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EXPLICIT PRIMALITY CRITERIA FOR (p− 1) pn − 1

ANDREAS STEIN AND H. C. WILLIAMS

Abstract. Deterministic polynomial time primality criteria for 2n − 1 have
been known since the work of Lucas in 1876–1878. Little is known, however,
about the existence of deterministic polynomial time primality tests for num-
bers of the more general form Nn = (p − 1) pn − 1, where p is any fixed
prime. When n > (p − 1)/2 we show that it is always possible to produce a
Lucas-like deterministic test for the primality of Nn which requires that only
O(q (p + log q) + p3 + logNn) modular multiplications be performed modulo
Nn, as long as we can find a prime q of the form 1 + k p such that N k

n − 1
is not divisible by q. We also show that for all p with 3 < p < 107 such a q
can be found very readily, and that the most difficult case in which to find a
q appears, somewhat surprisingly, to be that for p = 3. Some explanation is
provided as to why this case is so difficult.

1. Introduction

Let n (> 1) be an odd integer and put Mn = 2n−1. In 1876 Lucas (see Williams
[10, chapter 3] for a discussion and references) produced a test that is sufficient
for proving the primality of Mn whenever n ≡ 3 (mod 4). Later he provided
another sufficient test in the case of n ≡ 1 (mod 4); this latter test has now become
well known as the Lucas-Lehmer test for the primality of the Mersenne numbers
Mn. Although this might have been known to Lucas (see [10, pp. 109–110]), it
was Lehmer [3] who showed that the test was also necessary for the primality of
Mn and that it holds for any odd n. Simply put, it states that Mn is a prime
if and only if Mn|Sn−2, where S0 = 4 and Sn−2 (mod Mn) can be computed
recursively by Sk+1 ≡ S 2

k − 2 (mod Mn) (k = 0, 1, 2, . . . , n − 3). Because of the
historical significance of the Mersenne numbers, the simplicity of this test and
its consequent ease of implementation, it has been used to find almost all of the
largest known primes within the last century. Indeed the recent (1997) discovery
of the current largest known prime M3021377 by Clarkson, Woltman and over 2000
other researchers was achieved through the use of Woltman’s implementation of the
Lucas-Lehmer test.

It is less well known that Lucas [4] also produced a sufficiency test for the pri-
mality of 2 ·3n−1 whenever 4 - n. Much later Williams ([6], Theorem 4, Corollary)
produced a necessary and sufficient test for the primality ofNn = 2·3n−1 whenever
6 - n. There is also (Williams [5]) a necessary and sufficient test for the primality
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of Nn = 4 · 5n − 1 for any positive integral value of n, of Nn = 6 · 7n − 1 (Williams
[7]) for any n 6≡ 1 (mod 7) and of Nn = 10 · 11n − 1 (Williams [7]) for any n 6≡ 17
(mod 22). Each of these tests, like the Lucas-Lehmer test, executes in O(logNn)
modular multiplications modulo Nn. Furthermore, they are all of Lucas-Lehmer
type, which is to say that they have the following three properties (cf. Williams
[8]):

i) The test is restricted to values of N given by some polynomial in an, where a is
some fixed integer and the exponent n often belongs to some fixed congruence
class and exceeds a certain bound.

ii) A sequence {Si : i ≥ 0} is employed where S0 can be computed by a determin-
istic algorithm that executes in O(logN) modular multiplications (mod N).
Also Si+1 is defined (mod N) for i ≥ 0 by Si+1 = f(Si), where f is a fixed
polynomial in Z[x].

iii) N is a prime if and only if h(Sm1 , Sm2 , . . . , Smk) ≡ 0 (mod N), where the val-
ues of the mi (i = 1, 2, . . . , k) depend on n, and h is some fixed polynomial in
Z[x1, x2, . . . , xk] which can be evaluated in O(logN) modular multiplications
(mod N).

The above results suggest the possible existence of Lucas-Lehmer type tests for
Nn = (p− 1) pn − 1, where p is any fixed prime. In this paper we will show that a
necessary and sufficient Lucas-Lehmer type test for the primality of Nn exists for
any prime p such that 3 < p < 107 and any n > (p − 1)/2. Also, this test will
execute in O(logNn) modular multiplications modulo Nn. We emphasize, however,
that the practical use of these tests is limited.

2. The Lucas functions

All of the tests mentioned above were derived through the use of the Lucas
functions. If we let P,Q denote two coprime integers and α, β the zeros of x2 −
Px+Q, then the Lucas functions Un(P,Q) and Vn(P,Q) (n ∈ Z) are defined by

Un(P,Q) = (αn − βn)/(α− β), Vn(P,Q) = αn + βn .

We also define the discriminant ∆ = (α− β)2 = P 2 − 4Q. If there is no ambiguity
concerning the values of the arguments P,Q, they are often omitted and the symbols
Un and Vn are used to represent the Lucas functions. Note that both Un and Vn
satisfy the simple linear recurrence

Xk+1 = PXk −QXk−1 (k ∈ Z) .

When working with the Lucas functions modulo a positive integer N such that
gcd(N,Q) = 1, it is often convenient to define

Wn = Wn(P,Q) ≡ V2n(P,Q)Q−n (mod N) (n ∈ Z) .

By results in Williams [9], [10, §4.4], we can compute Wn modulo N in O(log n)
modular multiplications and additions (mod N). From this definition and the
definition of Un, Vn it is easy to show that W0 = 2, W1 ≡ P 2Q−1− 2, and Wn+1 ≡
W1Wn −Wn−1 (mod N). Furthermore, we have

W2n ≡W 2
n − 2 (mod N) ,(2.1)

W 2
n −∆(Q−nU2n)2 ≡ 4 (mod N) .(2.2)



EXPLICIT PRIMALITY CRITERIA FOR (p− 1) pn − 1 1723

If we define the polynomial Gn(x) by G−1(x) = −1, G0(x) = 1, Gm+1(x) =
xGm(x) −Gm−1(x) (m ∈ Z), then

xnGn(x+ x−1) = (x2n+1 − 1)/(x− 1) .

Putting S0(x) = 0, S1(x) = 1, C0(x) = 2, C1(x) = x with both Sn(x) and Cn(x)
satisfying the linear recurrence

Xm+1 = xXm −Xm−1 ,

it is easy to see that

Sn(x+ x−1) = (xn − x−n)/(x− x−1), Cn(x+ x−1) = xn + x−n .

Also, since Gn(x) = Sn+1(x) + Sn(x), we have

Gn(x) +Gn−1(x) = (x+ 2)Sn(x) ,

Gn(x)−Gn−1(x) = Cn(x) .

From these last two results and the easily verified identities C2n(x) = Cn(x)2 − 2,
S2n(x) = Sn(x)Cn(x), we can deduce that

G2n−1(x) = Gn(x)Gn−1(x)−Gn−1(x)2 + 1 ,

G2n(x) = Gn(x)2 −Gn(x)Gn−1(x)− 1 .

Thus, modulo N , one can use the same ideas as those employed in Williams [9,
p.387] to compute Gn(x) (mod N) in only O(log n) modular multiplications and
additions modulo N . The importance of the polynomial Gn(x) in our work derives
from the following congruences (see [9]):

U(2s+1)n ≡ QnsUnGs(Wn) (mod N) ,(2.3)

V(2s+1)n ≡ (−1)sQnsVnGs(−Wn) (mod N) .(2.4)

Also, from (2.4), (2.1) and the definition of Wn we get

W(2s+1)n ≡ (−1)sWnGs(2−W 2
n) (mod N) .(2.5)

We now consider the following result, given as Corollary 11.3.3 of [10].

Theorem 2.1. Let p be an odd prime, s = (p − 1)/2 and N an odd integer such
that p - N . If for some integers P,Q we have gcd(Q,N) = 1 and

Gs (Wm(P,Q)) ≡ 0 (mod N) ,(2.6)

then if r is any prime divisor of N and pk ‖ pm, we must have r2 ≡ 1 (mod pk).

Thus, in the case that (2.6) holds, we can greatly restrict the possible prime
factors of N . Indeed, if we specialize N to Apn − 1, we can say more.

Corollary 2.2. Let N = Apn − 1 (A < pn), where p is an odd prime. If for some
P,Q we have gcd(Q,N) = 1 and

Gs
(
W(N+1)/p(P,Q)

)
≡ 0 (mod N) ,(2.7)

where s = (p− 1)/2, then N is a prime.

Proof. Suppose N is composite and r is any prime divisor of N . By the theorem we
know that r2 ≡ 1 (mod pn) or r ≡ ±1 (mod pn). Thus, p2n−1 > N ≥ (−1+2pn)2,
which is impossible.
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3. Some primality tests

In order to prove a number like N to be a prime by Corollary 2.2, it is necessary
to find values for P,Q for which we can guarantee that (2.7) will be true. As pointed
out in [5] and [9], one way of approaching the task of ensuring that (2.7) will hold
is by making use of Gauss sums. As this is explained at some length in [10, chapter
11], we will simply state most of the results that we will need here.

We first mention that if p, q are distinct odd primes such that p | q−1, then there
exist certain integers C(i, p, q) for i = 0, 1, 2, . . . , s−1 (s = (p−1)/2) which can be
computed by a deterministic algorithm requiring at most O((p + log q) q) + O(p3)
arithmetic operations, where the numbers involved will not exceed (2q)p/2 (see
p.274 or (11.1.4) of [10]). Some tables of values of C(i, p, q) can be found in [5].
We will now explain why these numbers assume importance in primality testing of
Apn − 1. Suppose r is any prime such that r ≡ −1 (mod p). We know (see, for
example, Theorem 9.4.3 of [10]) that Gs(x) has exactly s zeros modulo r. Let R
be any one of these and put P =

∑s−1
i=0 C(i, p, q)Ri, Q = qr−2; then, if (r/q)p 6= 1,

we must have ([10, p.274])

r - U(r+1)/p(P,Q) and r | Ur+1 .

By (2.3) we get the following theorem.

Theorem 3.1. Let r be any prime such that r ≡ −1 (mod p) and let R be any
integer such that Gs(R) ≡ 0 (mod r). If r(q−1)/p 6≡ 1 (mod q) and

P ≡
s−1∑
i=0

C(i, p, q)Ri , Q ≡ qp−2 (mod r) ,

then

Gs
(
W(r+1)/p

)
≡ 0 (mod r) .

By combining the results of Theorem 3.1 and Corollary 2.2, we get Theorem 3.2
(cf. Theorem 11.3.6 of [10]).

Theorem 3.2. Let N = Apn − 1, s = (p− 1)/2, where p is an odd prime, A < pn

and 2 | A. Let q be any prime such that q ≡ 1 (mod p) and (N/q)p 6= 0, 1. If R
satisfies the congruence

Gs(R) ≡ 0 (mod N)

and

P =
s−1∑
i=0

C(i, p, q)Ri , Q = qp−2 ,

then N is a prime if and only if Gs(Sn−1) ≡ 0 (mod N), where S0 ≡WA (mod N)
and

Si+1 ≡ (−1)sGs(2− S2
i ) (mod N) (i = 0, 1, 2, . . . ) .

Now it is possible to devise a Lucas-Lehmer test for the primality of N = Apn−1
(Algorithm 11.3.7 of [10]).

Algorithm 3.3. Test for primality of N = Apn−1, where A < pn, p an odd prime,
2 | A. We assume we are given P,Q, q such that (∆/N) = −1 (∆ = P 2 − 4Q),
N - UA and (N/q)p 6= 1.
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1. Put T0 = WA(P,Q) and compute T1, T2, . . . by

Ti+1 ≡ (−1)sTiGs(2 − T 2
i ) (mod N)

until we find the least positive m ≤ n such that

Tm ≡ 2 (mod N) .

If no such m exists, then N is composite and the algorithm terminates. Put
R = Tm−1 (mod N). If Gs(R) 6≡ 0 (mod N), then N is composite and the
algorithm terminates. If (2pm−1)2 > N , then N is a prime and the algorithm
terminates.

2. Put

P ′ =
s−1∑
i=0

C(i, p, q)Ri , Q′ = qp−2, S0 ≡WA(P ′, Q′) (mod N) .

3. Compute Sn−1 by using

Si+1 ≡ (−1)sSiGs(2− S2
i ) (mod N) .

4. N is a prime if and only if N | Gs(Sn−1).

Notice that there are actually two Lucas-Lehmer tests being performed by Al-
gorithm 3.3. We conduct the first test (step 1), and if we are unsuccessful in
determining whether N is composite or prime, we nevertheless obtain a piece of
information, namely the value for R, which can be used in a second test (steps 2-4)
which is guaranteed to resolve the issue of whether N is a prime. If we know values
for P,Q, q, the complexity of Algorithm 3.3 is O((p+log q) q)+O(p3)+O(n log s) =
O((p+ log q)q + p3 + logN) modular additions and multiplies modulo N . Also, as
noted in [10, p.281], in practice we almost always prove N a prime by the first test.
This is because the proportion of values of P for a fixed ∆ such that

U(N+1)/p ≡ 0 (mod N)

does not hold when N is prime is 1− 1/p.
The problem in using Algorithm 3.3 is the difficulty of producing for a given N

values of P,Q, q a priori such that N - UA(P,Q), (∆/N) = −1, and the prime q is
such that q ≡ 1 (mod p) and (N/q)p 6= 1. For certain special values of N it is often
possible to do this (see [8, 9]), but in general this seems to be a difficult problem.
However, in the case of A = p−1, it is a rather simple matter to solve a part of this
problem. Undoubtedly, this same approach could be valid for other special, small
values of A.

We first note that since p is odd, we get p ≡ η (mod 4), where |η| = 1 and
Nn ≡ −η (mod 4). If P = 2, Q = 1 + η p, then ∆ = −4 η p and (∆/Nn) =
(−η p/Nn) = −1. In this case we have U1 = 1, U2 = 2, and we can use

|Un+1| ≤ 2|Un|+ (1 + p)|Un−1|
to show by induction that

|Un| < (2
√
p)n−1 (n ≥ 1) .

It follows that Nn > |Un| when n > (p − 1)/2, and therefore Nn - Up−1. It is a
result going back to Lucas that if Nn is a prime, then Nn | UNn+1; hence, by (2.2)
we find that

W(Nn+1)/2 ≡ ±2 (mod Nn) .
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Also, if Nn is a prime, then by (2.3) we must have Gs(Wm) ≡ 0 (mod Nn) for some
m = s pk with 0 ≤ k ≤ n − 1, s = (p − 1)/2. By making use of (2.5) we can now
modify Algorithm 3.3 to produce an algorithm for testing Nn for primality.

Algorithm 3.4. Test Nn = (p− 1) pn − 1 for primality. (n > (p− 1)/2, p prime,
p ≡ η (mod 4), |η| = 1).

1. Put s = (p− 1)/2, T0 ≡Ws(2, 1 + ηp) (mod Nn) and compute T1, T2, . . . by

Ti+1 ≡ (−1)sTiGs
(
2− T 2

i

)
(mod Nn)

until we find the least positive value of h, 1 ≤ h ≤ n, such that

Th ≡ ±2 (mod Nn) .

If no such h exists, then Nn is composite and the algorithm terminates; oth-
erwise, put R ≡ Th−1 (mod Nn).

2. Find a prime q ≡ 1 (mod p) such that

N (q−1)/p
n 6≡ 1 (mod q) .(3.1)

If q | Nn, then Nn is composite and the algorithm terminates.
3. Put

P ′ ≡
s−1∑
i=0

C(i, p, q)Ri , Q′ ≡ qp−2 , S0 ≡W2s(P ′, Q′) (mod Nn) .

4. Compute Sn−1 by using

Si+1 ≡ (−1)sSiGs
(
2− S2

i

)
(mod Nn) .

5. Nn is a prime if and only if

Nn | Gs(Sn−1) .

Notice that the only nondeterministic portion of this algorithm is step 2. Thus,
if we are given q such that (3.1) holds, there is a Lucas-Lehmer type test for the
primality of Nn that executes in at most O((p + log q) q + p3 + logNn) modular
multiplications (and additions) modulo Nn.

4. Nonresidue covering sets

In view of the remarks made at the end of the previous section, we need now to
be able to guarantee that we can always find a small q such that (3.1) holds. By
a result of [1], we know that under the extended Riemann Hypothesis such a value
of q must exist with q < 2 (logNn)2. However, this still produces an algorithm of
overall (conditional) complexity O(p (logNn)2). We will approach this problem in
another way.

Let {In} be any sequence of integers dependent for their value on that of the
single parameter n, and let C be a set of j primes {q1, q2, . . . , qj} such that qi ≡ 1
(mod p) (i = 1, 2, . . . , j), where p is some fixed prime. We say C is a (pth power)
nonresidue covering set for {In} if for any n there exists some q ∈ C such that

I (q−1)/p
n 6≡ 1 (mod q) .

(In this paper we will always assume that the value of p is specified, and we use the
simpler expression nonresidue covering set or nonresidue cover.) For example, if
p = 11 and In = Nn, then N 2

n ≡ 1 (mod 23) only if Nn ≡ 1 (mod 23), i.e. n ≡ 17
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(mod 22). This means that n ≡ 17, 39, 61, 83 (mod 88); but for these values of n
we get

N (89−1)/11
n = N 8

n 6≡ 1 (mod 89) .

Thus, {23, 89} is a nonresidue cover for {10 · 11n− 1}. Notice that this means that
there is always a value for q ≤ 89 such that N (q−1)/11

n 6≡ 1 (mod q) no matter how
large n (or Nn) becomes, a much better result than q < 2 (logNn)2.

At first it might seem rather remarkable that these nonresidue covering sets exist,
but actually, as we shall see, they appear to be very common. The reason for this
can be explained by the following heuristic. If we let q = 1 + kp, where 2 | k, and
let g be a primitive root of q, then the pth power residues modulo q are all given
by

1, r, r2, . . . , rk−1 ,

where r ≡ gp (mod q). Notice that rk/2 ≡ g(q−1)/2 ≡ −1 (mod q). If

N (q−1)/p
n ≡ 1 (mod q) ,(4.1)

then

(p− 1) pn ∈
{

1± rj : j = 0, 1, 2, . . . , k/2− 1
}

(mod q);

hence,

indg(p− 1) + n indgp ≡ indg
(
1± rj

)
(mod q − 1) (j = 0, 1, 2, . . . , k/2− 1) .

(4.2)

As there are at most k− 1 values for n modulo q − 1, there can only be at most
k − 1 values of n modulo p. For sufficiently many values of q we would expect
that no values of n would survive such that (4.1) holds for all of them. Also, since
the number of primes of the form 1 + kp less than or equal to x is asymptotic to
x/((p− 1) log x), many small (< p2, say) q values should exist.

It must be emphasized, however, that although this reasoning is compelling, it is
also naive. Consider, for example, the sequence {Pn}, where Pn = Apn+η, |η| = 1,
A = η(xp − p p k), |x| = 1. There can never exist a nonresidue cover for {Pn}. For
suppose C is such a cover; let q ∈ C and let ω(q) be the multiplicative order of p
modulo q. Select n such that p | n and n ≡ −p k (mod ω(q)) for all q ∈ C. This
can be done simply by solving n ≡ −p k (mod h), where h is the least common
multiple of p and all the ω(q) values. Now

Pn = η
(
±pn − pn+kp + 1

)
≡ ±ηpn (mod q)

for each q ∈ C. Hence

P (q−1)/p
n ≡ (±ηp)n(q−1)/p ≡ 1 (mod q)

for each q ∈ C, contradicting the definition of C. This sort of observation was first
made by Bosma [2] in connection with the sequences {(4k − 1)2n± 1}. Notice that
if we put p = 3, η = −1, k = 0, x = −1, we get A = 2; hence, there cannot exist
a nonresidue cover for {2 · 3n − 1}. However for any other value of p, it is easy to
show that we can never represent p− 1 in the form given for A above.
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5. Numerical procedures and results

In an attempt to verify numerically that the heuristic mentioned earlier would
often lead to a nonresidue cover for {Nn} whenever p > 3, a computer program was
written to employ this heuristic and tested on all primes p such that 3 < p < 30000.
The computer succeeded in producing a cover for each such prime; the largest value
of q required was q = 9315571 for p = 28229 (k = 330). Of much greater interest,
however, was the cardinality of the covers the computer produced: for the 3243
primes tested, 681 of the covers contained only a single prime; the remaining 2562
primes required only 2 primes in the cover. That is, the computer never needed
more than 2 primes to produce a nonresidue cover. To explain why this phenomenon
occurred, we first note that if, as before, ω = ω(q), the multiplicative order of p
modulo q, we have

ω = (q − 1)/d ,

where d = gcd(q − 1, indgp). It follows from (4.2) that if (4.1) holds, then

indg(p− 1) ≡ indg
(
1± rj

)
(mod d) (j = 0, 1, 2, . . . , k/2− 1) .(5.1)

Set a = indg(p− 1). If j is a solution of (5.1), then by (4.2) we must have

n indgp ≡ indg
(
1± rj

)
− a (mod q − 1)

and

n(indgp)/d ≡
(
indg

(
1± rj

)
− a
)
/d (mod ω) .

Since gcd(ω, (indgp)/d) = 1, there is one and only one solution for n modulo ω for
each solution j of (5.1).

One expects that the number of values of j for which (5.1) holds would be
bounded above by the total number of possibilities for j (in this case k−1) divided
by the modulus, i.e. (1 − 1/k)ω/p. Thus, the expected number of values of n
modulo ω for which (4.1) holds is (1 − 1/k)ω/p. Indeed, in those cases where
#C = 1, we found that q | p p − 1 or q | p p + 1 (ω = p or 2p). We noticed that in
almost all the cases where the computer produced C with #C = 2, the condition
ω1 | ω2 held, where ωi = ω(qi) (i = 1, 2) and C = {q1, q2}. Now, since the expected
number of values of n (mod ω) such that (4.1) holds is (1 − 1/k)ω/p, we would
expect to have (1− 1/k1)(1− 1/k2)ω1ω2/p

2 (ki = (qi − 1)/p; i = 1, 2) pairs (s1, s2)
with si randomly selected between 1 and ωi (i = 1, 2) such that (4.1) would hold
for n ≡ si (mod ωi). If, however, (4.1) must hold for both q1 and q2, and ω1 | ω2,
then n ≡ s1 ≡ s2 (mod ω1). We would expect this to happen only for 1/ω1 of all
the pairs (s1, s2). Thus, we would only expect

(1− 1/k1)(1− 1/k2)ω2/p
2 ≤ (1− 1/k1)(1− 1/k2)k2/p

values of n modulo ω1 for which (4.1) would hold for both q1 and q2. Since k2 is
usually much smaller than p, this means that we would not expect (4.1) to hold for
q1 and q2, and this is exactly what the computer results revealed.

We made use of the above observations to produce a much faster computer
program to search for C.

Procedure 5.1. Given p, find a nonresidue cover C for {Nn}.
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1. Find two primes q1, q2 such that q1 ≡ q2 ≡ 1 (mod p) and primitive roots g1

of q1 and g2 of q2. Compute indg1p, indg2p for the moduli q1, q2 respectively
by using the baby-step giant-step method of Shanks.

2. Compute di = gcd(indgip, qi − 1) and ωi = (qi − 1)/di, i = 1, 2.
3. If ω1 - ω2, go to 1.
4. For each q ∈ {q1, q2} compute

bj ≡
((

1± rj
)

(p− 1)−1
)ω

(mod q) ,
where r ≡ gp (mod q), j = 0, 1, 2, . . . , k/2− 1, k = (q − 1)/p.
Retain those values of j such that bj ≡ 1 (mod q);
if there is no value of j for which this holds,
then put C = {q} and terminate the procedure.

5. For each q and its retained values of j compute

n ≡ (indgp/d)−1 (indg
(
1± rj

)
− a
)
/d (mod ω) ,

where a = indg(p− 1).

6. If the set of n values for q1 and the set of n values for q2 modulo ω1 have a nil
intersection, put C = {q1, q2} and terminate the procedure; otherwise, return
to 1.

Notice that the condition that bj ≡ 1 (mod q) is equivalent to the condition
(5.1), but permits us to avoid the expensive computation of the indices indg(1±rj),
j = 1, 2, . . . , k/2− 1.

To determine the effectiveness of this (nondeterministic) procedure we imple-
mented it on a computer and ran it on all primes p with 3 < p < 107. For each
value of p, the computer was successful in producing a nonresidue cover. The largest
q ever needed was q = 8861411701 for p = 9846013 (k = 900). For the total of
664577 primes examined, a single prime cover was found 109677 times and a double
prime cover was produced for the remaining 554900. Also, the maximum value of
k needed for any cover was always such that k < 5(log p)2, and when p > 104, this
k < 4(log p)2. While we have no proof of this, the data and the heuristics strongly
suggest that for any prime p > 3 we should always be able to find a nonresidue
cover C for Nn with #C ≤ 2.

6. Covers containing a single prime

Almost 1/5 of all the covers C found by our procedure were such that #C = 1.
In this section we will show how in several instances one can find such a cover
without conducting a search. First, however, it is useful to mention that it is often
possible to find a single prime nonresidue cover, even when a two prime cover has
been found first. For example, the computer found the cover {29, 113} for p = 7,
but note that {911} is also a cover for p = 7. Note further that 911 | 77 + 1. In
Table 6.1 below we give the results of a search for single prime covers for p < 100.
This search was conducted for all k = (q− 1)/p < 106 except in the case of p = 23,
where we also tried factors of 2323 ± 1. Here, k1 = (q1 − 1)/p, k2 = (q2 − 1)/p, for
C = {q1, q2} and k = (q − 1)/p for C = {q}.

Of course the difficulty with some of these single prime covers is that the value
of q is very large, something that for the primality testing Algorithm 3.4 is not
desirable. If we examine small values of k = (q − 1)/p for which Procedure 5.1
produced single prime nonresidue covers {q}, we get Table 6.2.
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Table 6.1.

p k1, k2 k p k1, k2 k
5 2 47 6, 14
7 4, 16 130 53 2
11 2, 6 1436 59 12, 18
13 4 61 6, 12 16
17 6, 8 644 67 4
19 12, 24 55222 71 8, 12 1488
23 2, 6 66175184 73 4, 6 772294
29 2 79 4, 28 442
31 10, 12 83 2, 6 32
37 4 89 2
41 2 97 4, 10
43 4

Table 6.2.

k number of covers k number of covers
2 27940 12 6215
4 17931 14 1658
6 4714 16 10015
8 7523 18 2486
10 3085

Indeed, we noticed that all the single element covers of the form {2p+1} (k = 2)
were such that p ≡ 5 (mod 12), for example p = 5, 29, 41, 53, 89, 113, 173, 233,
etc.

Theorem 6.1. If q = 2p + 1 is a prime and p ≡ 5 (mod 12), then {q} is a non-
residue cover for {Nn}, where Nn = (p− 1) pn − 1.

Proof. Suppose N (q−1)/p
n ≡ 1 (mod q); then (p − 1) pn − 1 ≡ ±1 (mod q), which

means that 2 (p − 1) pn ≡ 4 (mod q). But (p/q) = (q/p) = (1/p) = 1 and
((2p− 2)/q) = ((q − 3)/q) = (−3/q) = −1, the latter result holding because q ≡ −1
(mod 3). It follows that (2(p− 1) pn/q) = −1 6= (4/q) = 1, a contradiction.

All the single element nonresidue covers of the forms {4p + 1} and {6p + 1}
respectively satisfied the conditions of the much more complicated Theorems 6.2
and 6.3.

Theorem 6.2. Let q = 4p + 1 be a prime and q = A2 + B2, where A ≡ −1
(mod 4), 2 | B and the sign of B is selected such that ((A+B)/q) = 1. C = {q} is
a nonresidue cover for {Nn} if either (i) or (ii) holds.

(i) p ≡ 2 (mod 5) and

A−B 6≡ 5 (mod 16) , 5| B ,

or

A−B 6≡ 13 (mod 16) , 5 | A .
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(ii) p ≡ 3, 4 (mod 5) and

B 6≡ 2 (mod 8) , A+B 6≡ 9 (mod 16) , A 6≡ B (mod 5) ,

or

B 6≡ 6 (mod 8) , A+B 6≡ 1 (mod 16) , A ≡ B (mod 5) .

Small examples of such values of p satisfying the conditions of Theorem 6.2 are
p = 13, 37, 43, 43, 67, 127, 193, 199.

Theorem 6.3. Let p ≡ 1 (mod 4), q = 6p + 1, 4q = L2 + 27M2, where L ≡ 1
(mod 3) and the sign of M is determined by

((
L2 − 3ML

)
/q
)

= 1. C = {q} is a
nonresidue cover for {Nn} when p ≡ 2, 3, 5 (mod 7) if either (i) or (ii) holds.

(i) p ≡ −1 (mod 3) and

6 |M , L ≡ 5M (mod 7) ,

or

M ≡ 1 (mod 6) , L ≡M (mod 4) , 7 | LM ,

or

M ≡ −1 (mod 6) , L ≡ −M (mod 4) , L ≡ 2M (mod 7) .

(ii) p ≡ 1 (mod 3) and

6 |M , L ≡ 2M (mod 7) ,

or

M ≡ 1 (mod 6) , L ≡M (mod 4) , L ≡ 5M (mod 7) ,

or

M ≡ −1 (mod 6) , L ≡ −M (mod 4) , 7 | LM .

When p ≡ 4, 6 (mod 7), C is a nonresidue cover for {Nn} if

6 |M , 7 | LM ,

or

p ≡ 1 (mod 3) , M ≡ 1 (mod 6) , L ≡M (mod 4) , 7 | LM ,

or

p ≡ −1 (mod 3) , M ≡ −1 (mod 6) , L ≡ −M (mod 4) , 7 | LM .

Small examples of values of p satisfying this theorem are p = 181, 241, 1193,
2357, 2861, 2897, 3181, 3433.

The proofs of Theorem 6.2 and 6.3 can be derived by making use of well known
4th and 3rd power residuacity results involving prime numbers in Z[ζ4] and Z[ζ3]
respectively. Here ζ4 and ζ3 denote primitive fourth and cube roots of unity in C,
i.e. ζ2

4 + 1 = 0, ζ2
3 + ζ3 + 1 = 0. We illustrate the proof technique by proving (i) of

Theorem 6.3.
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Proof of (i) of Theorem 6.3. Since q = 6p + 1 is a prime, we must be able to
represent 4q by 4q = L2 + 27M2 with L ≡ 1 (mod 3). Furthermore, since p ≡ −1
(mod 3), we must have L ≡ 4 (mod q). If t2 + t+ 1 ≡ 0 (mod q), then

((p− 1) pn − 1)(q−1)/p ≡ 1 (mod q)(6.1)

means that

(p− 1) pn ∈
{

2, 1 + t, 1 + t2, 1− t, 1− t2
}

(mod q) .

Hence,(
p− 1
q

)(
p

q

)n
∈
{(

2
q

)
,

(
1 + t

q

)
,

(
1 + t2

q

)
,

(
1− t
q

)
,

(
1− t2
q

)}
.

Now (p/q) = (q/p) = 1, ((p− 1)/q) = (−42/q) = (−6/q)(7/q) = (7/q) = −(q/7) =
1. Also,

((1 + t)/q) =
(
−t2/q

)
= −1 ,(

(1 + t2)/q
)

=
(
−t4/q

)
= −1 ,(

(1− t)(1 − t2)/q
)

=
(
−(1− t)2t2/q

)
= −1 .

Thus, one of ((1− t)/q) or
(
(1− t2)/q

)
is equal to −1.

Putting t ≡ L(6M)−1 − 2−1 (mod q), we see that t2 + t+ 1 ≡ 0 (mod q) and

((1− t)/q) =
(
(3 · 2−1 − L(6M)−1)/q

)
= −

(
(−LM + 9M2)/q

)
= (3/q)

(
(−LM + 9M2)/q

)
=
(
(−L2 − 3LM)/q

)
= −

(
(L2 + 3ML)/q

)
=
(
(L2 − 3ML)/q

)
.

Hence, we can only have

(p− 1) pn ∈ {2, 1− t} (mod q)(6.2)

if (6.1) holds.
Let ρ be any primary prime factor of q in Z[ζ3]. We have q = ρρ, where ρ =

3 a − 1 + 3 b ζ3 (a, b ∈ Z) and we may assume that ζ3 ≡ t (mod ρ). We get ρ =
(L − 3M)/2 − 3Mζ3, which means that b = −M , a = (L − 3M + 2)/6. If we use
the symbol [α/β] to denote the value of ζi3 ≡ α(ββ−1)/3 (mod β) for a prime β in
Z[ζ3], then it is well known that

[(1− t)/ρ] = [(1− ζ3)/ρ] = ζ2a
3 = ζ2M−1

3 .(6.3)

Also, 3 ≡ (1− t)(1 − t2) (mod q); hence, [3/ρ] = [(1− t)2t2/ρ] = ζ
a+2 (q−1)/3
3 and

[3/ρ] = ζM3 .

Now [2/ρ] = [ρ/2] ≡ ρ (mod 2); hence,

[
2
ρ

]
=


1, 2 |M ,

ζ3, 2 -M , L ≡ −M (mod 4) ,
ζ2
3 , 2 -M , L ≡M (mod 4) .

(6.4)

It follows that [6/ρ] = 1 under any one of the following conditions:
1. 6 |M ,
2. M ≡ 1 (mod 6), L ≡M (mod 4) ,
3. M ≡ −1 (mod 6), L ≡ −M (mod 4) .
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Since 6ρ ≡ −1 (mod q), we see that under any of these three conditions we must
have [p/ρ] = 1 and [

p− 1
ρ

]
=
[

2
ρ

]
or

[
1− t
ρ

]
(6.5)

if (6.2) is to hold.
Now 6(p− 1) ≡ −7 (mod q); thus, under any one of conditions 1, 2, or 3,[

p− 1
ρ

]
=
[

7
ρ

]
=
[
π1

ρ

] [
π2

ρ

]
=
[
ρ

π1

] [
ρ

π2

]
,

where π1 = −1 − 3ζ3, π2 = −1 − 3ζ2
3 . Since 3ζ3 ≡ −1 (mod π1) and 3ζ3 ≡ −2

(mod π2), it is easy to see that

[ρ/π1] ≡ (L−M)2
/4 (mod π1), [ρ/π2] ≡ (L+M)2

/4 (mod π2) .

Also, (L+M)2/4, (L−M)2/4 ∈ {1, 2, 4} (mod 7). and ζ3 ≡ 2 (mod π1), ζ2
3 ≡ 4

(mod π1), ζ3 ≡ 4 (mod π2), ζ2
3 ≡ 2 (mod π2). It follows that if (L − M)2 ≡

(L + M)2 (mod 7) or, equivalently, 7 | LM , then [ρ/π1][ρ/π2] = 1 and [7/ρ] = 1.
Similarly, if L ≡ 3M, 5M (mod 7) ((L−M)2 ≡ 2 (L+M)2 (mod 7)), then [7/ρ] =
ζ3, and if L ≡ 2M, 4M (mod 7), then [7/ρ] = ζ2

3 . Since 4q ≡ L2 + 27M2 (mod 7),
we can never have L ≡ 3M, 4M (mod 7) because under condition (i) (4q/7) must
be −1. By combining these results with (6.3) and (6.4), we see that under any of
the conditions in (i) we can never have (6.5), and therefore (6.1) cannot hold.

In spite of results like the above theorems, it seems still to be rather difficult to
show that there exists an infinitude of primes p such that {(p− 1) pn− 1} will have
a nonresidue cover.
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