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ON ERROR ESTIMATES
FOR GALERKIN SPECTRAL DISCRETIZATIONS

OF PARABOLIC PROBLEMS
WITH NONSMOOTH INITIAL DATA

JAVIER DE FRUTOS AND RAFAEL MUÑOZ-SOLA

Abstract. We analyze the Legendre and Chebyshev spectral Galerkin semi-
discretizations of a one dimensional homogeneous parabolic problem with non-
constant coefficients. We present error estimates for both smooth and non-
smooth data. In the Chebyshev case a limit in the order of approximation is
established. On the contrary, in the Legendre case we find an arbitrary high
order of convegence.

1. Introduction

In this paper we give some results about Galerkin spectral polynomial approx-
imations to a parabolic problem with nonconstant coefficients. We treat both the
Chebyshev and the Legendre cases. More precisely, we consider the one-dimensional
parabolic problem:

ut − (a(x)ux)x = 0, x ∈ Λ, t ≥ 0,

u(−1, t) = u(1, t) = 0, t ≥ 0,

u(x, 0) = u0(x), x ∈ Λ,
(1)

where Λ = (−1, 1), and a is a smooth function satisfying the classical assumption
0 < a ≤ a(x) ≤ a in Λ, which ensures that the problem is parabolic.

The error estimates which can usually be found in the literature about spectral
methods need some regularity hypotheses on the data of the problem. Typically,
it is assumed that the solution u of (1) has m square-integrable spatial derivatives
in [0, T ]. With this assumption one is able to get an O(N−m) error estimate
when a spectral approximation based on polynomials of degree N is used. Some
references are, for example, [4] and [3] for the constant coefficient case and [6]
for the variable coefficient case. Due to the regularization property of parabolic
problems, we can expect that similar estimates will still hold, for positive times,
under weaker assumptions on the regularity of the initial condition. For finite
element semidiscretizations of (1), error estimates of the form O(hrt−r/2), where
r − 1 denotes the order of the element, have been obtained for rough initial data;
see for example [10], [11] and [13]. The negative power of t in the error estimate
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is closely related to the lack of differentiability of the solution at t = 0. We do
not know of any analogous results for spectral methods in the literature. The main
difference is that the order of convergence in spectral methods is only limited by the
regularity of the solution. Then, an O(N−mt−m/2) for any m should be expected
when polynomials of degree N are used.

This is indeed the case for the Legendre spectral discretization, i.e., spectral
order of convergence is obtained even with no regularity hypothesis on the initial
data. On the contrary, this is not true for the Chebyshev discretization. We prove
that for nonsmooth data, the order of approximation is limited by 7/2.

The rest of the paper is as follows: In Section 2 we establish our notations and
recall the continuous problem and its discretization. In Section 3 we state and prove
our negative result for the Chebyshev weight. We restrict ourselves to the constant
coefficient case there. Finally, in Section 4 we quote without proof some estimates
obtained for the Legendre and Chebyshev discretizations. For the proofs, we refer
to [7].

2. Preliminares and notations

2.1. Basic notations. Thorough the paper, we will use the notation

L2
ω =

{
v : Λ 7→ C |

∫
Λ

|v|2ωdx <∞
}
,

where the weight ω will be ω(x) = 1 or w(x) = (1 − x2)−
1
2 when we deal with

the Legendre or the Chebyshev case respectively. The inner product in L2
ω is

represented by (·, ·)0,ω .
Sobolev spaces of high order with respect to either the Legendre or the Chebyshev

weight are denoted by Hν
ω , ν > 0, with norm ‖ · ‖ν,ω (see [2] for a precise definition

in the Chebyshev case), and

H1
ω,0 =

{
v ∈ H1

ω, v(1) = v(−1) = 0
}
.

We denote by PN the space of the restrictions to Λ of the polynomials of degree
at most N , and define

PN0 = {v ∈ PN | v(±1) = 0}.

2.2. The continuous problem and its discretization. Let aω(·, ·) be the ses-
quilinear form over H1

ω,0 defined by

aω(u, v) =
∫

Λ

a(x)ux(vω)xdx, ∀u, v ∈ H1
ω,0.(2)

Problem (1) can be written in variational form as

d

dt
(u(t), ϕ)0,ω + aω(u(t), ϕ) = 0, ∀ϕ ∈ H1

ω,0,(3)

supplemented with the initial condition

u(·, 0) = u0(·).(4)

The Galerkin spectral discretization has the following variational form:

d

dt
(uN (t), vN )0,ω + aω(uN (t), vN ) = 0,
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for all vN ∈ PN0 , plus the initial condition

uN (0) = PN (u0).

Here, PN stands for the orthogonal projection operator from L2
ω onto PN0 .

We denote the error by eN(t) = u(t)− uN (t).

3. A negative result for the Chebyshev discretization

In this section, the weight will be ω(x) = (1−x2)−
1
2 , and we restrict our attention

to the constant coefficient case, namely a(x) = 1. In this case, the bilinear form
aω(·, ·) is coercive (see [3]). Hence, problem (3)-(4) is well posed in the Chebyshev
norm.

Here, we introduce some notations that will be used later. We denote by A the
closed unbounded operator defined by the triplet (V,H, aω(·, ·)), where V = H1

ω,0

and H = L2
ω (see [5, Chapter 6]). Since we are now dealing with the particular

case a(x) = 1, we have obviously D(A) = H2
ω

⋂
H1
ω,0 and A = − d2

dx2 , considered
as defined from D(A) ⊂ L2

ω 7→ L2
ω. In an analogous way, we define the operator

AN : PN0 7→ PN0 by

(ANvN , ψN )0,ω = aω(vN , ψN ), ∀ψN ∈ PN0 ,
With this notations, we can write u(t) = e−tAu0 and uN(t) = e−tANPNu0. Follow-
ing [13], we introduce the error operator defined by

EN (t)v = e−tAv − e−tANPNv, ∀v ∈ L2
ω,

so that eN (t) = EN (t)u0.
We shall also need the adjoint A∗ (resp. A∗N ) of the operator A (resp. AN ).

From [5, Chapter 6], A∗ is the operator defined by the triplet
(
H1
ω,0, L

2
ω, a
∗
ω(·, ·)

)
with a∗ω(u, v) = aω(v, u) ∀u, v ∈ H1

ω,0.
It can be easily seen that

D(A∗) =
{
v ∈ H1

ω,0

∣∣∣∣ 1
ω

d2

dx2
(ωv) ∈ L2

ω

}
,

and a simple calculation shows that

A∗v = − 1
ω

d2

dx2
(ωv).

Note that D(A∗) 6⊂ H2
ω.

We shall make use the parabolic problem related to A∗. Corollary 10.6 of [12,
Chapter 1] gives us (e−tA)∗ = e−tA

∗
. Clearly (e−tAN )∗ = e−tA

∗
N , so that

(EN (t))∗ = e−tA
∗
− iNe−tA

∗
NPN .

Here iN : PN0 ↪→ L2
ω is the canonical injection; note that i∗N = PN .

It is easy to see that, for any φ0 ∈ L2
ω, φ(t) = e−tA

∗
φ0 is the solution of

d

dt
(φ(t), v)0,ω + a∗ω(φ(t), v) = 0, ∀v ∈ H1

ω,0,(5)

with initial condition

φ(0) = φ0.(6)

In the same way, φN (t) = e−tA
∗
NPNφ0 is the solution of the spectral Galerkin

discretization of (5)-(6). Hence (EN (t))∗ is the associated error operator.
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Now we are able to state our negative result.

Theorem 3.1. Let a(x) = 1, −1 < x < 1. Let us suppose that there is a time
t > 0 such that, for any u0 ∈ L2

ω, there is a constant K = K(t, u0) > 0 with
‖eN(t)‖0,ω ≤ K(t, u0)N−s. Then s ≤ 7

2 .

Theorem 3.1 shows that, unlike the finite element case (and the Legendre spectral
one), there is a limit on the order of convergence with respect to N which can be
reached for any initial data u0 ∈ L2

ω, even in the simplest case a(x) = 1.
Theorems 3.2 and 3.3 are auxiliary results which are needed in the proof of

Theorem 3.1. For their proof we refer to [8], [9], where a more general family of
spaces related to Jacobi weights is considered.

For m ∈ N, we define

Zmω =
{
v ∈ L2

ω

∣∣∣∣(1− x2)
j
2
djv

dxj
∈ L2

ω, 1 ≤ j ≤ m
}
.

For s > 0 arbitrary, s = m+ σ with m integer and 0 < σ < 1, we define Zsω as

Zsω = [Zmω , Z
m+1
ω ]σ,2,

where [·]σ,2 stands for the K-interpolation method [1].
We have the following characterization of the spaces Zsω.

Theorem 3.2. Let s = m + θ be a positive real number with m an integer and
0 < θ < 1, s 6= 1

2 , and let a > 1. A norm in Zsω which defines this space is

‖ u ‖=
[
‖ u ‖2Zmω +

∫ ∫
∆a

|u(m)(x) − u(m)(y)|2
|x− y|1+2θ

(1− x2)s−
1
2 dxdy

] 1
2

,

where the set ∆a is defined by ∆a =
{

(ξ, η) | ξ < 0, 1+ξ
a < 1 + η < a(1 + ξ)

}
∪{

(ξ, η) | ξ > 0, 1−ξ
a < 1− η < a(1− ξ)

}
.

The next theorem is an inverse approximation result.

Theorem 3.3. Let s > 0 and u ∈ L2
ω. If ∀N ∈ N, there exists uN ∈ PN such that

‖u − uN‖0,ω ≤ BN−s, with B = B(u) independent of N, then u ∈ Zs−εω for all
ε > 0. Moreover,

‖u‖Zs−εω
≤ C(s, ε) (‖u‖0,ω +B) .

The next lemma is straightforward using Theorem 3.2 together with an explicit
calculation.

Lemma 3.1. Let g ∈ C∞(Λ) be such that g(±1) = 0, and let φ(x) = g(x)
ω(x) . The

function φ is in Zsω for 0 ≤ s < 7
2 . If, in addition, gx(1) 6= 0 or gx(−1) 6= 0, then

φ /∈ Z
7
2
ω .

Next we give the proof of Theorem 3.1.

Proof of Theorem 3.1. The bound ‖EN (t)u0‖ ≤ K(t, u0)N−s, together with the
principle of uniform boundedness, leads to ‖EN (t)‖ ≤ K(t)N−s, for someK = K(t)
independent of N . Therefore,‖(EN(t))∗‖ ≤ K(t)N−s.
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Taking into account that (EN (t))∗ is the error operator associated to problem
(5), we have, for any φ0 ∈ L2,

‖φ(t)− φN (t)‖0,ω ≤ K(t)N−s‖φ0‖0,ω,

where φ(t) = e−tA
∗
φ0 and φN (t) = e−tA

∗
NPNφ0.

Then, using Theorem 3.3, we deduce that

φ(t) ∈ Zs−εω , ∀ε > 0.(7)

On the other hand, it is clear that ω(x)φ(x, t) is the solution of problem (1) with
initial condition ωφ0. Hence ω(·)φ(·, t) ∈ C∞(Λ) and (ωφ)(±1, t) = 0. Now, if we
pick φ0 ∈ L2

ω such that (ωφ)x(±1, t) 6= 0, for instance φ0(x) = ω−1(x) sin(π2 (x+1)),
Lemma 3.1 gives

φ(·, t) ∈ Z
7
2−ε
ω , φ(·, t) /∈ Z

7
2
ω .

Then, comparing this with (7), we obtain the result.

4. Some positive results

In this section, we return to the variable coefficient case. We state some error
estimates.

4.1. The Legendre case.

Theorem 4.1. Let ω(x) = 1 and m ∈ N, m ≥ 1, and l ∈ N. If a ∈ Cm+1(Λ), then
there is a constant C, depending only on m, l and the function a(x), such that for
any u0 ∈ L2

ω and for t > 0 we have∥∥∥∥∂leN∂tl (t)
∥∥∥∥
ν,ω

≤ CN−(m+2−ν)t−
m+2

2 −l‖u0‖0,ω, ν = 0, 1.

This theorem gives the expected result by analogy with finite elements. The proof
is achieved by using the same techniques as for the finite element case, see [10] and
[13]. We point out that, when obtaining H1 estimates in the spectral context, the
use of inverse inequalities would result in a loss of optimality. Hence, H1 estimates
are derived without using inverse inequalities by means of slight modifications of
the standard techniques. See [7] for details.

4.2. The Chebyshev case. First we quote a result concerning the coercivity of
the bilinear form aω(·, ·) in the variable coefficient case, whose proof can be found
in [6].

Theorem 4.2. Let ω(x) = (1 − x2)−
1
2 , let a(x) be a function with first order

continuous derivative in Λ, and let aω(·, ·) be defined by (2). There exists a positive
constant µ0 such that, if µ > µ0,

Re aω(v, v) + µ(v, v)0,ω ≥ γµ‖v‖21,ω,

for all v ∈ H1
ω,0, where γµ > 0 is a suitable positive constant depending on µ.

This theorem ensures the well-posedness of the Chebyshev weak formulation of
the variable coefficient equation.
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Let m ∈ N, and assume that the function a(x) is in Cm−1(Λ) if m ≥ 2. We
define the space

Dm
ω = {v ∈ Hm

ω | (Ajv)(±1) = 0, 0 ≤ j < m

2
, j ∈ Z}.

Theorem 4.3. Let m be a nonnegative integer, and let us assume that the function
a(x) ∈ Cm+1(Λ). Then, for any integer l ≥ 0 there exists a constant C, depending
only on l, m and the function a(x), such that for any u0 ∈ Dm

ω and t > 0 the
following estimate holds:∥∥∥∥∂leN∂tl (t)

∥∥∥∥
ν,ω

≤ CN−(m+2−ν)t−1−leµt‖u0‖m,ω, ν = 0, 1.

This theorem gives essentially a gain of two units in the order of the method
with respect to N . An arbitrary gain is not possible, due to Theorem 3.1. We also
have the following result, which can be considered an improvement of Theorem 4.3
for m = 0.

Theorem 4.4. Let us assume that a(x) ∈ C3(Λ). For all integers l ≥ 0 there
exists a constant C, depending only on l and on the function a(x), such that for
any u0 ∈ L2

ω the following estimate holds for t > 0:∥∥∥∥∂leN∂tl (t)
∥∥∥∥
ν,ω

≤ CN− 5
2 t−(l+ 5

4 + ν
2 )eµt‖u0‖0,ω, ν = 0, 1.

The proofs of Theorems 4.3 and 4.4 are also similar to analogous results for
the finite element case, but here, apart from avoiding the use of “bad” inverse
inequalities, some difficulty arises from the fact that aω(·, ·) is not Hermitian. Hence,
some duality arguments involve the study of the Dirichlet problem associated to
the operator A∗, for which there is a lack of regularity. This is overcome by using
techniques similar to those in section 4 of [2]. We again refer to [7] for the detailed
proofs.

References
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