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TESTING MULTIVARIATE UNIFORMITY
AND ITS APPLICATIONS

JIA-JUAN LIANG, KAI-TAI FANG, FRED J. HICKERNELL, AND RUNZE LI

Abstract. Some new statistics are proposed to test the uniformity of random
samples in the multidimensional unit cube [0, 1]d (d ≥ 2). These statistics are
derived from number-theoretic or quasi-Monte Carlo methods for measuring
the discrepancy of points in [0, 1]d. Under the null hypothesis that the sam-
ples are independent and identically distributed with a uniform distribution in
[0, 1]d, we obtain some asymptotic properties of the new statistics. By Monte
Carlo simulation, it is found that the finite-sample distributions of the new sta-
tistics are well approximated by the standard normal distribution, N(0, 1), or
the chi-squared distribution, χ2(2). A power study is performed, and possible
applications of the new statistics to testing general multivariate goodness-of-fit
problems are discussed.

1. Introduction

Testing uniformity in the unit interval [0, 1] has been studied by many authors.
Some early work in this area is [Ney37], [Pea39] and [AD54]. Quesenberry and Miller
[QM77, MQ79] made a thorough Monte Carlo simulation to compare a number of
existing statistics for testing uniformity in [0, 1] and recommended Watson’s U2-test
[Wat62] and Neyman’s smooth test [Ney37] as general choices for testing uniformity
in [0, 1]. D’Agostino and Stephens [DS86, Chapter 6] gave a comprehensive review
on tests for uniformity in [0, 1].

Testing uniformity of random samples in the multidimensional unit cube (d ≥ 2),

C̄d = [0, 1]d = {x = (x1, . . . , xd)′ ∈ Rd : 0 ≤ xi ≤ 1, i = 1, . . . , d},
seems to have received less attention in the literature. Two well-known quantities
are the Kolmogorov-Smirnov type statistic,

KSn = sup
x∈Rd

|Fn(x)− F (x)|,(1.1)

and the Cramér-von Mises type statistic,

CMn = n

∫
Rd

[Fn(x)− F (x)]2ψ(x) dx.(1.2)

Here, F (x) is the null distribution function (d.f.), Fn(x) denotes the empirical
distribution function (e.d.f.) based on n independent and identically distributed
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(i.i.d.) samples, and ψ(x) ≥ 0 in (1.2) is a suitable weight function. Unfortunately,
the Kolmogorov-Smirnov type statistic is difficult to compute for large d.

In the literature of number-theoretic methods or quasi-Monte Carlo methods
[Nie92, FW94, SJ94], there are a number of criteria for measuring whether a set
of points is uniformly scattered in the unit cube C̄d. These criteria are called
discrepancies, and they arise in the error analysis of quasi-Monte Carlo methods
for evaluating multiple integrals. Given an integral over the unit cube,

I(f) =
∫
C̄d
f(x) dx,(1.3)

quasi-Monte Carlo methods approximate this integral by the sample mean,

Q(f) =
1
n

n∑
i=1

f(zi),(1.4)

over a set of uniformly scattered sample points, P = {z1, . . . , zn} ⊂ C̄d. Examples
of good sets for quasi-Monte Carlo integration are given in [HW81, Nie92, SJ94,
Tez95] and the references therein. The worst-case quadrature error of a quasi-Monte
Carlo method is bounded by a generalized Koksma-Hlawka inequality,

|I(f)−Q(f)| ≤ D(P)V (f),(1.5)

where V (f) is a measure of the variation or fluctuation of the integrand, and the dis-
crepancy, D(P), is a measure of the quality of the quadrature rule, or equivalently,
of the set of points, P . A smaller discrepancy implies a better set of points.

The precise definitions of the discrepancy and the variation depend on the space
of integrands. In the original Koksma-Hlawka inequality [Nie92, Chap. 2], V (f) is
the variation of the integrand in the sense of Hardy and Krause, and the discrepancy
is the star discrepancy, defined as follows:

D∗(P) = sup
x∈C̄d

∣∣∣∣ |P ∩ [0,x]|
n

−Vol([0,x])
∣∣∣∣ ,(1.6)

where | | denotes the number of points in a set, and Vol([0,x]) denotes the volume
of the hypercube [0,x] (x ∈ Rd). Taking the null distribution in (1.1) to be the
uniform distribution, F (x) = Vol([0,x]), and noting that the e.d.f. is Fn(x) =
|P ∩ [0,x]|/n, the star discrepancy, (1.6), is a special case of the Kolmogorov-
Smirnov type statistic, (1.1).

This relationship between discrepancies arising in quasi-Monte Carlo quadrature
error bounds and goodness-of-fit statistics is rather general and has been discussed
in [Hic98b, Hic99]. If the space of integrands is a reproducing kernel Hilbert space,
then one may obtain a computationally simple form for the discrepancy. A spe-
cial case is the L2-star discrepancy, which corresponds to the Cramér-von Mises
statistic, (1.2), for the uniform distribution with weight function ψ(x) = 1.

Hickernell [Hic98a] proposed a generalized discrepancy based on reproducing
kernels. This discrepancy has a computationally simple formula. Three special
cases, the symmetric discrepancy, the centered discrepancy and the star discrepancy,
have interesting geometrical interpretations. Thus, all three of them may give useful
statistics for testing multivariate uniformity of a set of points.

However, to perform a statistical test, one must know the probability distribution
of the test statistic under the assumption of i.i.d. uniform random points. This
problem is the focus of this article. Section 2 defines the new test statistics and
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describes their asymptotic behavior. For statistical reasons the discrepancy itself
is not the best goodness-of-fit statistic, but useful statistics are derived from the
discrepancy. Section 3 presents simulation results on how well the distributions
of the statistics are approximated by their asymptotic limits and on the power
performance of the new statistics. Some applications are also discussed.

2. The new statistics and their asymptotic properties

2.1. Some L2-type discrepancies. The generalized L2-type discrepancy pro-
posed in [Hic98a] is as follows:

[D(P)]2 =Md − 2
n

n∑
k=1

d∏
j=1

[M + β2µ(zkj)]

+
1
n2

n∑
k,l=1

d∏
j=1

(
M + β2

[
µ(zkj) + µ(zlj) +

1
2
B2({zkj − zlj})

+B1(zkj)B1(zlj)

])
,

(2.1)

where { } denotes the fractional part of a real number or vector, β is an arbitrarily
given positive constant, and µ(·) is an arbitrary function satisfying

µ ∈
{
f :

df

dx
∈ L∞([0, 1]) and

∫ 1

0

f(x) dx = 0
}
.

The constant M is determined in terms of β and µ as follows:

M = 1 + β2

∫ 1

0

(
dµ

dx

)2

dx.(2.2)

The B1(·) and B2(·) in (2.1) are the first and the second degree Bernoulli polyno-
mials, respectively:

B1(x) = x− 1
2

and B2(x) = x2 − x+
1
6
.

For any z1, z2 ∈ [0, 1], it is true that

B2({z1 − z2}) = B2(|z1 − z2|) = |z1 − z2|2 − |z1 − z2|+
1
6
.

The three special cases of [D(P)]2 (denoted by Ds(P)2, Dc(P)2 and D∗(P)2,
respectively) given in [Hic98a] are derived by taking three different choices of the
function µ(·) and the constant β in (2.2):

1) the symmetric discrepancy:

µ(x) = −1
2
B2(x) = −1

2
(x2 − x+

1
6

), β−1 =
1
2
, M =

4
3
,

Ds(P)2 =
(

4
3

)d
− 2
n

n∑
k=1

d∏
j=1

(1 + 2zkj − 2z2
kj)

+
2d

n2

n∑
k,l=1

d∏
j=1

(1− |zkj − zlj |);
(2.3)
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2) the centered discrepancy:

µ(x) = −1
2
B2

({
x− 1

2

})
= −1

2

(∣∣∣∣x− 1
2

∣∣∣∣2 − ∣∣∣∣x− 1
2

∣∣∣∣+
1
6

)
, β−1 = 1, M =

13
12
,

(2.4) Dc(P)2 =
(

13
12

)d
− 2
n

n∑
k=1

d∏
j=1

(
1 +

1
2

∣∣∣∣zkj − 1
2

∣∣∣∣− 1
2

∣∣∣∣zkj − 1
2

∣∣∣∣2
)

+
1
n2

n∑
k,l=1

d∏
j=1

[
1 +

1
2

∣∣∣∣zkj − 1
2

∣∣∣∣+
1
2

∣∣∣∣zlj − 1
2

∣∣∣∣− 1
2
|zkj − zlj |

]
;

3) the star discrepancy:

µ(x) =
1
6
− x2

2
, β−1 = 1, M =

4
3
,

D∗(P)2 =
(

4
3

)d
− 2
n

n∑
k=1

d∏
j=1

(
3− z2

kj

2

)
+

1
n2

n∑
k,l=1

d∏
j=1

[2−max(zkj , zlj)].(2.5)

2.2. Asymptotic properties of the discrepancies. The null hypothesis for
testing the uniformity of random samples P = {z1, . . . , zn} ⊂ C̄d can be stated
as

H0 : z1, . . . , zn are uniformly distributed in C̄d.(2.6)

The alternative hypothesis H1 implies rejection of H0 in (2.6). A test for (2.6), that
is, a test of multivariate uniformity, can be performed by determining whether the
value of a test statistic is unlikely under the null hypothesis. If one wishes to use
one of the discrepancies described above as a test statistic, then its probability dis-
tribution under the null hypothesis must be calculated. Although, this distribution
is too complicated to describe for finite sample size, it can be characterized rather
simply in the limit of infinite sample size.

The main results on the asymptotic properties of the discrepancies are contained
in Theorems 2.1 and 2.3 below. Their proofs rely on the theory of U -type statistics
[Ser80, Chapter 5].

Theorem 2.1. Under the null hypothesis (2.6), the statistic [D(P)]2 given by (2.1)
has the asymptotic property

[D(P)]2 a.s.→ 0 (n→∞),(2.7)

for an arbitrary function µ(·) and an arbitrary constant β, where “a.s.→” means
“converges almost surely”.

Proof. For P = {z1, . . . , zn} with zk = (zk1, . . . , zkd)′ (k = 1, . . . , n), under the
null hypothesis (2.6), the random variables zkj (k = 1, . . . , n, j = 1, . . . , d) have a
uniform distribution U [0, 1]. Let

g1(zk) =
d∏
j=1

[M + β2µ(zkj)],(2.8)
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and
h(zk, zl)

=
d∏
j=1

(
M + β2

[
µ(zkj) + µ(zlj) +

1
2
B2(|zkj − zlj |) +B1(zkj)B1(zlj)

])(2.9)

for k, l = 1, . . . , n. Then the square discrepancy given by (2.1) can be written as

[D(P)]2 = Md − 2
n

n∑
k=1

g1(zk) +
1
n2

n∑
k,l=1

h(zk, zl)(2.10)

= Md − 2
n

n∑
k=1

g1(zk) +
1
n2

[
2

n∑
k<l

h(zk, zl) +
n∑
k=1

h(zk, zk)

]

= Md − 2
n

n∑
k=1

g1(zk) +
n− 1
n
· 2
n(n− 1)

n∑
k<l

h(zk, zl) +
1
n2

n∑
k=1

g2(zk),

where

g2(zk) =
d∏
j=1

(
M + β2

[
1
12

+ 2µ(zkj) +B1(zkj)2

])
.(2.11)

Note that both {g1(zk)}nk=1 and {g2(zk)}nk=1 are sequences of i.i.d. random vari-
ables. By the strong law of large numbers,

U1 =
1
n

n∑
k=1

g1(zk) a.s.→ E[g1(z1)] = Md,(2.12)

and 1
n

∑n
k=1 g2(zk) a.s.→ E[g2(z1)] <∞. It follows that

1
n2

n∑
k=1

g2(zk) a.s.→ 0.(2.13)

By the theory of the U -type statistics [Ser80, Chapter 5],

U2 =
2

n(n− 1)

n∑
k<l

h(zk, zl)(2.14)

is a second-order U -statistic. By the strong law of large numbers for general U -
statistics,

U2
a.s.→ E[h(z1, z2)] = Md (n→∞).

Therefore, by (2.10), as n→∞, [D(P)]2 a.s.→ Md − 2Md +Md = 0.

Corollary 2.2. Under the null hypothesis (2.6), it is true that

Ds(P)2 a.s.→ 0, Dc(P)2 a.s.→ 0, D∗(P)2 a.s.→ 0,

as n→∞, where Ds(P)2, Dc(P)2 and D∗(P)2 are given by (2.3)-(2.5), respectively.

The following theorem and corollaries consider pieces of the discrepancy defined
in (2.1). These pieces are then re-combined to give new statistics for testing mul-
tivariate normality.
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Theorem 2.3. Let U1 and U2 be given by (2.12) and (2.14), respectively. Then,
under the null hypothesis (2.6),

√
n

(
U1 −Md

U2 −Md

)
D→ N2(0,Σ) (n→∞),

where “D→” means “converges in distribution”, and Σ is a singular covariance ma-
trix:

Σ =
(

1 2
2 4

)
ζ1,(2.15)

where ζ1 = (M2 + β4c2)d −M2d and c2 =
∫ 1

0
µ(x)2 dx.

Proof. Since the random variable U1 given by (2.12) is a first-order U -statistic and
the random variable U2 given by (2.14) is a second-order U -statistic, by the central
limit theorem for U -statistics, we have

√
n(U1 − EU1)

/√
var
(√
nU1

) D→ N(0, 1),(2.16)

where EU1 = Md by the proof of Theorem 2.1. It is easy to calculate

var
(√
nU1

)
= (M2 + β4c2)d −M2d.

By Lemma A of [Ser80, p. 183], we obtain the variance of U2:

var(U2) =
4(n− 2)
n(n− 1)

ζ1 +
2

n(n− 1)
ζ2,(2.17)

where ζ1 is given by (2.15) and ζ2 = [M2 +β4(2c2 +1/90)]d−M2d. By the theorem
in [Ser80, p. 189], U2 can be written as

U2(n) = Û2(n) +Rn,(2.18)

where Û2(n) is a random variable that can be written as a sum of i.i.d. random
variables as follows:

Û2(n)− EU2(n) =
2
n

n∑
i=1

h1(zi),(2.19)

for some function h1(·) [Ser80, p. 188, equation (2)] and EU2(n) = Md. Formula
(2.19) can be written as

Û2(n) =
1
n

n∑
i=1

h2(zi),(2.20)

where h2(·) = 2h1(·) +Md. In (2.18), Rn is a residual term, Rn = op
(
n−1(log n)δ

)
(n → ∞), which implies that Rn tends to zeros in probability, where δ > 1/v
(v > 0) if E{h(z1, z2)}v <∞. h(·, ·) is defined by (2.9). Under the null hypothesis
(2.6), E{h(z1, z2)}v <∞ for any v > 0. Combining (2.18) and (2.20), we can write

U2 =
1
n

n∑
i=1

h2(zi) +Rn.
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Then

√
n

(
U1

U2

)
=
√
n

(
1
n

∑n
k=1 g1(zk)

1
n

∑n
k=1 h2(zk) +Rn

)
(2.21)

=
1√
n

n∑
k=1

(
g1(zk)
h2(zk)

)
+
(

0√
nRn

)
.

Under the null hypothesis (2.6), by the multivariate central limit theorem, we have

√
n

(
U1

U2

)
D→ 2-dimensional normal distribution

because of the independence of the zk (k = 1, . . . , n) and the fact that(
0√
nRn

)
P→ 0 (n→∞),

where “ P→” means “converges in probability”. It is easy to obtain the covariance
between

√
nU1 and

√
nU2:

cov(
√
nU1,

√
nU2) = 2[(M2 + β4c2)d −M2d] = 2ζ1,

where ζ1 is the same as in (2.15). Then we have

√
n

(
U1 −Md

U2 −Md

)
D→ N2(0,Σ),

with Σ given by (2.15). This completes the proof.

Theorem 2.3 implies that the asymptotic distribution of (
√
nU1,

√
nU2) is a sin-

gular (degenerate) normal distribution. This property results in the following corol-
lary, which shows why the discrepancy itself is not necessarily a suitable goodness-
of-fit statistic.

Corollary 2.4. Under the null hypothesis (2.6), the generalized L2-type discrep-
ancy [D(P)]2 given by (2.1) has a further asymptotic property:

√
n[D(P)]2 P→ 0 (n→∞).

Proof. By the proof of Theorem 2.1, [D(P)]2 can be written as

[D(P)]2 = Md − 2U1 +
n− 1
n

U2 +
1
n2

n∑
k=1

g2(zk),

where g2(·) is given by (2.11). By (2.13) and (2.14), we can write

1
n2

n∑
k=1

g2(zk) = Op

(
1
n

)
,

where the notation “f(n) = Op( 1
n )” means nf(n) P→ a constant. Then we have

√
n[D(P)]2 = −2

√
n(U1 −Md) +

√
n(U2 −Md)− 1√

n
U2 +Op

(
1√
n

)
.(2.22)
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Since U2
a.s.→ Md < ∞ (n → ∞) by Theorem 2.1, we have (1/

√
n)U2 = Op(1/

√
n).

Then we can write (2.22) as

√
n[D(P)]2 = −2

√
n(U1 −Md) +

√
n(U2 −Md) +Op

(
1√
n

)
(2.23)

=
√
n(−2, 1)

(
U1 −Md

U2 −Md

)
+Op

(
1√
n

)
.

By Theorem 2.3, we obtain
√
n[D(P)]2 D→ N(0,a′Σa),

where a′ = (−2, 1) and Σ is given by (2.15). It turns out that a′Σa = 0. Therefore,
√
n[D(P)]2 D→ 0. This implies

√
n[D(P)]2 P→ 0.

A better goodness-of-fit statistic than the discrepancy can be obtained by a linear
combination of U1 and U2 that is not a degenerate normal distribution. This is the
idea behind the statistic An defined below.

Corollary 2.5. Under the null hypothesis (2.6), the statistic

An =
√
n[(U1 −Md) + 2(U2 −Md)]/(5

√
ζ1) D→ N(0, 1) (n→∞),(2.24)

where U1 and U2 are defined by (2.12) and (2.14), respectively, and ζ1 is given by
(2.15).

Proof. It was noted in the proof of Corollary 2.4 that a′ = (−2, 1) is an eigenvector
associated with the zero-eigenvalue of Σ given by (2.15). On the other hand, b =
(1, 2)′ (a′b = 0) is an eigenvector associated with the eigenvalue 5ζ1 of Σ. By
Theorem 2.3, E(An) = 0 and the variance

var(An) = b′Σnb/(25ζ1)→ b′Σb/(25ζ1) = 1 (n→∞)

under the null hypothesis (2.6), where Σn is the covariance matrix of (
√
nU1,

√
nU2),

which turns out to be

Σn =
(
ζ1 2ζ1
2ζ1

4(n−2)
n−1 ζ1 + 2

n−1ζ2

)
,(2.25)

and ζ2 is the same as in (2.17). Assertion (2.24) holds as a result of Theorem
2.3.

The statistic An can be employed for testing hypothesis (2.6). Larger values
of |An| imply rejection for the null hypothesis (2.6). It can be verified that Σn
given by (2.25) tends to singularity very slowly. For example, under the symmetric
discrepancy, when n = 1000, the condition number of Σn = 1467 (d = 2), 1196
(d = 5) and 841 (d = 10). Therefore, for finite sample size n (e.g., n ≤ 1000),
we recommend using the normal distribution N2(0,Σn) as the approximate joint
distribution of (

√
nU1,

√
nU2). Based on this idea, we propose the following χ2-type

statistic for testing the null hypothesis (2.6):

Tn = n[(U1 −Md), (U2 −Md)]Σ−1
n [(U1 −Md), (U2 −Md)]′.(2.26)

The approximate null distribution of Tn can be taken as the chi-squared distribution
χ2(2). Larger values of Tn imply rejection for the null hypothesis (2.6). The
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convergence rate of
√
n[D(P)]2 P→ 0 in Corollary 2.4 is also very slow. For example,

for the symmetric discrepancy, we can write

√
nDs(P)2 =

(
−2,

2d(n− 1)
n

)
[
√
n(U1 − EU1),

√
n(U2 − EU2)]′ +Rn.(2.27)

The residual term Rn = [2d − (4
3 )d]/

√
n in (2.27) tends to zero very slowly. When

n = 10, 000, Rn = 0.0222 (d = 2), 0.2779 (d = 5) and 10.0624 (d = 10).
For the three special cases of the generalized L2-type discrepancy, we can easily

obtain the parameters needed to define the statistics An and Tn in (2.24) and (2.26):

1) the symmetric discrepancy:

U1 =
1
n

n∑
k=1

d∏
j=1

(1 + 2zkj − 2z2
kj),

U2 =
2d+1

n(n− 1)

n∑
k<l

d∏
j=1

(1 − |zkj − zlj|),

M = 4/3, ζ1 = (9/5)d − (6/9)d and ζ2 = 2d − (16/9)d;
2) the centered discrepancy:

U1 =
1
n

n∑
k=1

d∏
j=1

(1 +
1
2
|zkj −

1
2
| − 1

2
|zkj −

1
2
|2),

U2 =
2

n(n− 1)

n∑
k<l

d∏
j=1

[
1 +

1
2
|zkj −

1
2
|+ 1

2
|zlj −

1
2
| − 1

2
|zkj − zlj |)

]
,

M = 13/12, ζ1 = (47/40)d − (13/12)2d and ζ2 = (57/48)d − (13/12)2d;
3) the star discrepancy:

U1 =
1
n

n∑
k=1

d∏
j=1

(
3− zkj

2

)
,

U2 =
2

n(n− 1)

n∑
k<l

d∏
j=1

[2−max(zkj , zlj)],

M = 4/3, ζ1 = (9/5)d − (16/9)d and ζ2 = (11/6)d − (16/9)d.

3. Monte Carlo study and applications

The exact finite-sample distributions of the statistics An (given by (2.24)) and Tn
(given by (2.26)) under the null hypothesis (2.6) are not readily obtained. However,
the effectiveness of the approximation of their finite-sample distributions by their
asymptotic distributions can be studied by Monte Carlo simulation. The approxi-
mation of the distribution of Tn by χ2(2) is influenced not only by the convergence
of U1 and U2 but by the convergence of Σn as well, while the convergence of An to
normal N(0, 1) is influenced only by the convergence of U1 and U2. Therefore, it
is expected that the approximation of the distribution of An by N(0, 1) is better
than that of Tn by χ2(2).
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3.1. Numerical comparisons between the finite-sample distributions of
An and N(0, 1), and Tn and χ2(2). In the simulation, for each sample size n
(n = 25, 50, 100, 200), we generate 10,000 uniform samples Z = (z1, . . . , zn)′.
The elements of Z are i.i.d. U(0, 1)-variates. Then we obtain 10,000 values of An
and Tn under the three (symmetric, centered and star) discrepancies, respectively.
These values are sorted and the ordered samples of An and Tn are obtained. The
empirical quantiles of An and Tn, respectively, are calculated from 10,000 order
statistics of An and Tn. Tables 1, 2, and 3 list the numerical comparisons between
some selected 100(1− α)-percentiles (α = 1%, 5% and 10%) of An and Tn and the
100(1−α)-percentiles of N(0, 1) and χ2(2). Since a test using An is two-sided, and
a test using Tn is one-sided, we list the upper (U) and lower (L) percentiles of both
An and N(0, 1), and only the upper percentiles of both Tn and χ2(2).

The closer the percentiles of An and the percentiles of N(0, 1) are, the better
approximation we obtain by using N(0, 1) as the approximate finite-sample distri-
bution of An. The same is true for the numerical comparison between the statistic
Tn and χ2(2). Several empirical conclusions can be summarized from the numerical
results in Tables 1–3:

a) the standard normal N(0, 1) approximates the finite-sample distribution of
An better than the χ2(2) approximates the finite-sample distribution of Tn;

b) the approximation of the finite-sample distribution of An by N(0, 1), and the
approximation of the finite-sample distribution of Tn by χ2(2), appear to be
the best for the symmetric discrepancy;

c) the approximation of the percentiles of the finite-sample distribution of An
and the approximation of the percentiles of the finite-sample distribution of
Tn for α = 5% and α = 10% are much better than for α = 1%; and

d) the approximation for the case n = 25 is almost as good as those cases for
n = 200.

3.2. Type I error rates. Based on the numerical comparisons shown in Tables
1–3, we perform a simulation of the empirical type I error rates of the two statistics
An and Tn under the three discrepancies. For convenience, we choose the null dis-
tribution of the random vectors zi to be composed of i.i.d. U(0, 1) marginals. In the
simulation, we generate 2,000 sets of {z1, . . . , zn} for each n with the components
of zi consisting of i.i.d. U(0, 1) variates. Tables 4, 5, and 6 summarize the simula-
tion results on the type I error rates of An and Tn under the three discrepancies,
where the percentiles of An are chosen as those of N(0, 1) and the percentiles of
Tn as those of χ2(2). It shows that for α = 5% and α = 10%, the type I error
rates are better controlled for the statistics An and Tn, while the type I error rates
for α = 1% tend to be large by using the percentiles of N(0, 1) for An and the
percentiles of χ2(2) for Tn in most cases.

3.3. Power study. Now we turn to study the power of An and Tn in testing hy-
pothesis (2.6). The alternative distributions are chosen to be meta-type uniform
distributions. The theoretical background of some meta-type multivariate distri-
butions is given in [KS91] and [FFK97]. The idea for constructing the alternative
distributions is as follows. Let the random vector x = (X1, . . . , Xd) have a d.f.
F (x) (x ∈ Rd). Denote by Fi(xi) the marginal d.f. of Xi (i = 1, . . . , d), which is
assumed to be continuous. Define the random vector u = (U1, . . . , Ud) by

Ui = Fi(Xi), i = 1, . . . , d.(3.1)
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Table 1. Comparisons between the empirical percentiles of An,
Tn and the percentiles of N(0, 1) and χ2(2) for the symmetric dis-
crepancy (U=upper, L=lower)

An Tn
α 1% 5% 10% α 1% 5% 10%

N(0, 1) (U) 2.5758 1.9600 1.6449 χ2(2) (U) 9.2103 5.9915 4.6052
(L) -2.5758 -1.9600 -1.6449

d = 2
n = 25(U) 2.9759 2.1836 1.7969 n = 25 13.7011 6.7329 4.3474

(L) -2.6414 -1.9566 -1.6775

50(U) 2.6455 2.0585 1.7237 50 13.5989 6.3139 4.3748
(L) -2.4507 -1.9969 -1.6847

100(U) 2.6058 2.0078 1.6935 100 15.2375 6.2400 4.3013
(L) -2.4772 -1.9102 -1.6327

200(U) 2.5923 1.9897 1.6601 200 15.2146 6.7055 4.3251
(L) -2.6379 -1.9279 -1.6301

d = 5
n = 25(U) 2.9520 2.1698 1.8390 n = 25 10.6401 6.0031 4.2624

(L) -2.4989 -1.9750 -1.7051

50(U) 2.7856 2.0814 1.7396 50 11.4226 6.1015 4.4108
(L) -2.3915 -1.9143 -1.6484

100(U) 2.6219 2.0271 1.6849 100 11.4069 6.0066 4.2354
(L) -2.5679 -1.9372 -1.6497

200(U) 2.6534 2.0671 1.7026 200 12.7450 6.0279 4.4207
(L) -2.5295 -1.9199 -1.6241

d = 10
n = 25(U) 3.2566 2.3549 1.9631 n = 25 11.1983 6.3805 4.6083

(L) -2.4658 -1.9266 -1.6559

50(U) 2.9148 2.0965 1.7282 50 10.6401 5.7312 4.2321
(L) -2.5183 -1.8729 -1.5886

100(U) 2.7635 2.0861 1.7492 100 10.0934 5.7531 4.3382
(L) -2.4521 -1.8981 -1.6210

200(U) 2.8986 2.0855 1.6790 200 10.7926 6.3940 4.6259
(L) -2.5858 -1.9743 -1.6473
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Table 2. Comparisons between the empirical percentiles of An,
Tn and the percentiles of N(0, 1) and χ2(2) for the centered dis-
crepancy (U=upper, L=lower)

An Tn
α 1% 5% 10% α 1% 5% 10%

N(0, 1) (U) 2.5758 1.9600 1.6449 χ2(2) (U) 9.2103 5.9915 4.6052
(L) -2.5758 -1.9600 -1.6449

d = 2
n = 25(U) 3.0050 2.1787 1.8135 n = 25 14.7350 6.6225 4.4123

(L) -2.5991 -1.9844 -1.6711

50(U) 2.8674 2.1098 1.8002 50 13.2973 6.4543 4.4933
(L) -2.4697 -1.9843 -1.6570

100(U) 2.7243 2.0026 1.6594 100 15.1737 6.4344 4.2733
(L) -2.4646 -1.9056 -1.6336

200(U) 2.6659 2.0101 1.6705 200 15.9685 6.5391 4.4612
(L) -2.4212 -1.9303 -1.6483

d = 5
n = 25(U) 2.9690 2.1944 1.8036 n = 25 12.0965 6.2195 4.2602

(L) -2.6154 -1.9494 -1.6214

50(U) 2.7896 2.0864 1.7549 50 12.3615 6.3261 4.3271
(L) -2.5491 -1.9160 -1.6482

100(U) 2.7273 2.0579 1.6885 100 12.0372 6.1285 4.3838
(L) -2.4673 -1.9303 -1.6325

200(U) 2.6119 1.9727 1.6686 200 14.1589 6.3164 4.3577
(L) -2.4947 -1.9312 -1.6596

d = 10
n = 25(U) 3.0643 2.1765 1.7999 n = 25 11.8336 6.2523 4.4722

(L) -2.5317 -1.9699 -1.7057

50(U) 2.7659 2.0547 1.7327 50 10.3546 5.8925 4.4789
(L) -2.4328 -1.9181 -1.6338

100(U) 2.7047 1.9789 1.6812 100 10.6855 5.9538 4.3766
(L) -2.5490 -1.9115 -1.6321

200(U) 2.6627 2.0203 1.7219 200 11.4535 6.3443 4.4515
(L) -2.6466 -1.9017 -1.5883
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Table 3. Comparisons between the empirical percentiles of An,
Tn and the percentiles of N(0, 1) and χ2(2) for the star discrepancy
(U=upper, L=lower)

An Tn
α 1% 5% 10% α 1% 5% 10%

N(0, 1) (U) 2.5758 1.9600 1.6449 χ2(2) (U) 9.2103 5.9915 4.6052
(L) -2.5758 -1.9600 -1.6449

d = 2
n = 25(U) 2.7798 2.1064 1.7502 n = 25 18.1738 7.4153 4.2674

(L) -2.4210 -1.8260 -1.5894

50(U) 2.6203 2.0494 1.7041 50 17.7953 7.3728 4.3048
(L) -2.4262 -1.8957 -1.6033

100(U) 2.7023 2.0041 1.6674 100 20.2587 7.0995 4.2731
(L) -2.5098 -1.9783 -1.6809

200(U) 2.7373 2.0500 1.7079 200 21.0088 7.6134 4.3452
(L) -2.5060 -1.9245 -1.6407

d = 5
n = 25(U) 2.9385 2.0791 1.7058 n = 25 14.3399 6.3745 4.0116

(L) -2.2055 -1.7930 -1.5380

50(U) 2.8831 2.0920 1.7123 50 16.6810 6.7896 4.1579
(L) -2.4423 -1.8550 -1.5617

100(U) 2.7979 2.1148 1.7166 100 14.6865 6.7067 4.1141
(L) -2.3267 -1.8339 -1.6227

200(U) 2.8597 2.0473 1.6776 200 18.5595 6.6619 4.1685
(L) -2.4238 -1.8852 -1.5846

d = 10
n = 25(U) 2.9127 2.1215 1.7109 n = 25 14.8453 6.4506 4.1141

(L) -2.1692 -1.8174 -1.5444

50(U) 2.9363 2.1483 1.7379 50 15.4874 6.7275 4.1528
(L) -2.3410 -1.8569 -1.5453

100(U) 2.7731 2.0901 1.7077 100 15.2233 6.4890 4.0312
(L) -2.4133 -1.8551 -1.5742

200(U) 2.8309 2.0886 1.6720 200 16.2075 6.8058 4.1076
(L) -2.4539 -1.8862 -1.5914
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Table 4. Empirical type I error rates of An and Tn under the
symmetric discrepancy

An Tn
α 1% 5% 10% 1% 5% 10%

d = 2
n = 25 0.0165 0.0660 0.1265 0.0245 0.0550 0.0905

50 0.0130 0.0575 0.1095 0.0265 0.0615 0.0915
100 0.0150 0.0615 0.1120 0.0255 0.0595 0.0860
200 0.0095 0.0585 0.1010 0.0270 0.0580 0.0920

d = 5
n = 25 0.0160 0.0695 0.1315 0.0195 0.0525 0.1035

50 0.0140 0.0605 0.1095 0.0205 0.0545 0.0970
100 0.0150 0.0525 0.1060 0.0190 0.0515 0.0815
200 0.0125 0.0540 0.0925 0.0175 0.0535 0.0930

d = 10
n = 25 0.0235 0.0650 0.1245 0.0240 0.0620 0.1005

50 0.0105 0.0550 0.1095 0.0105 0.0435 0.0860
100 0.0145 0.0595 0.1145 0.0155 0.0550 0.1010
200 0.0075 0.0410 0.0835 0.0135 0.0420 0.0825

Table 5. Empirical type I error rates of An and Tn under the
centered discrepancy

An Tn
α 1% 5% 10% 1% 5% 10%

d = 2
n = 25 0.0180 0.0655 0.1240 0.0275 0.0610 0.0950

50 0.0120 0.0565 0.1020 0.0270 0.0640 0.0940
100 0.0170 0.0640 0.1210 0.0260 0.0595 0.0950
200 0.0090 0.0495 0.0955 0.0280 0.0525 0.0890

d = 5
n = 25 0.0135 0.0665 0.1195 0.0200 0.0575 0.0915

50 0.0135 0.0625 0.1235 0.0210 0.0570 0.0960
100 0.0095 0.0530 0.1070 0.0185 0.0515 0.0895
200 0.0130 0.0475 0.1050 0.0145 0.0575 0.0910

d = 10
n = 25 0.0150 0.0690 0.1325 0.0230 0.0650 0.1095

50 0.0100 0.0460 0.1045 0.0125 0.0410 0.0835
100 0.0105 0.0495 0.1125 0.0145 0.0555 0.1045
200 0.0100 0.0455 0.0970 0.0170 0.0500 0.0850

It is obvious that each Ui in (3.1) has a uniform distribution U(0, 1), but the
joint distribution of u = (U1, . . . , Ud) may be quite different from the uniform
distribution in C̄d. If the joint d.f. F (x) of x = (X1, . . . , Xd) possesses a density
function f(x) = f(x1, . . . , xd), where fi(xi) denotes the marginal density function
of Xi, then the joint density function of u = (U1, . . . , Ud) can be obtained by a
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Table 6. Empirical type I error rates of An and Tn under the star discrepancy

An Tn
α 1% 5% 10% 1% 5% 10%

d = 2
n = 25 0.0105 0.0470 0.0955 0.0325 0.0630 0.0845

50 0.0105 0.0450 0.0895 0.0385 0.0610 0.0860
100 0.0075 0.0465 0.0930 0.0300 0.0550 0.0800
200 0.0100 0.0510 0.1030 0.0360 0.0630 0.0920

d = 5
n = 25 0.0100 0.0560 0.1165 0.0260 0.0665 0.0975

50 0.0050 0.0530 0.0980 0.0255 0.0665 0.0920
100 0.0105 0.0575 0.1090 0.0325 0.0675 0.0940
200 0.0120 0.0555 0.0985 0.0290 0.0585 0.0835

d = 10
n = 25 0.0115 0.0460 0.0940 0.0245 0.0630 0.0890

50 0.0200 0.0525 0.1060 0.0275 0.0605 0.0890
100 0.0120 0.0525 0.0895 0.0265 0.0550 0.0810
200 0.0110 0.0470 0.0945 0.0300 0.0545 0.0780

direct calculation:

p(u1, . . . , ud) = f(F−1
1 (u1), . . . , F−1

d (ud))
/ d∏
i=1

fi(F−1
i (ui)),(3.2)

where (u1, . . . , ud) ∈ C̄d and F−1
i (·) denotes the inverse function of Fi(·). It

is clear that the complexity of (3.2) is determined by the joint distribution of
x = (X1, . . . , Xd) in (3.1). In particular, if the random variables Xi in (3.1) are
independent, then the Ui’s given by (3.1) will be i.i.d. U(0, 1) variates. In this case,
the random vector u = (U1, . . . , Ud) is uniformly distributed in C̄d. This can be
seen from (3.2).

In the simulation, we choose the random vector x = (X1, . . . , Xd) in (3.1) to have
a joint distribution belonging to the subclasses of elliptical distributions [FKN90,
Chapter 3], where the parameters µ and Σ are chosen as µ = 0 and Σ = (σij),
where σii = 1 and σij = σji = ρ = 0.5 for 1 ≤ i 6= j ≤ d. Except the normal
distribution Nd(µ,Σ), we give general expressions for the density functions of the
selected subclasses of elliptical distributions below:

1) the multivariate t-distribution x ∼Mtd(m,µ,Σ), with density function given
by

C|Σ|−1/2
(
1 +m−1(x − µ)′Σ−1(x− µ)

)−(d+m)/2
, m > 0, x ∈ Rd,

where C is a normalizing constant (the following C’s have a similar meaning,
but their values may be different);

2) the Kotz type distribution, with density function given by

C|Σ|−1/2
[
(x− µ)′Σ−1(x− µ)

]N−1
exp

{
−r[(x − µ)′Σ−1(x− µ)]s

}
,

r, s > 0, 2N + d > 2, x ∈ Rd;
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3) the Pearson type VII distribution, with density function given by

C|Σ|−1/2
(
1 +m−1(x− µ)′Σ−1(x− µ)

)−N
, N > d/2, m > 0, x ∈ Rd;

4) the Pearson type II distribution, with density function given by

C|Σ|−1/2
(
1− (x− µ)′Σ−1(x− µ)

)m
, m > −1, (x− µ)′Σ−1(x− µ) < 1;

5) the multivariate Cauchy distribution MCd(µ,Σ), with density function given
by

Γ((d + 1)/2)
π(d+1)/2

(
1 + (x − µ)′Σ−1(x− µ)

)−(d+1)/2
, x ∈ Rd.

When the random vector x = (X1, . . . , Xd)′ is generated by one of the elliptical
distributions above, then the random vector u = (U1, . . . , Ud)′ given by (3.1) is
considered to have a meta-type uniform distribution denoted as follows:

0) u ∼MNU when x ∼ Nd(0,Σ);
1) u ∼MTU when x has a multivariate t-distribution with m = 5;
2) u ∼ MKU when x has a Kotz type distribution with N = 2, r = 1 and

s = 0.5;
3) u ∼MPV IIU when x has a Pearson type VII distribution with N = 10 and

m = 2;
4) u ∼MPIIU when x has a Pearson type II distribution with m = 3/2;
5) u ∼MCU when x has a Cauchy distribution.

The power of the multivariate test for uniformity is the probability that the sta-
tistical test correctly identifies a sample coming from one of the above distributions
as being non-uniform. Table 7 summarizes the simulation results on the power of
An and Tn, where the simulation is done with 2,000 replications, the critical points
of both An and Tn are chosen as those of N(0, 1) and χ2(2), respectively, and the
empirical samples from the elliptical distributions are generated by the TFWW al-
gorithm [Tas77] and [FW94, pp. 160-170]. It shows that the two statistics An and
Tn under the three discrepancies are powerful for testing uniformity in C̄d in most
cases. The χ2-type statistic Tn seems to be more powerful than the normal-type
statistic An. For both An and Tn, they seem to be more powerful in the higher
dimensional case (d = 10) than in the lower dimensional case (d = 5). It is also
noticed that the two statistics An and Tn under the symmetric discrepancy seem
to be more powerful than under the centered discrepancy and the star discrepancy
in most cases.

A power comparison between the two statistics An, Tn and some existing statis-
tics, such as the Kolmogorov-Smirnov type statistic (1.1), seems to be infeasible in
high dimensions because of computational difficulties. Thus, we have not performed
such comparisons.

3.4. Applications. By using the Rosenblatt transformation [Ros52], we can trans-
fer a test for the simple hypothesis

H0 : x1, . . . ,xn have a known d.f. F (x),(3.3)
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Table 7. Empirical power of An and Tn for testing multi-
dimensional uniformity against the meta-type uniform distribu-
tions (α = 5%)

discrepancy n MNU MTU MKU MPVIIU MPIIU MCU

d = 5

An symmetric 25 0.3815 0.5070 0.9280 0.0680 1.0000 0.6690
50 0.6720 0.7400 0.9970 0.0695 1.0000 0.8720

100 0.9480 0.9470 0.9235 0.0865 1.0000 0.9765

centered 25 0.2170 0.2515 0.8570 0.5195 1.0000 0.3325
50 0.2470 0.2845 0.9710 0.6980 1.0000 0.3825

100 0.3195 0.3705 0.9215 0.8895 1.0000 0.4515

star 25 0.3675 0.3585 0.4300 0.3600 1.0000 0.3450
50 0.4565 0.4590 0.5870 0.4000 1.0000 0.4380

100 0.6430 0.6220 0.7300 0.5275 1.0000 0.6185

Tn symmetric 25 0.7305 0.7845 0.9775 0.7315 1.0000 0.8175
50 0.9965 0.9950 1.0000 0.9835 1.0000 0.9955

100 1.0000 1.0000 0.9235 1.0000 1.0000 1.0000

centered 25 0.2945 0.3165 0.9590 0.5055 1.0000 0.3695
50 0.6700 0.6425 1.0000 0.8195 1.0000 0.6680

100 0.9945 0.9965 0.9230 0.9960 1.0000 0.9830

star 25 0.3945 0.3810 0.5265 0.4270 1.0000 0.3775
50 0.6095 0.6035 0.8660 0.6765 1.0000 0.5675

100 0.9125 0.8960 0.9230 0.9485 1.0000 0.8820

d = 10

An symmetric 25 0.9910 0.9830 0.9435 0.1960 1.0000 0.9940
50 1.0000 0.9995 0.9980 0.1860 1.0000 1.0000

100 1.0000 1.0000 1.0000 0.2075 1.0000 1.0000

centered 25 0.5215 0.5650 0.5105 0.9915 1.0000 0.6555
50 0.6965 0.7170 0.5440 1.0000 1.0000 0.7880

100 0.8605 0.8745 0.5290 1.0000 1.0000 0.9205

star 25 0.7770 0.7895 0.7790 0.7170 1.0000 0.7670
50 0.9265 0.9265 0.9125 0.8805 1.0000 0.9095

100 0.9965 0.9930 0.9925 0.9770 1.0000 0.9860

Tn symmetric 25 0.9980 0.9975 0.9940 0.9885 1.0000 0.9975
50 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

100 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

centered 25 0.8915 0.8780 0.9990 0.9890 1.0000 0.8675
50 1.0000 0.9985 1.0000 1.0000 1.0000 0.9960

100 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

star 25 0.8250 0.8320 0.8520 0.9015 1.0000 0.8120
50 0.9820 0.9790 0.9930 0.9985 1.0000 0.9720

100 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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to a test for the uniformity of random points in C̄d, and then apply the two statistics
An and Tn to test for uniformity of the transformed variates in C̄d. Denote by

F1(x1) = the marginal d.f. of X1,(3.4)

F2|1(x2|x1) = the conditional d.f. of X2 given X1 = x1,
...

...

Fk+1|(1,...,k)(xk+1|x1, . . . , xk) = the conditional d.f. of Xk+1

given (X1, . . . , Xk) = (x1, . . . , xk),

where k = 1, . . . , d−1. Perform the following series of Rosenblatt transformations
on each observation xi = (xi1, . . . , xid) (i = 1, . . . , n):

Ui1 = F1(xi1)(3.5)

Ui2 = F2|1(xi2|xi1)
...

...

Ui,k+1 = Fk+1|(1,...,k)(xi,k+1|(xi1, . . . , xik)),

where i = 1, . . . , n and k = 1, . . . , d − 1. If the null hypothesis (3.3) is true, the
random vectors ui = (Ui1, . . . , Uid) (i = 1, . . . , n) are i.i.d. and the components of
ui have a uniform distribution U [0, 1].

The more frequent cases in applications are those hypotheses which involve un-
known parameters in the null distributions. Justel, Peña and Zamar [JPZ97] pro-
posed a multivariate version of the Kolmogorov-Smirnov type statistic (1.1) for
testing the simple hypothesis (3.3). Their statistics are difficult to compute for
large dimensions (d ≥ 3) and always require estimating unknown parameters in the
null distribution. The two statistics An and Tn developed in this paper are easy
to compute in arbitrary dimension, and estimation of unknown parameters can be
avoided when the null distribution belongs to the class of the multivariate normal
distributions, the spherically symmetric distributions, the l1-norm symmetric dis-
tributions [FKN90, Chapter 5], the lp-norm symmetric distributions [YM95], or the
Lp-norm spherical distributions [GS97].
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