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FROBENIUS PSEUDOPRIMES

JON GRANTHAM

Abstract. The proliferation of probable prime tests in recent years has pro-
duced a plethora of definitions with the word “pseudoprime” in them. Exam-
ples include pseudoprimes, Euler pseudoprimes, strong pseudoprimes, Lucas
pseudoprimes, strong Lucas pseudoprimes, extra strong Lucas pseudoprimes
and Perrin pseudoprimes. Though these tests represent a wealth of ideas, they
exist as a hodge-podge of definitions rather than as examples of a more general
theory. It is the goal of this paper to present a way of viewing many of these
tests as special cases of a general principle, as well as to re-formulate them in
the context of finite fields.

One aim of the reformulation is to enable the creation of stronger tests;
another is to aid in proving results about large classes of pseudoprimes.

1. Introduction

Fermat’s Little Theorem tells us that ap−1 ≡ 1 mod p for p an odd prime; thus
we have an easy way to prove that many numbers are composite. For example,
since 290 ≡ 64 mod 91, we prove that 91 is composite. The technique of repeated
squaring can be used to perform the required exponentiation very rapidly.

This test is not foolproof. In particular, 2340 ≡ 1 mod 341. Composites which
fool the test with a = 2 are called pseudoprimes, and in general, composites n with
an−1 ≡ 1 mod n are pseudoprimes to the base a.

The existence of such numbers provides incentive to create other tests which are
similarly fast, but which may have fewer, or at least different, “pseudoprimes.” Two
of these tests are more elaborate versions of the test described above and create the
notions of Euler pseudoprime and strong pseudoprime.

Most other tests, however, involve recurrence sequences. One reason that pseu-
doprimes based on recurrence sequences have attracted interest is that the pseudo-
primes for these sequence are often different from ordinary pseudoprimes. In fact,
nobody has claimed the $620 offered for a Lucas pseudoprime with parameters
(1,−1) (see Section 2 for a definition of this term), congruent to 2 or 3 mod 5, that
is also a pseudoprime to the base 2 [22], [14].

Furthermore, some tests based on higher order recurrence sequences seem to
have few pseudoprimes. Adams and Shanks [2] introduced such a test based on a
third order recurrence sequence known as Perrin’s sequence.

A problem with tests based on recurrence sequences is that analysis of the tests
can be difficult. For example, the concepts of Lucas and Lehmer pseudoprimes
have been analyzed separately in the literature. In Section 2, we show that they
are equivalent definitions.
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Instead of recurrence sequences, the language used in this paper is that of finite
fields. In particular, when n is a prime, f(x) ∈ Z[x], and n does not divide disc(f),
the residue ring Z[x]/(n, f(x)) is a product of finite fields of characteristic n. When
n is composite, this ring is not equal to such a product. For a given composite n, this
fact is often easy to discover, thus providing a quick proof of the compositeness of
n. Using properties of finite fields, we establish the definition of Frobenius probable
prime, which is a generalization, and sometimes a strengthening, of many existing
definitions.

We introduce the concept of Frobenius pseudoprimes, not to inflict a new and
different notion of pseudoprimality on the mathematical world, but to show that
many existing pseudoprimality tests can be generalized and described in terms
of finite fields. In fact, we show that some specific instances of the Frobenius
pseudoprime test are equivalent to other pseudoprimality tests, and stronger than
many of them.

In [11], we use the structure given by the introduction of finite fields to show that
the probability of error in declaring a number “prime” using a certain Frobenius
test is less than 1

7710 . In 1980, Monier [19] and Rabin [23] proved that the Strong
Probable Prime Test has probability of error at most 1

4 . Although the test intro-
duced in [11] has asymptotic running time three times that of the Strong Probable
Prime Test, the proven bound on the error is much smaller than the 1

64 achieved
through three Strong Probable Prime Tests.

Perhaps the primary benefit of this approach is that instead of having to prove
ten different theorems about ten different types of pseudoprimes, one can prove one
theorem about Frobenius pseudoprimes and apply it to each type of pseudoprime.

In [12], the techniques of [3] are used to prove that for any monic, squarefree
polynomial, there are infinitely many Frobenius pseudoprimes. In particular, this
theorem answers a 1982 conjecture of Adams and Shanks [2] that there are in-
finitely many Perrin pseudoprimes. It also proves the infinitude of the types of
pseudoprimes defined by Gurak [13] and Szekeres [27].

We should note that the idea of primality testing in finite fields is not entirely
new. Lenstra’s Galois Theory Test [17] is a method of proving primality using finite
fields. In [10], I describe the relation between the two ideas. The combination of
finite fields and pseudoprimes also exists implicitly in some other works, such as
[27]. The goal here, however, is different. I am trying to provide a clear theoretical
framework in which various existing probable prime tests can be generalized and
analyzed.

2. A wealth of pseudoprimes

For the purposes of this paper, the following test for primality will be considered
foolproof. If an integer is denoted by the letter p, then p is prime. If q is a prime
power, we let Fq denote a finite field with q elements.

We begin by reviewing many of the existing notions of pseudoprimality. Each of
these definitions of “pseudoprime” characterizes composite numbers with a certain
property. In each of these cases, it can be proven that all prime numbers (with a
finite, known set of exceptions) have this property.

This paper does not pretend to be an exhaustive treatment of all notions of
pseudoprimality. For example, nothing is said about elliptic pseudoprimes [8].
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Fermat’s Little Theorem tells us that if p is prime, then ap−1 ≡ 1 mod p, if p - a.
The original notion of a pseudoprime (sometimes called a Fermat pseudoprime)
involves counterexamples to the converse of this theorem.

Definition. A pseudoprime to the base a is a composite number n such an−1 ≡
1 mod n.

Definition. A number n which is a pseudoprime to all bases a with (a, n) = 1 is
a Carmichael number.

We also know that if p is an odd prime, then a(p−1)/2 ≡
(
a
p

)
mod p, where

(
a
p

)
is the Jacobi symbol. The converse of this theorem leads to the definition of Euler
pseudoprime, due to Raphael Robinson [24].

Definition. An Euler pseudoprime to the base a is an odd composite number n
with (a, n) = 1 such that a(n−1)/2 ≡

(
a
n

)
mod n.

An Euler pseudoprime to the base a is also a pseudoprime to the base a.
If n ≡ 1 mod 4, we can also look at a(n−1)/2k for k > 1, and doing so gives us the

definition of strong pseudoprime [22], due independently to R. Dubois and John
Selfridge.

Definition. A strong pseudoprime to the base a is an odd composite n = 2rs+ 1
with s odd such that either as ≡ 1 mod n, or a2ts ≡ −1 for some integer t, with
r > t ≥ 0.

A strong pseudoprime to the base a is also an Euler pseudoprime to the base a
[19], [22].

It is possible to define notions of pseudoprimality based on congruence properties
of recurrence sequences. The simplest of these are based on the Lucas sequences
Un(P,Q), where P and Q are integers, U0 = 0, U1 = 1 and Un = PUn−1−QUn−2.
(When P = 1 and Q = −1, this is the Fibonacci sequence.)

We recall the fact that we can express Un in terms of roots of the polynomial
f(x) = x2 − Px + Q. If α and β are roots of f(x) in a commutative ring (with
identity), with α− β invertible, then Un = (αn − βn)/(α− β). By induction on n,
this equality holds even if there are more than two distinct roots of f(x).

Theorem 2.1. Let Un = Un(P,Q) and ∆ = P 2 − 4Q. If p - 2Q∆, then Up−(∆
p ) ≡

0 mod p.

Proof. Since p - ∆, x2 − Px+Q has distinct roots, α and β, in F̄p.
If
(

∆
p

)
= 1, then f(x) factors mod p, and α and β are in Fp. Thus αp−1 ≡

βp−1 ≡ 1 mod p. So Up−1 ≡ (1− 1)/(α− β) = 0 mod p.

If
(

∆
p

)
= −1, then f(x) does not factor, and the roots of f(x) lie in Fp2 . The

Frobenius automorphism permutes the roots of f(x), so αp ≡ β and βp ≡ α. Thus
Up+1 ≡ (αβ − βα)/(α − β) = 0 mod p.

Definition. Let Un = Un(P,Q) and ∆ = P 2 − 4Q. A Lucas pseudoprime with
parameters (P,Q) is a composite n with (n, 2Q∆) = 1 such that Un−(∆

n ) ≡ 0 mod n.

Baillie and Wagstaff [7] gave a version of this test that is analogous to the strong
pseudoprime test. We first define the sequence Vn(P,Q) to be the sequence with
V0 = 2, V1 = b, and Vn = PVn−1 −QVn−2. Note that Vn = αn + βn, where α and
β are distinct roots of x2 − Px+ Q.
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Theorem 2.2. Let Un = Un(P,Q) and ∆ = P 2−4Q. Let p be a prime not dividing
2Q∆. Write p = 2rs+

(
∆
p

)
, where s is odd. Then either Us ≡ 0 or V2ts ≡ 0 mod p

for some t, 0 ≤ t < r.

Proof. As above, since p - ∆, x2−Px+Q has distinct roots in F̄p. If
(

∆
p

)
= 1, the

roots α and β are elements of Fp. If
(

∆
p

)
= −1, they are elements of Fp2 . Their

product is αβ = Q 6= 0, so β 6= 0.
We have that U2rs = (α2rs − β2rs)/(α − β) ≡ 0 mod p. Thus (α/β)2rs ≡ 1

mod p. Taking square roots, we have that either (α/β)2ts ≡ −1 for some t with
0 ≤ t < r, or (α/β)s ≡ 1.

In the first case, we can conclude that V2ts ≡ 0 mod p, while in the second case
we have that Us ≡ 0 mod p.

Definition. Let Un = Un(P,Q), Vn = Vn(P,Q), and ∆ = P 2 − 4Q. A strong
Lucas pseudoprime with parameters (P,Q) is a composite n = 2rs +

(
∆
n

)
, where

s is odd and (n, 2Q∆) = 1, such that either Us ≡ 0 mod n or V2ts ≡ 0 mod n for
some t, 0 ≤ t < r.

Any strong Lucas pseudoprime is also a Lucas pseudoprime with the same pa-
rameters.

Jones and Mo [18] have recently given another test that relies on the sequences
Un(b, 1) and Vn(b, 1).

Theorem 2.3. Let Un = Un(b, 1), Vn = Vn(b, 1), and ∆ = b2−4. Let p be a prime
not dividing 2∆. Write p = 2rs+

(
∆
p

)
, where s is odd. Then either Us ≡ 0 mod p

and Vs ≡ ±2 mod p, or V2ts ≡ 0 mod p, for some t, 0 ≤ t < r − 1.

Proof. By Theorem 2.2, it suffices to show that V2r−1s 6≡ 0, and that if Us ≡ 0,
then Vs ≡ ±2.

Note that Vn = αn +α−n, where α is a root of x2− bx+ 1. So V2r−1s ≡ 0 mod p
implies α2rs ≡ −1. If

(
∆
p

)
= 1, then α ∈ Fp, and we have a contradiction. If(

∆
p

)
= −1, then αp ≡ α−1. So αp+1 ≡ 1 6≡ −1, and we also have a contradiction.

If Us ≡ 0 mod p, then αs ≡ α−s mod p, and thus α2s ≡ 1. We must have
αs ≡ ±1, and thus Vs ≡ ±2.

Definition. Let Un = Un(b, 1), Vn = Vn(b, 1), and ∆ = b2 − 4. An extra strong
Lucas pseudoprime to the base b is a composite n = 2rs+

(
∆
n

)
, where s is odd and

(n, 2∆) = 1, such that either Us ≡ 0 mod n and Vs ≡ ±2 mod n, or V2ts ≡ 0 mod n
for some t with 0 ≤ t < r − 1.

Any extra strong Lucas pseudoprime base b is a strong Lucas pseudoprime with
parameters (b, 1).

The definition of Lehmer pseudoprime, due to Rotkiewicz [25], is related to that
of Lucas pseudoprime.

The Lehmer sequence with parameters (L,Q) is defined by Ū0 = 0, Ū1 = 1,
Ūk = LŪk−1−QŪk−2 for k odd, and Ūk = Ūk−1−QŪk−2 for k even. It is easy to see
by induction that Ūk = (αk−βk)/(α2−β2) for k even, and Ūk = (αk−βk)/(α−β)
for k odd, where α and β are roots of x2 −

√
Lx+Q.
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Definition. Let D = L − 4Q and ε(n) =
(
LD
n

)
. A Lehmer pseudoprime with

parameters (L,Q) is a composite n with (2LD, n) = 1 and Ūn−ε(n) ≡ 0 mod n.

Lehmer pseudoprimes can be analyzed by the same means as Lucas pseudo-
primes, because of the following new result.

Theorem 2.4. An integer n is a Lehmer pseudoprime with parameters (L,Q) if
and only if it is a Lucas pseudoprime with parameters (L,LQ).

Proof. Let D = L − 4Q be the discriminant of the Lehmer sequence. The char-
acteristic polynomial of the Lucas sequence is f(x) = x2 − Lx + LQ, which has
discriminant L2 − 4LQ = LD. So ε(n) =

(
L2−4LQ

n

)
. The roots of f(x) are

α = L+
√
L2−4LQ

2 and β = L−
√
L2−4LQ

2 . The characteristic polynomial of the
Lehmer sequence is g(x) = x2−

√
Lx+Q. Its roots are α′ = α/

√
L and β′ = β/

√
L.

Thus L(n−ε(n))/2Ūn−ε(n) = Un−ε(n), and we conclude that Ūn−ε(n) ≡ 0 mod n if
and only if Un−ε(n) ≡ 0 mod n. This proves the theorem.

Rotkiewicz [26] has also given a definition of strong Lehmer pseudoprime.

Definition. Let Ūk be as in the definition of Lehmer pseudoprime. Let V̄n satisfy
V̄0 = 2, V̄1 = 1, V̄k = LV̄k−1−QV̄k−2 for k even, and V̄k = V̄k−1−QV̄k−2 for k odd.
Let ε(n) be as above. An odd composite number n = 2rs+ ε(n) is a strong Lehmer
pseudoprime with parameters (L,Q) if (n,DQ) = 1 and either Ūs ≡ 0 mod n or
V̄2ts ≡ 0 for some t with 0 ≤ t < r.

Theorem 2.5. An integer n is a strong Lehmer pseudoprime with parameters
(L,Q) if and only if it is a strong Lucas pseudoprime with parameters (L,LQ).

Proof. The technique of proof is exactly the same as for Theorem 2.4.

In a series of papers in the 1980s ([2], [16] and [1]), Adams, Shanks and co-
authors proposed and analyzed a pseudoprime test based on a third order recurrence
sequence known as Perrin’s sequence, and on generalizations of this sequence. A
good exposition of the test is given in [5].

We consider sequencesAn = An(r, s) defined by the following relations: A−1 = s,
A0 = 3, A1 = r, and An = rAn−1−sAn−2 +An−3. Let f(x) = x3− rx2 +sx−1 be
the associated polynomial and ∆ its discriminant. Perrin’s sequence is An(0,−1).

Definition. The signature mod m of an integer n with respect to the sequence
Ak(r, s) is the 6-tuple (A−n−1, A−n, A−n+1, An−1, An, An+1) mod m.

Definitions. An integer n is said to have an S-signature if its signature mod n is
congruent to (A−2, A−1, A0, A0, A1, A2).

An integer n is said to have a Q-signature if its signature mod n is congruent
to (A, s,B,B, r, C), where for some integer a with f(a) ≡ 0 mod n, A ≡ a−2 + 2a,
B ≡ −ra2 + (r2 − s)a, and C ≡ a2 + 2a−1.

An integer n is said to have an I-signature if its signature mod n is congruent
to (r, s,D′, D, r, s), where D′ +D ≡ rs− 3 mod n and (D′ −D)2 ≡ ∆.

Definition. A Perrin pseudoprime with parameters (r, s) is an odd composite n
such that either

1)
(

∆
n

)
= 1 and n has an S-signature or an I-signature, or

2)
(

∆
n

)
= −1 and n has a Q-signature.
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In the past, the term Perrin pseudoprime has referred only to pseudoprimes with
respect to Perrin’s original sequence, but we feel it is useful to have a convenient
name for composites having an acceptable signature for other such sequences.

Also, we have omitted a portion of the test involving quadratic forms. If n has
an I-signature, it is possible to construct a quadratic form representing n. A prime
with an I-signature can only be represented by forms lying in a certain subgroup
of the class group of quadratic forms with discriminant ∆. The only examples
found where this portion of the test has exposed composites involve pseudoprimes
very small compared to the discriminant of the associated polynomials. In fact,
the polynomials were cleverly constructed specifically to have pseudoprimes which
would be exposed in this way. In particular, there are no known examples where
the quadratic form exposes a composite for the test using Perrin’s sequence. The
test does not apply to integers with Q-signatures or S-signatures. The interested
reader should consult [2] for details.

Generalizations to higher order recurrence sequences have been given by Gurak
[13]. His basic definition is shown below to be subsumed in the definition of Frobe-
nius pseudoprimes. Later in his paper, he gives ideas as to how his test could be
made stronger. He does not, however, give exact definitions of other notions of
pseudoprimality.

A nice variation on these tests is given by Szekeres [27].

Definition. Let f(x) be an irreducible polynomial in Z[x] and let β1, . . . , βk be its
roots. A pseudoprime (in the sense of Szekeres) is a composite n such that for every
symmetric polynomial S(x1, . . . , xk) ∈ Z[x1, . . . , xk], S(βn1 , . . . , β

n
k ) ≡ S(β1, . . . , βk)

mod n.

Szekeres does not test signatures and notes, “Signatures can be tested without
much additional effort but they don’t seem to add significantly to the efficiency of
primality testing through higher order Lucas sequences . . . ” He also does not use
knowledge gained from Jacobi symbols in his test.

Atkin has proposed a specific test based on arithmetic modulo polynomials; it
shares some similarities with the test described in Section 3. He describes it fully
in [6].

3. Frobenius pseudoprimes

In this section, we will be introducing the definition of Frobenius pseudoprime.
This definition does not in and of itself solve any open questions in the subject. We
do, however, aim to provide a clearer way of thinking about the definitions given
in the previous section. Some open questions are solved in [11] and [12].

We first prove some elementary facts about polynomials over finite fields. In
particular, we exploit the following fact. Given a polynomial f(x) of degree d,
we can factor it as

∏d
1 Fi(x), where each Fi(x) is the product of the irreducible

polynomials of degree i dividing f(x).
More precisely, we define these polynomials as follows. Let f0(x) = f(x). For

1 ≤ i ≤ d, define Fi(x) = gcd(xp
i − x, fi−1(x)) in Fp[x] and fi(x) = fi−1(x)/Fi(x).

Theorem 3.1. Let p be an odd prime, and let f(x) be a monic polynomial in Fp[x]
of degree d with discriminant ∆. Assume p - f(0)∆.

1) We have fd(x) = 1, and for each i, 1 ≤ i ≤ d, i| deg(Fi).
2) For 2 ≤ i ≤ d, Fi(x)|Fi(xp).
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3) Let S =
∑

2|i deg(Fi(x))/i. Then (−1)S =
(

∆
p

)
. That is, if

(
∆
p

)
= 1, then

S is an even integer, and if
(

∆
p

)
= −1, then S is an odd integer.

Proof. 1) The polynomial xp
i − x is the product of all irreducible polynomials in

Fp[x] with degree dividing i. Inductively, we see that

Fi(x) = gcd

∏
j|i

(xp
j − x)µ(i/j), f(x)

 ,

where µ is the Möbius function. Thus Fi(x) is the product of all irreducible factors
of f(x) of degree exactly i, and fi(x) is the product of the irreducible polynomials
dividing f(x) with degree greater than i.

Since ∆ 6= 0, f(x) is squarefree, and since f(x) is equal to the product of its
irreducible factors, f(x) =

∏
1≤i≤d Fi(x), so fd(x) = f(x)/(

∏
1≤i≤d Fi(x)) = 1.

2) In fact, for any nonzero polynomial g(x) ∈ Fp[x], we have g(x)|g(xp) since
g(xp) = g(x)p.

3) The degree of Fi(x) is i times the number of irreducible factors of f of degree
i. So S is equal to the number of irreducible factors of f of even degree.

If f(x) is irreducible mod p, then d = deg(f) is the least power with αp
d

= α,
and the map α 7→ αp has order equal to d. Thus, that map is a generator of the
Galois group of f over Fp.

For all polynomials, the Galois group acts transitively on the roots of each irre-
ducible factor of f over Fp. Thus, S gives the number of cycles of even length in
the Frobenius automorphism. Cycles of even length are odd (and vice versa), so
the parity of S determines whether the automorphism is odd or even. Since the
discriminant is the product of the square of the differences of the roots of f(x),
this parity is also determined by

(
∆
p

)
. For a more detailed proof of this fact, see

[15].

As an example, let f(x) = x4 + 12x+ 1. (It is irreducible over Q.) Let p = 89.
We have x89 − x ≡ 59x3 + 51x2 + 20x+ 86 mod (89, f(x)), so

F1(x) = gcd(f(x), 59x3 + 51x2 + 20x+ 86) = x+ 78,

and f1(x) = x3 + 11x2 + 32x+ 8.
Since x892 − x ≡ 64x2 + 86x+ 19 mod (89, f1(x)), and

F2(x) = gcd(f1(x), 64x2 + 86x+ 19) = 1,

we have f2(x) = f1(x) = x3 + 11x2 + 32x+ 8.
Next, x893 − x ≡ 0 mod (89, f2(x)), so F3(x) = f2(x) and f3(x) = 1.
Thus F4(x) = f4(x) = 1.
Note that x89 ≡ 25x2+x+59 mod (89, F3(x)). We verify that F3(25x2+x+59) ≡

0 mod (89, F3(x)).
Finally, the discriminant of f(x) is −559616.

(−559616
89

)
= 1, which agrees with

the fact that S = 0.
We would like to define any composite with satisfies the consequences of this

theorem to be a type of pseudoprime, but we may run into a problem when we take
the gcd of two polynomials modulo a composite, since we are working over a ring
that is not a domain.
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With this in mind, we consider the following definition.

Definition. Let f(x), g1(x), g2(x) be monic polynomials over a commutative ring
(with identity). We say that f(x) is the greatest common monic divisor (gcmd) of
g1(x) and g2(x) if the ideal generated by g1(x) and g2(x) is equal to the ideal gener-
ated by f(x). We write f(x) = gcmd(g1(x), g2(x)). (Note that gcmd(g1(x), g2(x))
does not necessarily exist.)

Clearly if gcmd(g1(x), g2(x)) exists, it is a common monic divisor of g1(x) and
g2(x) of greatest degree. Further, it is not hard to show that the gcmd is unique.
The gcmd has the following additional property.

Proposition 3.2. Let p|n, and let g1(x), g2(x) be monic polynomials in Z[x]. If
f(x) = gcmd(g1(x), g2(x)) in (Z/nZ[x]), then f(x) ≡ gcd(g1(x), g2(x)) mod p,
where the gcd is taken in (Z/pZ)[x].

Proof. For i = 1, 2, we have that gi(x) ≡ ki(x)f(x) mod n, for some ki(x) ∈ Z[x].
Thus f(x)|gi(x) in (Z/pZ)[x].

We have that f(x) ≡ g1(x)h1(x) + g2(x)h2(x) mod n for some h1(x), h2(x) ∈
Z[x]. Thus f(x) ≡ g1(x)h1(x) + g2(x)h2(x) mod p, and by the definition of gcd,
f(x) = gcd(g1(x), g2(x)) in (Z/pZ)[x].

Corollary 3.3. If gcmd(g1(x), g2(x)) exists in (Z/nZ)[x], then for all p dividing
n, gcd(g1(x), g2(x)) has the same degree.

Proof. Since the leading coefficient of the gcmd is 1, that coefficient is the leading
coefficient of all the gcds, by Proposition 3.2. Thus, they all have the same degree.

Proposition 3.4. Assume, for each p|n, gcd(f(x), g(x)) = 1 in Fp[x]. Then
gcmd(f(x), g(x)) = 1 in (Z/nZ)[x].

Proof. By the Chinese Remainder Theorem, it suffices to prove that the gcmd of
f(x) and g(x) is 1 in (Z/pjZ)[x] for any integer j ≥ 1. We proceed by induction.
We know that there exist polynomials a1(x), b1(x), and k1(x) such that f(x)a1(x)+
g(x)b1(x) = 1+pk1(x). Assume that there exist polynomials aj(x), bj(x) and kj(x)
with f(x)aj(x)+g(x)bj(x) = 1+pjkj(x). Multiplying by pk1(x), pf(x)aj(x)k1(x)+
pg(x)bj(x)k1(x) = pk1(x) + pj+1k1(x)kj(x).

Substituting for pk1(x),

pf(x)aj(x)k1(x) + pg(x)bj(x)k1(x)

= −1 + f(x)a1(x) + g(x)b2(x) + pj+1k1(x)kj(x).

Rearranging,

f(x)[a1(x)− paj(x)k1(x)] + g(x)[b1(x)− pbj(x)k1(x)] = 1 + pj+1[−k1(x)kj(x)].

Thus we have shown that gcmd(f(x), g(x)) = 1 in (Z/pj+1Z)[x], and the propo-
sition is proven.

The concept of gcmd would not be useful in the context of this paper if it
were difficult to calculate. We have the following result, which aids us in testing
primality.

Proposition 3.5. The Euclidean algorithm will either find the gcmd of two monic
polynomials in (Z/nZ)[x] or find a proper factor of n.
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Proof. The Euclidean algorithm will only fail to finish if one of the divisions fails
due to the leading coefficient of a non-zero remainder being non-invertible. This
coefficient will have a gcd with n that is a nontrivial factor of n.

If the Euclidean algorithm terminates (i.e., one of the remainders is zero), we
have inductively that the last non-zero remainder is a divisor of the two polynomials
and can be written as a linear combination of the two. The proof is the same as
the proof of correctness of the Euclidean algorithm over Fp[x]. Since the leading
coefficient of the last non-zero remainder is invertible, this remainder can be made
monic by division, and we find the gcmd.

Definition. Let f(x) ∈ Z[x] be a monic polynomial of degree d with discriminant
∆. An odd integer n > 1 is said to pass the Frobenius probable prime test with
respect to f(x) if (n, f(0)∆) = 1, and it is declared to be a probable prime by
the following algorithm. (Such an integer will be called a Frobenius probable prime
with respect to f(x).) All computations are done in (Z/nZ)[x].

Factorization Step. Let f0(x) = f(x) mod n. For 1 ≤ i ≤ d, let Fi(x) =
gcmd(xn

i − x, fi−1(x)) and fi(x) = fi−1(x)/Fi(x). If any of the gcmds fail to
exist, declare n to be composite and stop. If fd(x) 6= 1, declare n to be composite
and stop.

Frobenius Step. For 2 ≤ i ≤ d, compute Fi(xn) mod Fi(x). If it is nonzero for
some i, declare n to be composite and stop.

Jacobi Step. Let S =
∑

2|i deg(Fi(x))/i.
If (−1)S 6=

(
∆
n

)
, declare n to be composite and stop.

If n is not declared to be composite by one of these three steps, declare n to be
a Frobenius probable prime and stop.

The Factorization Step produces a “distinct degree” factorization when n is
prime. It may be of some interest to apply algorithms that factor the polynomi-
als completely, thus developing definitions for Berlekamp and Cantor-Zassenhaus
probable primes. The Cantor-Zassenhaus algorithm shares ideas with the “strong”
Frobenius probable prime test of Section 5. Berlekamp’s algorithm has two forms,
one deterministic and one probabilistic. The deterministic version has running time
proportional to n, so it is too slow to be used in primality testing. The probabilis-
tic version is fast, but since it is significantly more complicated than most existing
probable prime tests, we omit consideration of it here.

Corollary 3.6. Every odd prime p is a Frobenius probable prime with respect to
any monic polynomial f(x) such that p does not divide f(0)∆.

Proof. Immediate from Theorem 3.1.

Definition. Let f(x) ∈ Z[x]. A Frobenius pseudoprime with respect to a monic
polynomial f(x) is a composite which is a Frobenius probable prime with respect
to f(x).

4. The relation of Frobenius pseudoprimes to other pseudoprimes

Theorem 4.1. An odd integer n is a pseudoprime to the base a if and only if it is
a Frobenius pseudoprime with respect to the polynomial f(x) = x− a.
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Proof. First, assume n is an pseudoprime to the base a. Thus, an−1 ≡ 1 mod n.
Since ∆ = 1, (n, f(0)∆) = (n, a) = 1. Because (x − a)|(xn − an) and an − a = 0
in (Z/nZ)[x], we have (x− a)|((xn − an) + (an − a) + (a− x)) or (x− a)|(xn − x).
Therefore, F1(x) = x− a, and f1(x) = 1, so n passes the Factorization Step. Since
d = 1, the Frobenius Step is vacuous. Note that S = 0 and

(
∆
n

)
=
(

1
n

)
= 1, so n

passes the Jacobi Step. Therefore n is a Frobenius pseudoprime.
Now, assume n is a Frobenius pseudoprime with respect to x − a. In order

to have f1(x) = 1, we must have F1(x) = x − a. So by the Factorization Step,
(x− a)|(xn − x). Since (x− a)|(xn − an), (x− a) divides an− a. Since the latter is
a constant and x − a is monic, an − a must be 0 in (Z/nZ)[x]. So an ≡ a mod n.
Since (n, f(0)∆) = (n, a) = 1, we have an−1 ≡ 1 mod n. Thus n is a pseudoprime
to the base a.

In fact, a more general result can be proven: a Frobenius pseudoprime with
respect to f(x) is a pseudoprime to the base f(0). The idea for the proof can be
found in [13], Corollary 1. We first need to prove a lemma about polynomials mod
pk.

Lemma 4.2. Let g(y) be a polynomial in Z[y], irreducible mod p. Let f(x) be a
polynomial in Z[x] with p - disc(f). If f(x) has d roots in (Z[y]/(p, g(y)))[x], then
it has d roots in (Z[y]/(pk, g(y)))[x] for k a positive integer.

Proof. By Hensel’s Lemma, a root mod p lifts to exactly one root mod pk, since
the discriminant of f is non-zero mod p. Hensel’s Lemma applies to any finite field
of characteristic p.

Theorem 4.3. Let f(x) be a monic, squarefree polynomial in Z[x]. If an odd
integer n is a Frobenius pseudoprime with respect to f(x), then it is a pseudoprime
to the base f(0).

Proof. It suffices to prove f(0)n ≡ f(0) mod pk for every prime power pk|n.
Let d be the degree of f(x). There exists an extension field of Fp, Fp[y]/(g(y)),

in which f(x) splits completely. The d roots must be distinct, since n is coprime to
the discriminant of f(x). Thus there are d distinct roots of f(x) in Z[y]/(pk, g(y)),
by Lemma 4.2.

Call the roots y1, y2, . . . , yd. Consider the map yi 7→ yni . By the Frobenius Step,
this map sends each root to another root. By the Factorization Step, (yni )n

d−1

= yi,
so the map is invertible. Therefore, it permutes the roots. Thus

∏d
i=1 yi =

∏d
i=1 y

n
i .

But
∏d
i=1 yi ≡ (−1)df(0) mod p, so (−1)df(0) ≡ ((−1)df(0))n mod pk. Simplify-

ing, we see that f(0)n ≡ f(0) mod pk for each pk|n. Thus n is a pseudoprime to
the base f(0).

Theorem 4.3 can be used, in conjunction with results about the distribution of
pseudoprimes to the base a, to give an upper bound on the number of Frobenius
pseudoprimes with respect to a given polynomial f(x).

Corollary 4.4. Let f(x) ∈ Z[x] be a monic polynomial with nonzero discriminant.
If |f(0)| 6= 1, then the number of Frobenius pseudoprimes with respect to f(x) up
to y is less than y1−log log log y/2 log log y, for y sufficiently large, where “sufficiently
large” depends only on |f(0)|.

Proof. Immediate from Theorem 4.3 and [21].
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When |f(0)| = 1, it is possible that all integers are Frobenius pseudoprimes with
respect to f(x), such as if f(x) = x−1. In fact, we conjecture that for every monic,
squarefree polynomial f(x), not the product of cyclotomic polynomials, the bound
of Corollary 4.4 holds. For quadratic polynomials, the conjecture follows from [9].

Theorem 4.5. If a, b are integers, f(x) = (x − a)(x − b), and n is a Frobenius
pseudoprime with respect to f(x), then n is a pseudoprime to both bases a and b.

Proof. Since f(x) factors, its discriminant must be a square, so
(

∆
n

)
= 1. Therefore

F2(x) = 1 and F1(x) = f(x) by the Jacobi Step. Since f(x)|(xn − x), we have
(x − a)|(xn − x). Therefore, as in the proof of Theorem 4.1, we conclude n is a
pseudoprime to the base a and, similarly, base b.

Theorem 4.6. If f(x), g(x) ∈ Z[x] with (n, disc(fg)) = 1 and n is a Frobenius
pseudoprime with respect to f(x) and g(x), then it is a Frobenius pseudoprime with
respect to f(x)g(x).

Proof. Let h(x) = f(x)g(x). Let fi(x), gi(x), hi(x) and Fi(x), Gi(x), Hi(x) be the
polynomials produced in the Factorization Steps for f(x), g(x), h(x), respectively.
If a polynomial is not defined in that step (e.g., fd+1(x), if f(x) has degree d),
define it to be 1.

We will show by induction on i that hi(x) = fi(x)gi(x) and Hi(x) = Fi(x)Gi(x).
We have that h0(x) = h(x) = f(x)g(x) = f0(x)g0(x). Assume that hk−1(x) =

fk−1(x)gk−1(x). By definition, we have Hk(x) = gcmd(xn
k − x, hk−1(x)), should

this gcmd exist. Since Fk(x)|fk−1(x) and Gk(x)|gk−1(x), Fk(x)Gk(x)|hk−1(x).
Because gcd(disc(fg), n) = 1, we have that gcd(Fk(x), Gk(x)) = 1 in Fp[x] for

each p|n. By Proposition 3.4, gcmd(Fk(x), Gk(x)) = 1 in (Z/nZ)[x]. Therefore
Fk(x)A1(x) + Gk(x)A2(x) ≡ 1 mod n for some A1(x) and A2(x) in Z[x]. Also,
xn

k − x ≡ B1(x)Fk(x) ≡ B2(x)Gk(x), for some B1(x) and B2(x) in Z[x], by the
definitions of Fk(x) and Gk(x). Thus Fk(x)B1(x) ≡ Gk(x)B2(x) mod n. Mul-
tiplying by A1(x) gives Fk(x)A1(x)B1(x) ≡ Gk(x)A1(x)B2(x). If we substitute
for Fk(x)A1(x), we get (1 − Gk(x)A2(x))B1(x) ≡ Gk(x)A1(x)B2(x), or B1(x) ≡
Gk(x)[A2(x)B1(x) + A1(x)B2(x)]. Hence Gk(x)|B1(x), and Fk(x)Gk(x)|xnk − x.
Thus Fk(x)Gk(x)|Hk(x).

We have, by the definitions of Fk(x) and Gk(x), that

Fk(x) ≡ r1(x)(xn
k − x) + s1(x)fk−1(x)

and

Gk(x) ≡ r2(x)(xn
k

− x) + s2(x)gk−1(x),

for some polynomials r1(x), r2(x), s1(x), and s2(x). Multiplying these two congru-
ences together, we get

Fk(x)Gk(x) ≡ r3(x)(xn
k − x) + s1(x)s2(x)hk−1(x),

where r3(x) = r1(x)r2(x)(xn
k−x)+r1(x)s2(x)gk−1(x)+r2(x)s1(x)fk−1(x). There-

fore, Hk(x) = Fk(x)Gk(x). Now hk(x) = hk−1(x)/Hk−1(x), so by the inductive
hypothesis,

hk(x) = fk−1(x)gk−1(x)/(Fk−1(x)Gk−1(x)) = fk(x)gk(x).

Each of the gcmds in the Factorization Step exists, and hdeg(fg)(x) = 1. Thus n
passes the Factorization Step.
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Since Hi(x) = Fi(x)Gi(x), and n passes the Frobenius Step for f(x) and g(x),
Hi(x)|Hi(xn). Thus n passes the Frobenius Step for h(x).

Let Sf and Sg be the values of S computed in the Jacobi Step for f(x) and g(x),
respectively. Then S = Sf + Sg. So it suffices to show that(

disc(fg)
n

)
=
(

disc(f)
n

)(
disc(g)
n

)
.

To show this equality, it suffices to show that disc(fg) = disc(f) disc(g)`2, where
` ∈ Z.

Let α1, . . . , αj be the roots of f(x) and αj+1, . . . , αd be the roots of g(x), all
in Q̄. Then disc(fg) =

∏
i<i′(αi − αi′ )2 = disc(f) disc(g)

∏
i≤j<i′ (αi − αi′)2. Let

` =
∏
i≤j<i′ (αi − αi′).

We will show that ` ∈ Z, by showing σ(`) = ` for all σ ∈ Gal(Q̄/Q). Any such σ
must map each αi with i ≤ j to some αī with ī ≤ j, and similarly for i > j. Thus
σ must only rearrange terms in the product, and σ(`) = `. Thus(

disc(fg)
n

)
=
(

disc(f)
n

)(
disc(g)
n

)
,

n passes the Jacobi Step, and n is a Frobenius pseudoprime with respect to f(x)g(x).

The converse to Theorem 4.6 is true for the product of two linear polynomials,
as Theorems 4.1 and 4.5 show. It is not, however, true in general. If f(x) =
(x − 1341)(x − 513)(x − 545), then 1537 is a Frobenius pseudoprime with respect
to f(x), but it is not a pseudoprime to any of the bases 1341, 513, or 545. This
example appears in [2] and indicates the possible usefulness of the quadratic forms
test contained therein. The examples produced in that paper, however, all involve
polynomials with relatively large discriminant compared to the pseudoprimes.

Corollary 4.7. If n is a Carmichael number, f(x) ∈ Z[x] is monic, f(x) factors
into linear factors modn and (n, f(0)∆) = 1, then n is a Frobenius pseudoprime
with respect to f(x).

Proof. Apply Theorem 4.1 and Theorem 4.6.

Lemma 4.8. Let m,n be positive integers, and let f(x), g(x), r(x) ∈ Z[x]. If
f(r(x)) ≡ 0 mod (n, f(x)) and xm ≡ g(x) mod (n, f(x)), then r(x)m ≡ g(r(x)) mod
(n, f(x)).

Proof. xm ≡ g(x)+f(x)h(x) mod n, for some h(x) ∈ Z[x]. Since x is an indetermi-
nate, r(x)m ≡ g(r(x))+f(r(x))h(r(x)) mod n. Because f(r(x)) ≡ 0 mod (n, f(x)),
we have r(x)m ≡ g(r(x)) mod (n, f(x)).

Theorem 4.9. If f(x) = x2 − Px + Q ∈ Z[x], and n is a Frobenius pseudoprime
with respect to f(x), then n is a Lucas pseudoprime with parameters (P,Q).

Proof. Note that S = 0 or 1.
If
(

∆
n

)
= 1, then we must have S = 0, so xn ≡ x mod (n, f(x)). Since Q is

invertible mod n, x is invertible mod (n, f(x)). Thus xn−1 ≡ 1. By Lemma 4.8,
(P − x)n−1 ≡ 1, since f(P − x) ≡ 0 mod (n, f(x)).
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The two roots of f(x) in Z[x]/(f(x)) are x and P − x, and (x − (P − x))2 ≡
P 2 − 4Q mod f(x). Since n is coprime to the discriminant P 2 − 4Q, the difference
of the two roots is invertible. Thus

Un−1 ≡
xn−1 − (P − x)n−1

x− (P − x)
≡ 1− 1

2x− P = 0 mod (n, f(x)).

If
(

∆
n

)
= −1, then we must have S = 1, so xn 6≡ x mod (n, f(x)). We cannot

have xn ≡ x mod (pk, f(x)) for pk|n, since then xn−x ≡ 0 mod (pk, f(x)), and the
gcmd in the Factorization Step would not exist. Further, this shows that f(x) is
irreducible mod p.

Because p - ∆, there are only 2 roots to f(x) mod (pk, f(x)), by Lemma 4.2.
Since they are known to be x and P−x, we must have xn ≡ P−x mod (pk, f(x)) for
each prime power pk|n, by the Frobenius Step. Since f(x) is monic, the congruence
must hold mod (n, f(x)) by the Chinese Remainder Theorem. By Lemma 4.8,
(P − x)n ≡ x mod (n, f(x)), so

Un+1 ≡
xn+1 − (P − x)n+1

2x− P ≡ x(P − x) − (P − x)x
2x− P = 0.

Note that the Frobenius test is in fact stronger than the Lucas test. For example,
323 is the first Lucas pseudoprime with respect to the Fibonacci sequence. If we
compute x323 − x mod (323, x2 − x − 1), we get −1. So F1(x) = 1. If we compute
x3232−x mod (323, x2−x−1), we get 0. So F2(x) = x2−x−1 and f2(x) = 1. So 323
passes the Factorization Step. Note that it also passes the Jacobi Step, since

(
5

323

)
=

−1. But it fails the Frobenius Step, because x323 ≡ x − 1 mod (323, x2 − x − 1),
and F2(x − 1) = −2x + 2. The first Frobenius pseudoprime with respect to the
Fibonacci polynomial x2 − x− 1 is 5777.

Theorem 4.10. If f(x) = x3−rx2+sx−1, then any Frobenius pseudoprime n with
respect to f(x) is also a Perrin pseudoprime. In particular, if F1(x) = f(x), then n
has an S-signature, if F3(x) = f(x), then n has an I-signature, and if deg(F1) = 1
and deg(F2) = 2, then n has a Q-signature.

Proof. The idea behind this proof is that relationships between nth powers of the
roots determine the signature, and the necessary relationships are guaranteed to
hold because n passes the Frobenius Probable Prime Test.

To this end, we use Lemma 2 of [2]. Let K be the splitting field of f(x). Let α1,
α2 and α3 be the three roots of f(x) in K. Lemma 2 says that n has a Q-signature
if for each prime power pk|n, and for each prime ideal p of K with p|p, we have
αn1 ≡ α1, αn2 ≡ α3, and αn3 ≡ α2 mod pk (or some other permutation of the roots
of order 2.)

If deg(F1) = 1 and deg(F2) = 2, then we must have f(x) ≡ F1(x)F2(x) mod pk.
So f(αi) = 0 ≡ F1(αi)F2(αi) for i = 1, 2, 3. Because F1(x) is linear it has exactly
one root mod pk. Therefore, one of the roots (say α1) is a root of F1(x) and the
other two are roots of F2(x).

For α1, we have xn ≡ x mod (pk, F1(x)). But we must have F1(x) ≡ x −
α1 mod pk, so αn1 ≡ α1 mod pk, and hence for every prime ideal power dividing pk.

We have xn 6≡ x mod (pk, F2(x)), but F2(xn) ≡ 0. Since there are only two roots
of F2(x) mod pk, we must have αn2 ≡ α3 mod pk, and similarly αn3 ≡ α2.

The proofs of the S and I cases are similar.
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Theorem 4.11. Let f(x) ∈ Z[x] be a monic, squarefree polynomial. Let β1, . . . , βd
be its roots, and let Vk = βk1 + · · ·+βkd . If n is a Frobenius pseudoprime with respect
to f(x), then n is a pseudoprime with respect to V , in the sense of [13], Section 4.

Proof. The theorem follows directly from Theorem 2 of [13].

Theorem 4.12. Let f(x) be a monic, squarefree polynomial. If n is a Frobenius
pseudoprime with respect to f(x), then n is a pseudoprime in the sense of Szekeres.

Proof. It suffices to show that the map x 7→ xn permutes the roots of f(x). This
fact follows from the Frobenius Step.

Having presented the definition of Frobenius pseudoprime as a generalization
of other definitions of pseudoprime, we would like to use the above theorems to
produce a theorem that holds for all of these types of pseudoprimes.

Conjecture 4.13. For any monic, squarefree polynomial f(x) ∈ Z[x], there are
infinitely many Frobenius pseudoprimes with respect to f(x). In fact, for any
ε > 0, there exists a T (depending on f(x) and ε) such that if t > T , there are at
least t1−ε Frobenius pseudoprimes less than t.

It is straightforward to prove the first assertion for many polynomials (those
which split into linear and quadratic factors over Z). The proof uses Corollary 4.7
and an extension of results in [3] and [4]. It is possible to prove this statement
for all polynomials, but the proof requires results about L-functions over number
fields. The proof is given in [12]. The second assertion seems considerably more
difficult to prove; for a discussion of impediments, see [3].

5. Strong Frobenius pseudoprimes

We can strengthen the test developed in the previous section by using the identity
xn

i−1−1 = (xs−1)
∏r
j=1(x2j−1s+ 1) (where ni−1 = 2rs) to further factor Fi(x).

Theorem 5.1. Let f(x), d, ∆, p, and Fi(x) be as in Theorem 3.1. Let pi − 1 =
2rs with s odd. Let Fi,0(x) = gcd(Fi(x), xs − 1). For 1 ≤ j ≤ r, let Fi,j(x) =
gcd(Fi(x), x2j−1s + 1). Then

∏r
j=0 Fi,j(x) = Fi(x), and, for each j, the degree of

Fi,j(x) is divisible by i.

Proof. We have the identity xp
i−1 − 1 = (xs − 1)

∏r
j=1(x2j−1s + 1). The result fol-

lows since the factors in the product are pairwise coprime, and since f(0) 6= 0.

Definition. Let f(x) ∈ Z[x] be a monic polynomial of degree d with discriminant
∆. An odd integer n with (n, f(0)∆) = 1 is said to pass the strong Frobenius
probable prime test with respect to f(x) if it is a Frobenius probable prime and is
declared to be a probable prime by the following additional step. (Such an integer
will be called a strong Frobenius probable prime with respect to f(x).)

Square Root Step. For each 1 ≤ i ≤ d, let ni − 1 = 2rs with r odd. Let
Fi,0(x) = gcmd(Fi(x), xs − 1). Let Fi,j(x) = gcmd(Fi(x), x2j−1s + 1). Then if
Fi(x) 6=

∏r
j=0 Fi,j(x), if for some j, the degree of Fi,j(x) is not a multiple of i, or

if one of the gcmds fails to exist, declare n to be composite and terminate.
If n is not declared to be composite by the Frobenius probable prime test or the

Square Root Step, declare n to be a strong Frobenius probable prime.
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Corollary 5.2. Every odd prime p is a strong Frobenius probable prime with respect
to any monic polynomial f(x) such that p does not divide f(0)∆.

Definition. A strong Frobenius pseudoprime with respect to a monic polynomial
f(x) ∈ Z[x] is a composite strong Frobenius probable prime with respect to f(x).

Clearly every strong Frobenius pseudoprime with respect to f(x) is a Frobenius
pseudoprime with respect to f(x).

Theorem 5.3. A number n with (n, 2a) = 1 is a strong Frobenius pseudoprime
with respect to x− a if and only if n is a strong pseudoprime to the base a.

Proof. From Theorem 3.1 it suffices to show that a pseudoprime to the base a is
strong if and only if it passes the Square Root Step with respect to x− a.

In order to pass the Square Root Step, we need to have x−a|x2r−js+ 1 for some
1 ≤ j ≤ r or x− a|xs − 1. The first statement is equivalent to a2r−js ≡ −1 mod n
and the second is equivalent to as ≡ 1 mod n. These are exactly the conditions
for strong pseudoprimality. So n passes the Square Root Step if and only if it is a
strong pseudoprime to the base a.

Corollary 5.4. Every strong Frobenius pseudoprime with respect to x − a is an
Euler pseudoprime to the base a.

The situation with strong Lucas pseudoprimes is a bit more complicated, as the
polynomial needs to be changed.

Theorem 5.5. Let f(x) = x2 − Px + Q. Let n be a integer with (n, 2∆Q) = 1.
Let Q′ be an integer with Q′ ≡ Q−1 mod n. If n is a strong Frobenius pseudoprime
with respect to X2 + (2 + b2c′)X + 1, then n is a strong Lucas pseudoprime with
parameters (P,Q).

Proof. Let Uk = Uk(P,Q) and Vk = Vk(P,Q). Note that Uk ≡ 0 mod n if and only
if xk − (P − x)k ≡ 0 mod (n, x2 − Px + Q) if and only if

(
P−x
x

)k ≡ 1. Similarly,

Vk ≡ 0 if and only if
(
P−x
x

)k ≡ −1. Let X = −Q′Px + Q′P 2 − 1. Then X ≡
(P −x)/x mod (n, x2−Px+Q) and X2 +(2−P 2Q′)X+1 = (PQ′)2(x2−Px+Q).
So, by a change of variables, we see that Uk ≡ 0 mod n if and only if Xk ≡
1 mod (n,X2 +(2−P 2Q′)X+1). The same statement holds for Vk, with 1 replaced
by −1. So Uk ≡ 0 mod n if and only if X2 +(2−P 2Q′)X+1 divides Xk−1. Using
this statement, the fact that n is a strong Lucas pseudoprime with parameters
(P,Q) follows immediately from the Square Root Step.

If we insist on keeping the same polynomial, a weaker result can be proven.

Theorem 5.6. Every strong Frobenius pseudoprime n with respect to f(x) = x2−
Px + Q such that

(
P 2−4Q

n

)
= −1 is a strong Lucas pseudoprime with parameters

(P,Q).

Proof. Let Uk = Uk(P,Q) and Vk = Vk(P,Q). Write n+ 1 = 2RS and n2−1 = 2rs
with s and S odd. Note that 2rs = (n− 1)2RS, so R < r and S|s.

Observe that the only ways to pass the Square Root Step are if f(x)|xs − 1 or
f(x)|x2r−js + 1 for some j such that r ≥ j > 0.

This means that either f(x)|x2r−Rs − 1 or f(x)|x2r−js + 1 for some j such that
R ≥ j > 0.
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In the first case, we observe that 2r−Rs = (n − 1)S = nS − S. So xnS−S ≡
1 mod (n, f(x)), or xnS ≡ xS . But we know that xn ≡ (P − x), so (P − x)S ≡ xS .
Thus US ≡ (xS − (P − x)S)/(x− (P − x)) ≡ 0 mod (n, f(x)) and thus mod n.

In the second case, we use the formula 2r−js = (n − 1)2R−jS = n2R−jS −
2R−jS. But x2r−js ≡ −1 mod (n, f(x)), so x2R−jS ≡ −xn2R−jS . This gives us that
x2R−jS ≡ −(P − x)2R−jS .

Since Vm ≡ xm + (P − x)m, V2R−jS ≡ 0 mod n. We conclude that n is a strong
Lucas pseudoprime.

Theorem 5.6 would not be true without the restriction that
(
b2+4c
n

)
= −1. For

example, 294409 is a strong Frobenius pseudoprime with respect to x2 − 1185x+
56437, but it is not a strong Lucas pseudoprime with parameters (1185, 56437).

Theorem 5.7. If n is a strong Frobenius pseudoprime with respect to x2 − bx+ 1,
then n is an extra strong Lucas pseudoprime to the base b.

Proof. Let Uk = Uk(b, 1) and Vk = Vk(b, 1). Assume that
(
b2+4
n

)
= −1. Let

R, r, S, s be as in the proof of Theorem 5.6. Observe that xn+1 ≡ x(b − x) ≡ 1.
If f(x)|x2r−js + 1 for some j such that r ≥ j > 0, then we have that V2R−js ≡ 0,

as in Theorem 5.6.
If V2r−1s ≡ 0, we have that Vn+1

2
≡ 0, so x

n+1
2 + (b− x)

n+1
2 ≡ 0. Since (b− x) ≡

x−1, we deduce xn+1 ≡ −1, a contradiction. This establishes that j > 1, as the
definition of extra strong Lucas pseudoprime requires.

If f(x)|xs − 1, this means that xs ≡ 1 mod (n, f(x)). s = S(n − 1)/2r−R. So
gcd( sS , n + 1) = 1. Therefore xS ≡ 1, and VS ≡ xS + (b − x)S ≡ 1 + 1 = 2, and
US ≡ 0 as above.

Similarly, if f(x)|xs + 1, we have VS ≡ −2 and US ≡ 0.
The only remaining case is f(x)|x2r−js + 1 for some j such that r > j ≥ R+ 1.

r > R+ 1 only if n ≡ 1 mod 4. Then R = 1, and j ≤ r− 1. So 2r−js = (n+ 1)n−1
2j ,

and x2r−js ≡ x(n+1)n−1
2j ≡ 1. This contradicts the assumption that f(x)|x2r−js + 1.

The proof for the case where the Jacobi symbol is 1 is similar.

6. Carmichael-Frobenius numbers

A Carmichael number is to be a number which is a (Fermat) pseudoprime to
every base. With that in mind, we make the following definition.

Definition. Let K be a number field and n an odd composite with (n, disc(K)) =
1. If, for each polynomial f(x) ∈ Z[x] with all its roots in K and (n, f(0) disc(f)) =
1, n is a Frobenius pseudoprime with respect to f(x), then n is a Carmichael-
Frobenius number with respect to K.

Note that n is a Carmichael number if and only if it is a Carmichael-Frobenius
number with respect to Q. Also, if n is a Carmichael-Frobenius number with respect
to K, then it is also a Carmichael-Frobenius number with respect to any subfield
of K. In particular, a Carmichael-Frobenius number with respect to K is also a
Carmichael number.

Proposition 6.1. Let n be a Carmichael number, and let K be a number field with
(n, disc(K)) = 1. If every prime p|n splits completely in K, then n is a Carmichael-
Frobenius number with respect to K.
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Proof. Let f(x) ∈ Z[x] be a polynomial with all of its roots in K such that
gcd(n, f(0) disc(f)) = 1. For each p|n, f(x) must split into linear factors mod
p, since p splits completely in K. Since n is a Carmichael number, it is squarefree,
so f(x) splits into linear factors mod n. The proposition follows from Corollary
4.7.

These Carmichael-Frobenius numbers have F1(x) = f(x) in the Factorization
Step for each f(x) with all of its roots in K. In [12], we will show that there
are infinitely many of them for each number field K. Other types of Carmichael-
Frobenius numbers are harder to come by. The methods of [20] can be used to give
heuristics suggesting that there are infinitely many Carmichael-Frobenius numbers
with respect to K with F2(x) = f(x) for each irreducible f(x) with all of its roots
in K. We also have the following proposition, which is similar to Proposition 6 of
[13].

Proposition 6.2. Let f(x) ∈ Z[x] be a monic, irreducible polynomial of degree k
with splitting field K. Let n be a Carmichael-Frobenius number with respect to K.
If Fk(x) = f(x) in the Factorization Step of the Frobenius Probable Prime Test
with respect to f(x), then n has at least k + 2 prime factors.

Proof. Let p be a prime factor of n, and let fp(x) be an irreducible factor of f(x)
of maximal degree in Fp[x]. Let Ap = Fp[x]/(fp(x)). We have that Ap = Fpr for
some r ≥ 1.

We will show that r = k. Since xn is a root of f(x) in Z[x]/(n, f(x)), it is a
root in Ap, and we must have xn = xp

t

in Ap, for some t > 0. We thus have
xn

r ≡ xptr ≡ x in Ap. Thus fp(x)| gcd(f(x), xn
r −x) in Fp[x]. Since all gcmds were

computable, fp(x)|Fr′ (x), for some r′ ≤ r. But since Fk(x) = f(x), we must have
r′ = k, and thus r = k.

Let α be a root of f(x) in K. Then for some gp(x) ∈ Z[x], gp(α) has order pk−1
in A∗p. By the Chinese Remainder Theorem, there is a monic polynomial g(x) ∈ Z[x]
such that g(x) ≡ gp(x) mod p for each p|n. Let h(x) be the minimal polynomial of
g(α) over Q. Then h(x) has all of its roots in K. Since h(x), considered mod p, is
the minimal polynomial for gp(α), we have p - h(0) disc(h) for each p|n, and thus
gcd(n, h(0) disc(h)) = 1.

Thus h(xn) = 0 in Ap. But the roots of h(x) in Ap are xp, xp
2
, . . . , xp

k−1
, xp

k

.
Then n ≡ pt mod (pk−1), for some 1 ≤ t ≤ r. This congruence gives pk−1|n−pt, for
some 1 ≤ t ≤ k. Therefore, pk−1|np−pt−1. Since n is a Carmichael number, it is not
a prime power, and n > pt, which implies n

p−pt−1 > 0. So pk−1 ≤ n
p−pt−1 ≤ n

p−1;
thus pk ≤ n

p . Since n 6= pk+1, pk < n
p . Thus for all p|n we have pk < n

p , or pk+1 < n.
If n has less than or equal to k + 1 prime factors, we have nk+1 < nk+1, by taking
the product over all prime factors. The contradiction gives the proposition.

7. Implementation issues

Performing the Frobenius test as stated on quadratic polynomials would seem to
require computing xn

2
. As the theorem below shows, there is an equivalent version

of the test that merely requires computing xn.

Theorem 7.1. Let f(x) = x2 − bx − c. Let ∆ = b2 + 4c. Let n be an integer
with (n, 2f(0)∆) = 1. If

(
∆
n

)
= 1 and xn ≡ x mod (n, f(x)), then n is a Frobenius
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probable prime with respect to f(x). If
(

∆
n

)
= −1 and xn ≡ b − x mod (n, f(x)),

then n is a Frobenius probable prime with respect to f(x).

Proof. If
(

∆
n

)
= 1, then the fact that f(x) divides xn − x verifies both the Factor-

ization Step and the Jacobi Step. The Frobenius Step is trivial.
Suppose

(
∆
n

)
= −1, and xn ≡ b − x mod (n, f(x)). By Lemma 4.8, (b − x)n ≡

x mod (n, f(x)), and so xn
2 ≡ x mod (n, f(x))). Note that 4f(b/2) = −∆ is

coprime to n, so xn − x ≡ b − 2x has gcmd 1 with f(x) in (Z/nZ)[x]. Thus
F1(x) = 1 and F2(x) = f(x), so n passes the Factorization and Jacobi steps. Since
f(b− x) ≡ f(x) ≡ 0 mod (n, f(x)), it passes the Frobenius Step.

We will leave a proof of the running time and a description of how to speed the
strong test to [11].

Note that Lemma 4.8 can also be used to speed up the test with any degree
polynomial.

Also, when computing gcmd(xn − x, f(x)), the first step should be to compute
xn mod f(x). Then the Euclidean algorithm can be applied to two polynomials
whose degree is at most that of f(x).

Although the Square Root Step is listed as a separate step, in practice it would
be integrated into the Factorization Step. A description of how to do this in the
quadratic case is given in [11].

8. A challenge

Pomerance, Selfridge and Wagstaff offer $620 for a number 2 or 3 mod 5 that
is a pseudoprime to the base 2 and also a Lucas pseudoprime with respect to the
Fibonacci sequence, or for a proof that none exists [22], [14].

In this spirit, I have offered $6.20 for a Frobenius pseudoprime with respect to
x2 +5x+5 that is congruent to 2 or 3 mod 5. This polynomial is used instead of the
Fibonacci polynomial because x2(p+1) ≡ 1 mod (p, x2 − x− 1), if p is 2 or 3 mod 5.
With x2 + 5x+ 5, there is no similar guarantee x will have small order mod p.

The lower monetary figure is a reflection of my financial status at the time of
the offer, not of any lower confidence level. Heuristics [20] suggest that an example
should exist for the PSW test, and these heuristics can be modified to suggest that
it should also be possible to find one for the above Frobenius test. I believe that
the two problems are equally challenging. A justification for my belief is that an n
that passes my challenge must be a pseudoprime to the base 5 (by Theorem 4.3)
as well as a Lucas pseudoprime with parameters (−5,−5) (by Theorem 4.9).
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