| ≤ ‖h2R‖Q‖h−2(Iφ− φ)‖Q.(5.10)

Using Lemma 5.1 and Lemma 5.3, we have

‖h−2(Iφ − φ)‖Q =

(
M∑
n=0

∫ tn+1

tn

‖h−2
n+1(In+1φ− φ)‖2dt

)1/2

≤ Ci,1

(∫ T

0

|φ(t)|2H2(Ω)dt

)1/2

≤ Ci,1‖∆φ‖Q.(5.11)

Substituting (5.11) into (5.10) gives the desired result.
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Next, we consider (5.9b). First, let A denote the left-hand side of (5.9b) inside
the modulus signs and let ρ = Iφ−φ and ρn+1 = In+1φ−φ. Then, by integrating
by parts in space, we have

A =
M∑
n=0

∫ tn+1

tn

 ∑
κ∈Tn+1

(∫
∂κ

ε
∂v

∂nκ
ρn+1 ds

) dt

=
M∑
n=0

∫ tn+1

tn

 ∑
κ∈Tn+1

 ∑
τ∈∂κ∩En+1,i

ε

2

∫
τ

[
∂v

∂nτ

]
ρn+1 ds

dt.

Using Hölder’s inequality and Lemma 5.4, we have

|A| ≤
M∑
n=0

∫ tn+1

tn

 ∑
κ∈Tn+1

 ∑
τ∈∂κ∩En+1,i

ε

2

∥∥∥∥[ ∂v∂nτ

]∥∥∥∥
L∞(τ)

∫
τ

|ρn+1|ds

 dt

≤
M∑
n=0

∫ tn+1

tn

 ∑
κ∈Tn+1

Ct
ε

2
D2
hv

∫
κ

(hκ|∇ρn+1|+ |ρn+1|) dx

 dt.

Further, using (2.2) and the Cauchy–Schwarz inequality we have

|A| ≤ 1
2
Ctc
−1
2 ‖h2D2

hv‖Q‖ε(h−1|∇ρ|+ h−2|ρ|)‖Q.(5.12)

Let us now consider the second term on the right-hand side of (5.12). Using the
triangle inequality, Lemma 5.1 and Lemma 5.3, we get

‖ε(h−1|∇ρ|+ h−2|ρ|)‖Q

≤ ε
(

M∑
n=0

∫ tn+1

tn

(
‖h−1

n+1∇(In+1φ− φ)‖+ ‖h−2
n+1(In+1φ− φ)‖

)2
dt

)1/2

≤ Ci,1ε
(∫ T

0

|φ(t)|2H2(Ω)dt

)1/2

≤ Ci,1‖ε∆φ‖Q.(5.13)

Substituting (5.13) into (5.12) completes the proof of the lemma.

Before presenting the next lemma, we introduce the following space:

Wh =
{
v : v(x, t)|Sn = v(x), v ∈ L2(Ω), for n = 1, . . . ,M + 1

}
,

i.e., Wh consists of those functions v that are piecewise constant in time and square
integrable in space.

Lemma 5.6. Suppose that R ∈ L2(0, T ;L2(Ω)). Then

|(R, I(πφ− φ))Q| ≤ Cp,3‖kR‖Q‖φt‖Q,(5.14a) ∣∣∣∣∣
M∑
n=0

∫ tn+1

tn

(R, φn − φ)dt

∣∣∣∣∣ ≤ ‖kR‖Q‖φt‖Q.(5.14b)

Moreover, for any w ∈Wh and any w ∈ (Wh)2,

(w, I(πφ − φ))Q = 0,(5.15a)

(w,∇I(πφ − φ))Q = 0,(5.15b)

where Cp,3 = Ci,2/
√

2 and φn = φ(x, tn).
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Proof. First, we consider (5.14a). Using the Cauchy–Schwarz inequality, we get

|(R, I(πφ− φ))Q| ≤ ‖kR‖Q‖k−1(π(Iφ) − (Iφ))‖Q.

By reversing the order of integration, we have

(5.16) ‖k−1(π(Iφ) − (Iφ))‖Q

=

(∫
Ω

M∑
n=0

k−2
n+1‖πn+1(In+1φ)− (In+1φ)‖2L2(In+1)dx

)1/2

.

If we denote the piecewise constant interpolant of v on In+1 evaluated at the point
(tn+1 + tn)/2 by In+1,Iv, then using the fact that πn+1v is the L2-projection of v
onto the set of piecewise constant functions, we have

‖πn+1(In+1φ)− (In+1φ)‖L2(In+1) ≤ ‖In+1,I(In+1φ)− (In+1φ)‖L2(In+1)

≤
(

1/
√

2
)
kn+1‖(In+1φ)t‖L2(In+1)

=
(

1/
√

2
)
kn+1‖In+1φt‖L2(In+1).(5.17)

Substituting (5.17) into (5.16), reversing the order of integration and applying
Lemma 5.1 gives the desired result.

The proof of (5.14b) follows similarly. Here, we use the approximation properties
of an interpolation operator defined at the point tn, rather than at the midpoint of
the interval In+1.

Next, we consider (5.15a):

(w, I(πφ − φ))Q =
M∑
n=0

(
wn+1, In+1

(∫ tn+1

tn

(πn+1φ− φ)dt
))

= 0,

using the definition of πn+1 in (5.5). Here, we have used the notation w|Sn+1 = wn+1

for w ∈ Wh. The proof of (5.15b) follows similarly.

5.3. Strong stability of the dual problem. In this section we derive strong
stability estimates for the dual problem (5.1) with the aim to provide bounds on
the norms of the dual solution φ appearing in the inequalities in Lemmas 5.5 and
5.6.

Lemma 5.7. Let φ be the solution of (5.1). Then there is a constant Cs,1(T,Ω, ε)
such that

‖φ‖2L∞(0,T ;L2(Ω)) + ‖ε1/2∇φ‖2Q ≤ Cs,1‖e‖2Q,

where Cs,1 = 2 min{c2∗/ε, eT} and c∗ = c∗(Ω) is the constant in the Poincaré in-
equality

‖w‖ ≤ c∗‖∇w‖ ∀w ∈ H1
0 (Ω);

namely c∗ is the square-root of the reciprocal of the smallest eigenvalue of −∆ on
Ω, subject to homogeneous Dirichlet boundary conditions on ∂Ω.

Proof. Multiply (5.1a) by φ and integrate over Ω to obtain

− 1
2

d
dt
‖φ(t)‖2 − 1

2
(∇ · a(t)φ(t), φ(t)) + ‖ε1/2∇φ(t)‖2 = (e(t), φ(t)).
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Using the incompressibility condition and the Cauchy–Schwarz inequality, we have

−1
2

d
dt
‖φ(t)‖2 + ‖ε1/2∇φ(t)‖2 ≤ ‖e(t)‖‖φ(t)‖ ≤ 1

2
‖e(t)‖2 +

1
2
‖φ(t)‖2.(5.18)

Now, integrating with respect to time over the interval (t, T ) and using (5.1c), we
get

‖φ(t)‖2 + 2
∫ T

t

‖ε1/2∇φ(s)‖2ds ≤ ‖e‖2Q +
∫ T

t

‖φ(s)‖2ds,

and by applying Gronwall’s lemma, we have

‖φ‖2L∞(0,T ;L2(Ω)) + 2‖ε1/2∇φ‖2Q ≤ 2eT ‖e‖2Q.
This proves part of the lemma. In order to get an error constant that does not grow
exponentially in time, we use the Poincaré inequality for φ in (5.18) as follows:

−1
2

d
dt
‖φ(t)‖2 + ‖ε1/2∇φ(t)‖2 ≤ c2∗

2ε
‖e(t)‖2 +

1
2
‖ε1/2∇φ(t))‖2,

where c∗ = c∗(Ω). Hence, we have

− d
dt
‖φ(t)‖2 + ‖ε1/2∇φ(t)‖2 ≤ c2∗

ε
‖e(t)‖2.(5.19)

We now integrate (5.19) with respect to time to obtain the desired result.

Lemma 5.8. Let φ be the solution of (5.1). Then there is a constant Cs,2(T,Ω,a, ε)
such that

‖ε1/2∇φ‖2L∞(0,T ;L2(Ω)) + ‖ε∆φ‖2Q ≤ Cs,2‖e‖2Q,

where Cs,2 = 4 min
{

exp
(

2‖a‖2L2(0,T ;L∞(Ω))/ε
)
,
(

1 + Cs,1‖a‖2L∞(0,T ;L∞(Ω))/ε
)}

and Cs,1 is as defined in Lemma 5.7.

Proof. Multiply (5.1a) by −ε∆φ and integrate over Ω to obtain

−1
2

d
dt
‖ε1/2∇φ(t)‖2 + ‖ε∆φ(t)‖2 = −(e(t) +∇ · (a(t)φ(t)), ε∆φ(t)).

Using the incompressibility condition and the Cauchy–Schwarz inequality, we have

−1
2

d
dt
‖ε1/2∇φ(t)‖2 + ‖ε∆φ(t)‖2 ≤ 1

2
‖e(t) + a(t) · ∇φ(t)‖2 +

1
2
‖ε∆φ(t)‖2.

If we now apply the triangle inequality and Hölder’s inequality, we have

− d
dt
‖ε1/2∇φ(t)‖2 + ‖ε∆φ(t)‖2 ≤ 2‖e(t)‖2 +

2
ε
‖a(t)‖2L∞(Ω)‖ε1/2∇φ(t)‖2.

Now, integrating with respect to time over the interval (t, T ), we get

‖ε1/2∇φ(t)‖2 +
∫ T

t

‖ε∆φ(s)‖2ds

≤ 2‖e‖2Q +
2
ε

∫ T

t

‖a(s)‖2L∞(Ω)‖ε1/2∇φ(s)‖2ds,

and by applying Gronwall’s lemma, we have

‖ε1/2∇φ‖2L∞(0,T ;L2(Ω)) + ‖ε∆φ‖2Q ≤ 4‖e‖2Qe(2/ε)‖a‖2
L2(0,T ;L∞(Ω)) .(5.20)
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Alternatively, using Hölder’s inequality and Lemma 5.7, gives

‖ε1/2∇φ‖2L∞(0,T ;L2(Ω)) + ‖ε∆φ‖2Q ≤ 4
(

1 + Cs,1‖a‖2L∞(0,T ;L∞(Ω))/ε
)
‖e‖2Q.(5.21)

The lemma now follows from (5.20) and (5.21).

Lemma 5.9. Let φ be the solution of (5.1). Then there is a constant Cs,3(T,Ω,a, ε)
such that

‖φt‖2Q + ‖ε1/2∇φ(0)‖2 ≤ Cs,3‖e‖2Q,

where Cs,3 =
(

2 + 2 min
{
Cs,1‖a‖2L∞(0,T ;L∞(Ω))/ε, Cs,2‖a‖2L2(0,T ;L∞(Ω))/ε

})
, and

Cs,1 and Cs,2 are as defined in Lemma 5.7 and Lemma 5.8, respectively.

Proof. This proof is omitted since it is essentially the same as that of Lemma 5.8;
although here we initially multiply the dual problem (5.1a) by −φt and integrate
over Ω. For full details, see [12, 15].

5.4. Completion of the proof of the a posteriori error bound. We shall
now proceed to estimate the terms I–V on the right-hand side of (5.3). For the first
term I, we have

I =
M∑
n=0

∫ tn+1

tn

∑
κ∈Tn+1

([unh]/kn+1 + a · ∇uh − ε∆uh − f, φh − φ)κ dt

≡ (R1, φh − φ)Q = (R1, Iφ− φ)Q + (R1, I(πφ − φ))Q
≡ I1 + I2,

where I and π are as defined by (5.6), and

R1|κ = [unh]/kn+1 + a · ∇uh − ε∆uh − f, for κ ∈ Tn+1.

By Lemma 5.5 and Lemma 5.8, we have

|I1| ≤ Cp,1‖h2R1‖Q‖∆φ‖Q ≤
Cp,1

√
Cs,2

ε
‖h2R1‖Q‖e‖Q.

Similarly, using Lemma 5.6 and Lemma 5.9, we have

|I2| ≤ Cp,3‖kR1‖Q‖φt‖Q ≤ Cp,3
√
Cs,3 ‖kR1‖Q‖e‖Q.

Hence,

|I| ≤
Cp,1

√
Cs,2

ε
‖h2R1‖Q‖e‖Q + Cp,3

√
Cs,3 ‖kR1‖Q‖e‖Q.(5.22)
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Analogously, we have

II =
M∑
n=0

∫ tn+1

tn

 ∑
κ∈Tn+1

(ε∆uh, φh − φ)κ + (ε∇uh,∇(φh − φ))

 dt

=
M∑
n=0

∫ tn+1

tn

 ∑
κ∈Tn+1

(ε∆uh, In+1φ− φ)κ + (ε∇uh,∇(In+1φ− φ))

 dt

+
M∑
n=0

∫ tn+1

tn

 ∑
κ∈Tn+1

(ε∆uh, In+1(πn+1φ− φ))κ

+ (ε∇uh,∇In+1(πn+1φ− φ))

 dt

≡ II1 + II2.

By Lemma 5.5 and Lemma 5.8, we have

|II1| ≤ Cp,2‖h2D2
huh‖Q‖ε∆φ‖Q ≤ Cp,2

√
Cs,2 ‖h2D2

huh‖Q‖e‖Q.

Also, by Lemma 5.6 we have

II2 = 0.

Thus, with R2 = D2
huh we have that

|II| ≤ Cp,2
√
Cs,2 ‖h2R2‖Q‖e‖Q.(5.23)

Next, we consider term III. Applying the Cauchy–Schwarz inequality, inequality
(5.8) and Lemma 5.7, we have

|III| ≤ ‖kR3‖Q‖φh‖Q ≤ Ci,2‖kR3‖Q‖φ‖Q ≤ Ci,2
√
T ‖kR3‖Q‖φ‖L∞(0,T ;L2(Ω))

≤ Ci,2
√
Cs,1T ‖kR3‖Q‖e‖Q,(5.24)

where

R3|Sn+1 = (Dh
t uh − f̄ − ([unh]/kn+1 + a · ∇uh − f))/kn+1.

Now, we consider term IV. Using Lemma 5.6 and Lemma 5.9, we have

|IV| ≤ ‖kR4‖Q‖φt‖Q ≤
√
Cs,3 ‖kR4‖Q‖e‖Q,(5.25)

where

R4|Sn+1 = [unh]/kn+1 = (un+1
h − unh)/kn+1.

Finally, we consider term V. Using the Cauchy–Schwarz inequality and Lemma
5.7, we get

|V| ≤ ‖u0 − u0
h−‖‖φ(0)‖ ≤

√
Cs,1 ‖u0 − u0

h−‖‖e‖Q.(5.26)

Substituting the estimates (5.22)–(5.26) back into the error representation for-
mula (5.3), recalling the definitions of Cp,1, Cp,2 and Cp,3 from Lemmas 5.5 and
5.6, and dividing through by ‖e‖Q proves the a posteriori error bound stated in
Theorem 3.1.
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6. Numerical experiments

In this section we present some numerical experiments to illustrate the perfor-
mance of the adaptive algorithm (4.3), (4.4) on a number of convection-diffusion
test problems. In the following we let r = 1, i.e., so that Shn , n = 0, . . . ,M + 1,
consists of continuous piecewise linear functions.

We note that, for the practical implementation of (4.3), (4.4) we have used
the red-green isotropic refinement strategy. Here, the user must first specify a
(coarse) background mesh upon which any future refinement will be based. A red
refinement corresponds to dividing a certain triangle into four similar triangles by
connecting the midpoints of the sides. Green refinement is only temporary and is
used to remove any hanging nodes caused by a red refinement. We note that green
refinement is only used on elements which have one hanging node; for elements
with two or more hanging nodes a red refinement is performed. Within this mesh
modification strategy, elements may also be removed from the mesh (i.e., derefined)
provided they do not lie in the original background mesh. Mesh coarsening can lead
to a loss of information as the elements are deleted and thereby lead to a degradation
in the accuracy of the computed numerical solution. To reduce this problem, we
ensure that the mesh is not coarsened too quickly from one time step to the next.
For the practical implementation of this mesh modification strategy we have used
the FEMLAB package developed by K. Eriksson et al. [9].

Before we proceed, in the next section we first outline how the error constants
arising in the a posteriori error bound stated in Theorem 3.1 may be numerically
estimated, thereby improving the efficiency of the adaptive algorithm (4.3), (4.4).

6.1. Calibration of the error constants. The size of the error constants Ci, i =
1, . . . , 6, appearing in the a posteriori bound (3.1) may be estimated analytically.
Indeed, Section 5.3 provides explicit formulae for the strong stability constants
Cs,1, Cs,2 and Cs,3; [12, 17] give analytical upper bounds for the quasi-interpolation
constants Ci,1 and Ci,2. However, since any value of these constants that is arrived
at through such general analytical arguments is necessarily a considerable over-
estimate, i.e., corresponds to the “worst case” scenario, the error constants must
be determined computationally for the problem at hand as part of the process of a
posteriori error estimation.

To this end, the quasi-interpolation constants Ci,1 and Ci,2 are calculated by con-
structing quasi-interpolants to over 1000 algebraic and trigonometric polynomials
defined on Ω̄ of degree up to and including 5, with randomly generated coefficients.
The constants Ci,1 and Ci,2 are then approximated by taking the supremum over
this set of data of normalised quasi-interpolation errors.

The estimation of the strong stability constants Cs,j , j = 1, . . . , 3, is certainly
far from being trivial, since the error function e is not known. We could proceed as
we did for the quasi-interpolation constants and replace e by an arbitrary function
ψ, compute the solution to the backward dual problem (5.1) numerically, calculate
Cs,j for each ψ and take the supremum of Cs,j over all such ψ. Of course, to do this
numerically we would have to choose a finite number of right-hand side functions ψ,
and take the supremum for Cs,j over this set of trial functions. This approach has
been implemented by Sandboge [20] for reactive flow problems. However, numeri-
cal computations based on this approach have shown that the individual stability
constants may vary by as much as one or even two orders of magnitude depending
on the function chosen to represent e.
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Clearly, for the purposes of both reliability and efficiency, it is important to
“somehow” choose a right-hand side function that is representative of the error
function associated with the numerical scheme for the particular physical problem
under consideration. For a steady problem we may approximate e by solving the
original (primal) problem on two consecutive meshes and setting

e ≈ eh = ufine
h − ucoarse

h ,

cf. Hansbo & Johnson [11]. Then, the corresponding (steady) dual problem is
solved with eh as the right-hand side. However, to apply this strategy for the time-
dependent case (cf. (2.1)) we would need to store the function enh ≈ e(x, tn) at
each time level tn. Clearly, this is not very practical due to the large amount of
storage that would be required. Instead we propose to only store a small number
of right-hand sides in the set {enh}, e.g., every tenth, say, and assume the error e,
is a piecewise constant function in time at time-levels where enh was not stored (see
also Burman [5]).

Computational estimates of the strong stability constants will be given in the
next section for the first two model problems considered. We note here that in
each case the backward dual problem is solved on a uniform space-time grid using
a computationally inexpensive finite difference scheme based on explicit first-order
upwind differences for the convection terms and implicit central differences for the
diffusion terms. This finite difference scheme can be shown to be both stable and
monotone if νx + νy ≤ 1, where νx and νy are the Courant numbers calculated
in their respective coordinate directions. The strong stability constants are then
numerically estimated by interpreting the finite difference approximation of φ to
be a piecewise constant function in time and a piecewise biquadratic function in
space.

Example 6.1. To investigate the computational performance of the a posteriori
error bound (3.1), we first consider a convection-diffusion problem with a known an-
alytical solution. To this end, we attempt Problem 4 from the Convection-Diffusion
Forum [1]; this problem models the transport of a small source in a plane shear
flow. Here, we let Ω = (0, 24000)× (−3400, 3400), f = 0, a = (a0 + λy, 0)T , where
a0 = 0.5 and λ = 5.0 × 10−4. The initial condition u0 is a point source of mass m
at x0 = (x0, y0) = (7200, 0). The solution to this problem is then given by

u(x, y, t) =
m

4πεt(1 + λt2/12)1/2
e−ξ,

where

ξ =
(x− x̄− λyt/2)2

4εt(1 + λt2/12)
+
y2

4εt
,

x̄ = x0 + a0t.

In order to allow the numerical solution of this problem to begin with a
finite source size, the computation is started at a time t = t0 = 2400, with m =
4πεt0(1 + λt20/12)1/2.

Numerical estimates of the strong stability constants Cs,j , j = 1, . . . , 3, are pre-
sented in Figure 1 for ε = 10 and T = 9600. Here, we plot the square root of each of
the stability constants (as these are the values which enter into the a posteriori error
bound (3.1)) as a function of the number of error functions that are stored within
the time interval [2400, 9600] and used as data for the (backward) dual problem.
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Figure 1. Diffusion in a plane shear flow. Numerical estimation
of the strong stability constants: (a)

√
Cs,1 ; (b)

√
Cs,2 ; (c)√

Cs,3 .

We compute each stability constant for five different error functions constructed by
taking the difference between the numerical solution on two consecutive uniform
meshes. Here, the finer meshes are constructed using both one and two levels of
refinement of the coarse mesh. This is essential in order to ensure that the nu-
merical approximation on the finer mesh is more accurate than ucoarse

h in a critical
way, and thereby that the difference between ufine

h and ucoarse
h is representative of

the actual error e. In Figure 1 we see that the size of the stability constants does
not significantly vary as the number of error functions stored in the time interval
increases. Moreover, there is only a small variance between the estimated size of
Cs,j , j = 1, . . . , 3, for each of the error functions constructed.

The background mesh for this problem is shown in Figure 2(a). This mesh
is adaptively refined to resolve the “initial” condition u0(x) = u(x, y, t0) at time
t0 = 2400 (see Figures 2(b) and 2(c)). Here, E0(u0, u

0
h−, h) = 160.86.

To investigate the reliability and efficiency of the adaptive algorithm (4.3), (4.4),
we provide in Tables 1 and 2 a number of experiments for T = 7200 and T = 9600,
respectively, for different TOLh and TOLk. In each case we compute the error
estimator

◦
E (uh, h, k, f), the L2(2400, T ;L2(Ω)) norm of the actual error and the

effectivity index
◦
E/‖e‖Q. Here, we see that in each case

◦
E(uh, h, k, f) over-estimates

the error, which is what we expect, thereby ensuring that the adaptive algorithm
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Figure 2. (a) Background mesh, with 65 nodes and 98 elements;
(b) Background mesh adapted to resolve the “initial” condition,
with 2194 nodes and 4353 elements; (c) “Initial” condition at time
t = 2400.

Table 1. Diffusion in a plane shear flow: comparison of the effec-
tivity index for ε = 10 and T = 7200.

TOLh TOLk
◦
E(uh, h, k, f) ‖e‖Q

◦
E/‖e‖Q

10000 12000 15224.27 5210.96 2.92

8000 10000 12825.79 5187.67 2.47

6000 8000 10498.60 5035.01 2.09

Table 2. Diffusion in a plane shear flow: comparison of the effec-
tivity index for ε = 10 and T = 9600.

TOLh TOLk
◦
E(uh, h, k, f) ‖e‖Q

◦
E/‖e‖Q

16000 20000 24973.28 7552.86 3.31

12000 16000 20194.49 7511.34 2.69

8000 12000 15364.94 7293.68 2.11
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Figure 3. Diffusion in a plane shear flow for TOLh = 8000,
TOLk = 12000, with ε = 10 and T = 9600: (a) and (b) Mesh
and solution (resp.) at the final time t = 9600, with 900 nodes
and 1764 elements; (c) History of nodes against time; (d) History
of time step size against time.

is reliable. To measure the efficiency of the adaptive algorithm we look at the size
of the effectivity index: ideally this should be close to one. From Tables 1 and
2 we see that our error estimator

◦
E (uh, h, k, f) over-estimates the actual error by

about 2–3.5 times. We note that the magnitude of the tolerances TOLh and TOLk
are so large in this example as a result of the size of the computational space-time
domain.

Finally, in Figure 3 we present the numerical results for TOLh = 8000, TOLk =
12000 and T = 9600. Here we see from Figures 3(a) and 3(b) that the mesh is
adaptively refined around the numerical solution, as we would expect. In Figures
3(c) and 3(d) we present a history of the number of nodes against time and the time
step size against time, respectively. In Figure 3(c) we see that the large number of
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nodes introduced at the “initial” time to represent u0(x) are gradually removed;
the number of nodes then slowly increases as the solution spreads out through the
diffusion and shearing processes. In Figure 3(d) we observe that the time step
increases as the solution becomes smoother through the process of diffusion; the
time step is reduced at the end of the computation to ensure that tM +kM+1,n̂ = T ,
cf. Remark 4.1.

Example 6.2. In this example we consider a convection-diffusion problem with
both internal and boundary layers; see [22, 23] for the case where ε = 0. Here,
we let Ω = (0, 1)2, f = 0, a = (2, 1)T , with the initial condition, u0(x) = 0 for
x ∈ Ωδ = (δ, 1)× (0, 1−δ). For x ∈ Ω\Ωδ, u0(x) is defined to be the linear function
which satisfies the boundary conditions

u(x, t) = u(x, y, t) =


1 for x = 0, 0 ≤ y ≤ 1,
1 for 0 ≤ x ≤ 1, y = 1,
(δ − x)+/δ for 0 ≤ x ≤ 1, y = 0,
(y − 1 + δ)+/δ for x = 1, 0 ≤ y ≤ 1.

We note that (for δ small) initially the solution to this problem has boundary
layers along x = 0 and y = 1. The boundary layer along x = 0 propagates into the
domain Ω and interacts with the outflow boundary at x = 1, where a new boundary
layer develops at time t ∼ 0.5. The combination of both internal and boundary
layers in this problem make it a challenging model problem. In the following, we
shall let δ = 7.8125 × 10−3, ε = 1.0 × 10−3 and T = 0.55 which is the time just
before the steady-state solution starts to develop.

In Figure 4 we present numerical estimates of the strong stability constants Cs,j ,
j = 1, . . . , 3. Here, we see that the size of the stability constants Cs,1 and Cs,3 ini-
tially increases as the number of error functions stored increases, before achieving
a constant value; the opposite behaviour is observed for the second stability con-
stant Cs,2. Moreover, in contrast to Example 6.1 we now observe a larger variance
between the estimated size of Cs,j , j = 1, . . . , 3, for each of the error functions
constructed. This clearly illustrates the increased complexity of this numerical
example.

Here, we specify the background mesh to be the 5× 5 triangular mesh shown in
Figure 5(a). This mesh is initially refined in order to resolve the boundary layers
along x = 0 and y = 1 at time t = 0 (see Figure 5(b)). Here, E0(u0, u

0
h−, h) =

5.4223 × 10−5. Numerical results are presented in Figures 6 and 7 for TOLh =
TOLk = 0.045; the estimated L2(0, T ;L2(Ω)) error is

◦
E(uh, h, k, f) = 6.1741×10−2.

In Figures 6(a), (b) and 7(a), (b) we see that the spatial mesh is concentrated
in the internal and boundary layers of the solution. In particular, we see that the
spatial mesh has been refined at the points x = 0, y = 0 and x = 1, y = 1 where the
boundary conditions are “nearly” discontinuous. Further, from Figure 7(a) we see
that the mesh emanating from the bottom left-hand corner (i.e., at x = 0, y = 0)
is finer at the top and at the bottom of the internal layer. This is because for
ε = 1.0× 10−3, the spatial part of the adaptive algorithm, i.e., (4.3a), is dominated
by the term C3‖h2R2‖Q which measures the curvature of the numerical solution.
From Figures 6(c), (d) and 7(c), (d) we see that the implementation of the adaptive
mesh algorithm gives rise to smooth approximations to the very steep features of
the solution; we note, however, that some oscillations are observable in the zoom of
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Figure 4. Boundary/internal layer problem. Numerical estima-
tion of the strong stability constants: (a)

√
Cs,1 ; (b)

√
Cs,2 ; (c)√

Cs,3 .

Figure 5. (a) Background mesh, with 25 nodes and 32 elements;
(b) Background mesh adapted to resolve the initial condition, with
1007 nodes and 1738 elements.
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Figure 6. Boundary/internal layer problem for TOLh = TOLk =
0.045, with ε = 1.0 × 10−3 and T = 0.55: (a) and (b) Mesh and
solution (resp.) at time t = 0.1197, with 3146 nodes and 5837
elements; (c) Cut through the solution at y = 0.5 and 0 ≤ x ≤ 1;
(d) Cut through the solution at x = 0.5 and 0 ≤ y ≤ 1.

the outflow boundary layer (cf. Figure 7(d)), although their magnitude is extremely
small.

In Figures 7(e) and 7(f) we present a history of the number of nodes against
time and the time step size against time, respectively. In Figure 7(e) we see that
initially there is a large number of nodes in the spatial mesh as the very steep layers
propagate into the domain. However, as these layers become smoother through the
process of diffusion, the number of nodes gradually decreases to a minimum before
the development of the boundary layer at x = 1, when the number of nodes increases
again. The reverse of this can be seen in Figure 7(f) for the time step size: initially
the time steps are very small in order to correctly capture the very large gradients
of the solution. However, the time step size gradually increases as the solution
becomes smoother before becoming small again when the outflow boundary layer
develops.

Example 6.3. In this example we consider the so-called rotating cylinder problem.
Here, we let Ω = (0, 1)2, f = 0, a(x, y) = −2π(2y − 1, 1− 2x)T and

u0(x) =

{
1, for s ≤ 1/4,
0, otherwise,

where s2 = (2x− 1/2)2 + (2y − 1)2.
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Figure 7. Boundary/internal layer problem for TOLh = TOLk =
0.045, with ε = 1.0 × 10−3 and T = 0.55: (a) and (b) Mesh and
solution (resp.) at the final time t = 0.55, with 4057 nodes and
7511 elements; (c) Cut through solution at y = 0.75 and 0 ≤ x ≤ 1;
(d) Zoom of (c); (e) History of nodes against time; (f) History of
time step size against time.

We take ε = 1.0 × 10−5 and T = 2 (corresponding to four revolutions). The
stability constants Cs,j , j = 1, . . . , 3, are again estimated analogously as in Exam-
ples 6.1 and 6.2; for brevity, we omit the figures showing their numerical values.
Here,

√
Cs,1 ≈ 0.08,

√
Cs,2 ≈ 0.0005 and

√
Cs,3 ≈ 3.5. The background mesh

for this problem is shown in Figure 8(a). This mesh is adaptively refined at time



102 PAUL HOUSTON AND ENDRE SÜLI

Figure 8. (a) Background mesh, with 56 nodes and 86 elements;
(b) Background mesh adapted to resolve the initial condition, with
2536 nodes and 5044 elements.

t = 0 to resolve the initial condition u0(x) (see Figure 8(b)); here, E0(u0, u
0
h−, h) =

5.4223× 10−5. Numerical results are presented in Figure 9 for TOLh = 0.01 and
TOLk = 0.45; the estimated L2(0, T ;L2(Ω)) error is

◦
E (uh, h, k, f) = 0.4445. We

remark that if we compare this with the actual error calculated for the strictly
hyperbolic problem (i.e., where ε = 0), this gives rise to an effectivity index of 7.83.

In Figures 9(a), (b), (c), and (d) we see that the mesh “follows” the position of
the cylinder. However, we observe that the mesh is coarser in the regions of the
cylinder closest to and farthest from the centre of rotation, though this is much
more evident in the region closest to the stagnation point. As a result we observe
that there is a slight “leakage” of the numerical solution in these coarser regions of
the mesh. The reason for this is that when ε� 1, the spatial refinement algorithm
is dominated by the directionally dependent “hyperbolic” part of the residual, i.e.,
R1 (= [unh]/kn+1 + a · ∇uh − f on κ ∈ Tn+1 for r = 1). Indeed, we expect R1

to concentrate the mesh more in internal layers that are orthogonal to the flow
direction, i.e., where a · ∇uh is large, rather than in layers that are aligned with
the flow, i.e., where a · ∇uh ∼ 0. The lack symmetry between the regions in the
mesh closest to and farthest from the centre of rotation is attributed to the fact
that the magnitude of velocity vector a(x) increases the further x is away from the
stagnation point (1/2, 1/2). We remark that this behaviour was not observed in the
previous numerical example, since for larger ε the directionally independent termR2

(= D2
huh) dominates the spatial part of the adaptive algorithm. For Example 6.2,

C1‖h2R1‖Q = 4.01× 10−3 and C3‖h2R2‖Q = 1.31× 10−2, whereas for the rotating
cylinder problem, C1‖h2R1‖Q = 3.25 × 10−3 and C3‖h2R2‖Q = 1.21 × 10−4. To
reduce this problem, in [16] we introduced an artificial diffusion model for the
Lagrange–Galerkin method based on calculating second discrete derivatives of the
numerical solution uh. To prevent excessive smearing of the numerical solution, the
size of the artificial diffusion coefficient ε̂ was limited within the adaptive algorithm
by refining elements in the computational mesh where ε̂ was larger than some pre-
determined maximum value.

Finally, in Figures 9(e) and 9(f) we again present a history of the number of
nodes against time and the time step size against time, respectively. From Figure
9(e) we observe that the number of nodes in the spatial mesh remains fairly constant
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Figure 9. Rotating cylinder problem for TOLh = 0.01, TOLk =
0.45, with ε = 1.0×10−5 and T = 2: (a) and (b) Mesh and solution
(resp.) at time t = 1.149, with 2188 nodes and 4333 elements; (c)
and (d) Mesh and solution (resp.) at the final time t = 2, with
2105 nodes and 4168 elements; (e) History of nodes against time;
(f) History of time step size against time.

over the length of the computation. In contrast with this we see from Figure 9(f)
that as the solution becomes smoother through the process of diffusion, the time
step slowly increases.
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7. Summary

In this paper we have derived an a posteriori error bound for the Lagrange–
Galerkin discretisation of an unsteady (linear) convection-diffusion problem, assum-
ing only that the underlying space-time mesh is nondegenerate. Moreover, based
on this error bound, we have designed an adaptive algorithm to ensure global con-
trol of the error with respect to a predetermined tolerance. The reliability and
efficiency of such an adaptive algorithm is dependent on the relative size of the
error constants arising in the a posteriori bound. Since any such estimate of these
constants derived by analytical techniques represents a considerable over-estimate,
these quantities must be numerically estimated for the problem at hand. While
estimating interpolation/quasi-interpolation constants is a relatively easy process,
obtaining numerical estimates of the stability factors is a formidable task, espe-
cially for time-dependent problems. The latter involves computing the solution to
the backward dual problem with “representative” data which approximates the er-
ror. In this paper we have constructed approximations to the error by solving the
original (primal) problem on two consecutive meshes, cf. [5, 11]. For simplicity, we
only considered uniform meshes, though constructing approximations to the error
on nonuniform unstructured meshes is certainly possible. In general, the numeri-
cal estimation of the error constants, and in particular, the stability constants will
mean that the reliability of the adaptive algorithm can no longer be guaranteed.
The degree of confidence that one may have about the reliability of an adaptive
algorithm will very much depend on how much computational effort is invested into
calculating these stability factors.

Numerical experiments presented in this paper indicate that as ε→ 0 the spatial
part of the adaptive algorithm becomes dominated by the directionally dependent
“hyperbolic” part of the residual of the underlying partial differential equation. In
particular, this leads to a mesh adaptation strategy that concentrates the mesh
within layers that are orthogonal to the flow direction, while the mesh remains
coarser within layers that are aligned with the flow. The lack of correlation be-
tween the local error and the local residual, calculated on a given element in the
computational mesh, has serious ramifications for the study of strictly hyperbolic
problems. Indeed, mesh adaptation strategies based solely on refining elements ac-
cording to the local size of the residual of the underlying partial differential equation
may fail to resolve all the regions in the computational domain where the actual
error is locally large. Clearly, there is a great need to develop local error indicators
that can detect such regions in the computational domain, irrespective of their ori-
entation with respect to the flow direction. Indeed, as part of our program of future
research, in [18] we investigate error creation and error propagation phenomena in
the numerical solution of strictly hyperbolic problems, following the ideas presented
in [13] and in the review article [22].

Finally, we remark that in the present paper, the objective has been to derive a
computable a posteriori error bound in order to ensure the analytical solution u is
reliably approximated by uh in the space-time L2-norm. This involved first deriving
an error representation formula in terms of the numerical solution uh and the dual
solution φ; φ was then eliminated by exploiting well-posedness results for the adjoint
problem at the expense of introducing global stability factors into the a posteriori
error bound. Obtaining good estimates for the stability factors is essential for the
success of this approach. Alternatively, less error analysis may be performed and
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more numerical estimation done; for example, the norms of the dual solution may
be kept in the error representation formula as local weights and approximated by
solving the dual problem numerically and recovering the derivatives of φ to calculate
the appropriate quantities. For further details on these aspects, we refer to the work
of D. Estep (see [9] and the references cited therein) and R. Rannacher [2]; see also
[14].
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