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ON THE COMPLEXITY OF STOCHASTIC INTEGRATION

G. W. WASILKOWSKI AND H. WOŹNIAKOWSKI

Abstract. We study the complexity of approximating stochastic integrals
with error ε for various classes of functions. For Ito integration, we show
that the complexity is of order ε−1, even for classes of very smooth functions.
The lower bound is obtained by showing that Ito integration is not easier than
Lebesgue integration in the average case setting with the Wiener measure. The
upper bound is obtained by the Milstein algorithm, which is almost optimal
in the considered classes of functions. The Milstein algorithm uses the values
of the Brownian motion and the integrand. It is bilinear in these values and
is very easy to implement. For Stratonovich integration, we show that the
complexity depends on the smoothness of the integrand and may be much
smaller than the complexity of Ito integration.

1. Introduction

One of the most frequently studied subjects in computational complexity of
continuous problems is the complexity of integration. Integration is understood as
approximation of Lebesgue integrals. This problem is studied for various classes of
functions in the worst case, average case and probabilistic settings, see, e.g., [7].

Probably, the main reason why so many complexity results have been established
for Lebesgue integration is that this is a linear problem. There are a number
of general results for linear problems which can be readily applied for Lebesgue
integration. For instance, it is known that a linear algorithm is optimal and that
adaptive information does not help, see, e.g., [7]. There are no such general results
for nonlinear problems.

In this paper, we study complexity of stochastic integration for various classes
of functions. We will be mostly dealing with Ito integrals, but will also remark
on Stratonovich integrals. We restrict ourselves to scalar stochastic integration,
and usually assume that the integrands depend only on the current values of the
Brownian motion.

Stochastic integration is not a linear problem, since stochastic integrals depend
nonlinearly on the Brownian motion. Furthermore, the natural setting for stochastic
integration seems to be the worst case setting with respect to integrands and the
average case setting with respect to Brownian motion. This corresponds to the
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mixed setting, which is not usually studied for Lebesgue integration, see however
[9].

Stochastic integration is intimately related to Brownian motion. That is why it
is probably not surprising that Ito integration cannot be easier than Lebesgue in-
tegration in the average case setting for the class of continuous functions equipped
with the classical Wiener measure. This holds for any class of integrands which con-
tains a function which is linear in the first argument and quadratic in the second
argument, see Theorem 1. The average case complexity for the Wiener measure is
known, and is proportional to ε−1 if we want to guarantee an average error of at
most ε. This shows that the complexity of Ito integration is at least of order ε−1.
This holds even if we consider very smooth integrands or even if we have the com-
plete information about the integrand. For Lebesgue integration the complexity
usually depends on smoothness and decreases with increasing smoothness.

The complexity bound ε−1 is sharp for classes of functions with uniformly
bounded first derivatives with respect to the first argument, and uniformly bounded
second derivatives with respect to the second argument. For such classes, the Mil-
stein algorithm is almost optimal; it samples the Brownian motion at equally spaced
points, and computes the integrand at sample points obtained through the Brow-
nian motion. The algorithm is bilinear and easy to implement. It does not require
any precomputation and its cost is proportional to ε−1, see Theorem 2.

In this way, we obtain bounds on the complexity of Ito integration, see Theorem
3. These bounds are tight with respect to the error parameter ε−1, the bounds on
the corresponding derivatives, and on the length T of the interval in the stochastic
integral. They are linear in all the parameters except T , for which the dependence
is proportional to T 3/2. This result should be compared to a recent result on the
complexity of approximating stochastic differential equations. As shown in [3],
solving such equations is more difficult than approximating stochastic integrals,
since their complexity is proportional to ε−2.

For the class with only uniformly bounded first derivatives with respect to both
arguments, we derive an algorithm that solves the problem with cost of order ε−2.
We do not know if this bound is sharp, although we believe this to be the case.1

The bound of order ε−2 also holds for Ito integration for more general Lipschitz
integrands that may depend on the whole Brownian motion.

We also briefly discuss Stratonovich integration. Unlike the Ito case, the com-
plexity of Stratonovich integration is not related to the complexity of Lebesgue
integration in the average case setting for the Wiener measure. We show that the
complexity of Stratonovich integration does depend on smoothness of integrands,
and may be much smaller than the complexity of Ito integration. This shows once
more an essential difference between Ito and Stratonovich integrals, despite an
apparent similarity in their definitions. Finally, we show how almost optimal algo-
rithms for Ito and Stratonovich integration can be used for a nonlinear Lebesgue
integration problem.

2. Basic facts and definitions

In what follows, B will denote the Brownian motion, i.e., the random process
distributed according to the classical Wiener measure. To stress this fact, we will
write Bt instead of B(t) to denote the value of B at time t. Recall that B is a

1This has been recently proven by P. Hertling.
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zero-mean Gaussian process which has continuous sample paths with covariance
function

E(BtBy) = min{t, y} for t, y ∈ R+.

Here and elsewhere, E denotes the expectation with respect to the Wiener measure.
For a given positive number T and a function

f : [0, T ]× R→ R,

consider the problem of approximating the Ito integral

I(f,B) =
∫ T

0

f(t, Bt) dBt.

Since the formal definition of I(f,B) is quite long, we will only list some properties
of I. The reader unfamiliar with the definition of the Ito integral is referred to,
e.g., [1, 4, 6]. Here we only stress that I(f,B) ∈ R is a random variable since B is a
random process. Furthermore, I depends linearly on f and, in general, nonlinearly
on B.

In the references mentioned above, one can also find conditions on f for the
Ito integral to exist. Here we only mention that the integral exists for continuous
functions f , and that in this paper we will impose stronger conditions on f .

For the readers familiar with stochastic differential equations, we add that the
Ito integral I(f,B) is the solution of the system of stochastic differential equations
at time T given by

dYt = dBt,

dXt = f(t, Yt) dBt,
(1)

with the initial condition Y0 = X0 = 0. Then Y is a Brownian motion and XT =
I(f,B). This obviously allows us to use known algorithms for stochastic differential
equations, such as the Euler or Milstein algorithms, for approximating the Ito
integrals.

We begin with the first important property of the Ito integral:∫ b

a

g(t) dBt = g(t)Bt

∣∣∣∣b
a

−
∫ b

a

g′(t)Bt dt if g ∈ C1([a, b])(2)

with the latter integral being the ordinary Lebesgue integral. We stress that (2)
holds because the integrand g does not depend on B. In particular,∫ b

a

1 dBt = Bb −Ba.(3)

We also have ∫ b

a

Bt dBt =
1
2
(
B2
b −B2

a

)
− 1

2
(b− a).(4)

For twice continuously differentiable functions g : R→ R we have

g(Bt) = g(Bα) +
∫ t

α

g′(Bs) dBs +
1
2

∫ t

α

g′′(Bs) ds,(5)

which is a simplified version of the Ito formula, see, e.g., [6, Theorem 4.2].
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The next formula, called Ito isometry, deals with the variance (with respect to
B) of the Ito integral:

E

(∫ b

a

f(t, Bt) dBt

)2
 =

∫ b

a

E
(

(f(t, Bt))
2
)
dt.(6)

As already mentioned, we want to approximate I(f,B). In this paper we assume
that we can evaluate f and (depending on its regularity) the partial derivatives f (k,j)

at points (ai, bi) ∈ [0, T ]×R. We can also evaluate B at a finite number of tj ∈ R.
We also allow for adaptive choice of evaluation points, i.e., ti, ai and bi may depend
on the computed values of B and/or f at the previous points. In particular, we
can have bi = Bai . For formal definitions and discussions on algorithms, we refer
to [7]. Here we only state informally that any algorithm A(f,B) for approximating
I(f,B) is of the form

A(f,B) = ψ
(
f (i1,j1)(a1, b1), . . . , f (ik,jk)(ak, bk), Bt1 , . . . , Bt`

)
for some function ψ. Let n = k + ` denote the total number of evaluations of the
function f and its derivatives, as well as the process B, used by A. Let Ψn denote
the class of all algorithms of this form.

We now define the worst case error of A. Let F be a class of functions f . Then
the worst case error (with respect to f) of the algorithm A is defined by

error(A,F) = sup
f∈F

√
E ((I(f,B) −A(f,B))2).

Given the total number n of evaluations of f and B, we want to know the nth
minimal error

error(n,F) = inf
A∈Ψn

error(A,F).

We also want to obtain an optimal (or almost optimal) algorithm, i.e., an algorithm
from Ψn whose error equals (or is close to) the nth minimal error.

In the next section we will prove that the nth minimal error is proportional
to n−1 for a large family of input classes F . We also derive an almost optimal
algorithm that can be implemented at cost proportional to n.

In this way, we obtain the complexity of stochastic integration, comp(ε,F), in
the class F , which is defined as the minimal cost of computing an approximation
with error at most ε. See [7] for the precise definition. Specifically, we will prove
that

comp(ε,F) = Θ(ε−1)

for all classes F = Cr1,r2 with r1 ≥ 1 and r2 ≥ 2. Here Cr1,r2 denotes the class
of functions which are continuously differentiable r1 times with respect to the first
variable and r2 times with respect to the second variable, and whose sup-norms of
derivatives are uniformly bounded.

3. Lower bounds

In this section we provide a simple lower bound on the nth minimal error. This
bound holds if F contains a function which is linear in the first argument and
quadratic in the second argument.
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Theorem 1. If F contains a function f(t, y) = a+ b t+ c y2 for some a, b, c with
b+ c 6= 0, then

error(n,F) ≥ T 3/2|b+ c|
2
√

3 (n+ 3/2)
.

Proof. From (2) applied to g(t) = a+ b t we get

I(g,B) =
∫ T

0

(a+ b t) dBt = (a+ b T )BT − b
∫ T

0

Bt dt.

Let h(y) = c y2. Since h(y) = (c y3/3)′, then (5) with g(y) = cy3/3 yields

I(h,B) =
c

3
B3
T − c

∫ T

0

Bt dt.

Since f(t, y) = g(t) + h(y), we have

I(f,B) = (a+ b T )BT +
c

3
B3
T − (b + c)

∫ T

0

Bt dt.(7)

Since b+c 6= 0, this implies that approximating I(f,B) is equivalent to the problem
of approximating scalar integrals in the average case setting with respect to the
classical Wiener measure. Note that∫ T

0

Btdt = T 3/2

∫ 1

0

Wtdt,

where Wt = BTt/
√
T is also the Brownian motion. The problem of approximating∫ 1

0 Wtdt was studied in [5, 8]. For nonadaptive choice of evaluation points, the
nth minimal average error is equal to 1/((2n + 1)

√
3), see [5]. Adaptive choice of

evaluation points may save at most one evaluation, see [8], and therefore the nth
minimal average error is no less than 1/((2n+3)

√
3). This completes the proof.

Theorem 1 states that the nth minimal error cannot go to zero faster than n−1 as
long as the function f with b+ c 6= 0 belongs to the class F . In terms of solving the
system (1) of stochastic differential equations this means that the order of strong
convergence is at most one. This result may be somehow surprising, since there are
algorithms for solving (1) with the order of strong convergence greater than one as
long as the coefficients of the system are sufficiently regular, which obviously holds
for the function f . The algorithms with the order of strong convergence greater
than one require, however, exact values of certain integrals with Brownian motion,
see [4]. In our setting, this is not allowed, since we assumed that only values of
Brownian motion can be obtained. In fact, under the additional assumption that
integrals of Brownian motion are available, we can compute (7) exactly with two
evaluations, and the proof breaks down.

4. Optimality of the Milstein algorithm

We now show that the Milstein algorithm is almost optimal for many classes F
consisting of functions that have continuous partial derivatives. The Milstein algo-
rithm is used for the solution of general systems of stochastic differential equations,
see [4]. For the system (1), the Milstein algorithm takes the following form:

An(f,B) =
n∑
i=1

Ai,n(f,B),(8)
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where

Ai,n(f,B) = f(ai, Bai)(Bai+1 −Bai) +
1
2
∂f(ai, y)

∂y

∣∣∣∣
y=Bai

(
(Bai+1 −Bai)2 − T

n

)
with equally spaced points

ai =
i− 1
n

T, i = 1, 2, . . . , n+ 1.

This algorithm uses n values of B, bi = Bai for i = 2, 3, . . . , n + 1 (note that
b1 = B0 = 0), n values of f , f(ai, bi) for i = 1, 2, . . . , n, and n values of partial
derivatives ∂f(ai, y)/∂y with y = bi for i = 1, 2, . . . , n. Hence, the total number
of function evaluations used by An equals 3n. That is, An ∈ Ψ3n. Moreover, the
algorithm An requires at most 8n+ 1 arithmetic operations, and does not require
precomputation of any number.

It is known that the order of strong convergence of the Milstein algorithm is one
as long as the function f is sufficiently regular. This corresponds to the error bound
of order n−1 for the Ito integrals. The regularity assumptions on f are presented
in a number of papers. For instance, in [4] f is assumed, in particular, to be three
times differentiable with respect to the second argument. In [2], only two times
differentiability with respect to the second argument is assumed. In what follows
we present a relatively short proof of the error bound with the explicit constants
and with the minimal regularity assumptions on f . From this we conclude almost
optimality of the Milstein algorithms with respect to the order of convergence as
well as with respect to other parameters of the problem.

Theorem 2. Let f : [0, T ]×R→ R satisfy the following conditions: ∂f/∂x, ∂f/∂y,
and ∂2f/∂x2 are continuous,

|f(t, y)− f(z, y)| ≤ L|t− z|, ∀ t, z ∈ [0, T ], ∀ y ∈ R,(9)

and

sup
t∈[0,T ], y∈R

∣∣∣∣ ∂2

∂y2
f(t, y)

∣∣∣∣ ≤ K(10)

for some constants K and L. Then

E (I(f,B)−An(f,B))2 ≤ T 3

n2

(
2
3
L2 +K2

)
.(11)

Proof. Due to (3) and (4), we have∫ ai+1

ai

(∫ t

ai

1 dBs

)
dBt =

∫ ai+1

ai

(Bt −Bai) dBt

=
1
2
(
(Bai+1 −Bai)2 − (ai+1 − ai)

)
.

This and (3) imply that

Ai,n(f,B) =
∫ ai+1

ai

(
f(ai, Bai) +

∂f(ai, y)
∂y

∣∣∣∣
y=Bai

∫ t

ai

1 dBs

)
dBt.

Consequently,

An(f,B) =
∫ T

0

f̂(t, B) dBt(12)
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with

f̂(t, B) =
n∑
i=1

χ(ai,ai+1](t)

(
f(ai, Bai) +

∂f(ai, y)
∂y

∣∣∣∣
y=Bai

∫ t

ai

1 dBs

)
,

where χ(ai,ai+1] is the characteristic (indicator) function of (ai, ai+1].
Note that f̂(t, B) depends only on the values of Bx for x ≤ t. For such functions,

the Ito isometry (6) is still valid, and therefore we have

E (I(f,B)−An(f,B))2 = E

(∫ T

0

(f(t, Bt)− f̂(t, B)) dBt

)2

=
∫ T

0

E
(
f(t, Bt)− f̂(t, B)

)2

dt =
n∑
i=1

e2
i

with

e2
i =

∫ ai+1

ai

E
(
f(t, Bt)− f̂(t, B)

)2

dt.

Note that
e2
i ≤ 2(e2

i,1 + e2
i,2)

with

e2
i,1 =

∫ ai+1

ai

E
(

(f(t, Bt)− f(ai, Bt))
2
)
dt,

e2
i,2 =

∫ ai+1

ai

E
((

f(ai, Bt)− f̂(t, B)
)2
)
dt.

Due to (9), we get

e2
i,1 ≤

∫ ai+1

ai

L2(t− ai)2 dt =
T 3L2

3n3
.(13)

To estimate e2
i,2, we use the Ito formula (5). Applying it to g(y) = f(ai, y), we

get

f(ai, Bt) = f(ai, Bai) +
∫ t

ai

∂

∂y
f(ai, y)

∣∣∣∣
y=Bs

dBs +
1
2

∫ t

ai

∂2

∂y2
f(ai, y)

∣∣∣∣
y=Bs

ds.

Then

e2
i,2 =

∫ ai+1

ai

E

(∫ t

ai

(
∂f(ai, y)

∂y

∣∣∣∣
y=Bs

− ∂f(ai, y)
∂y

∣∣∣∣
y=Bai

)
dBs

+
1
2

∫ t

ai

∂2f(ai, y)
∂y2

∣∣∣∣
y=Bs

ds

)2

dt

≤ 2
∫ ai+1

ai

E

(
1
2

∫ t

ai

∂2

∂y2
f(ai, y)

∣∣∣∣
y=Bs

ds

)2

dt

+ 2
∫ ai+1

ai

E

(∫ t

ai

(
∂

∂y
f(ai, y)

∣∣∣∣
y=Bs

− ∂

∂y
f(ai, y)

∣∣∣∣
y=Bai

)
dBs

)2

dt.



692 G. W. WASILKOWSKI AND H. WOŹNIAKOWSKI

Note that

E

((∫ t

ai

1
2
∂2

∂y2
f(ai, y)|y=Bs ds

)2
)
≤ 1

4
K2 (t− ai)2

due to (10). Therefore

2
∫ ai+1

ai

E

(
1
2

∫ t

ai

∂2

∂y2
f(ai, y)

∣∣∣∣
y=Bs

ds

)2

dt ≤ 1
6
K2 (ai+1 − ai)3 =

T 3K2

6n3
.

Applying the Ito isometry (6), as well as (10), we get

2
∫ ai+1

ai

E

(∫ t

ai

(
∂

∂y
f(ai, y)

∣∣∣∣
y=Bs

− ∂

∂y
f(ai, y)

∣∣∣∣
y=Bai

)
dBs

)2

dt

= 2
∫ ai+1

ai

∫ t

ai

E

(
∂

∂y
f(ai, y)

∣∣∣∣
y=Bs

− ∂

∂y
f(ai, y)

∣∣∣∣
y=Bai

)2

ds dt

≤ 2K2

∫ ai+1

ai

∫ t

ai

E(Bs −Bai)2 ds dt

= 2K2

∫ ai+1

ai

∫ t

ai

(s− ai) ds dt =
1
3
K2(ai+1 − ai)3 =

T 3K2

3n3
.

Therefore e2
i,2 ≤ T 3K2/(2n3). This and (13) yield

n∑
i=1

e2
i ≤ 2n

(
T 3L2

3n3
+
T 3K2

2n3

)
=

T 3

n2

(
2
3
L2 +K2

)
,

which completes the proof.

Remark 1 (Only Function Values). The Milstein algorithm An uses values of par-
tial derivatives

Di =
∂f(ai, y)

∂y

∣∣∣∣
y=Bai

, i = 1, . . . , n.

With a rather insignificant increase in the error bound, one can modify An so that
the resulting algorithm does not require derivative values. Indeed, let

Ãn(f,B) =
n∑
i=1

Ãi,n(f,B),

where Ãi,n differs from Ai,n in that Di is replaced by

D̃i,h =
f(ai, Bai + h)− f(ai, Bai)

h

for some positive h, say h ∈ (0, T/n]. It is easy to see that with such a change the
error bound will change to

E
(
I(f,B) − Ãn(f,B)

)2

≤ T 3

n2

(
2
3
L2 +K2

)
+ 2

n∑
i=1

e2
i,3

with

e2
i,3 =

1
4
E
(

(Di − D̃i,h)
(

(Bai+1 − Bai)2 − T

n

))2

.
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Due to (10), |Di − D̃i,h| ≤ Kh/2 ≤ KT/(2n) and

e2
i,3 ≤

K2T 2

4n2
E
(

(Bai+1 −Bai)2 − T

n

)2

=
K2T 4

2n4
.

This yields

E
(
I(f,B) − Ãn(f,B)

)2

≤ T 3

n2

(
2
3
L2 +K2 +

T

2n
K2

)
.(14)

5. Complexity

From Theorems 1 and 2 we easily obtain bounds on the complexity of sto-
chastic integration for the class F = FL,K . In what follows, by f i,j we mean
∂i+jf/(∂ti ∂yj), and ‖f i,j‖ denotes the sup-norm with respect to t ∈ [0, T ] and
y ∈ R. Let

FL,K = {f : [0, T ]× R→ R : ‖f1,0‖ ≤ L, ‖f0,2‖ ≤ K }
for some nonnegative L and K with L2 + K2 > 0. We will also assume that any
arithmetic operation has unit cost, and that the cost of one evaluation of f , its
partial derivative, and B is c. Usually, c� 1.

Theorem 3. For the class FL,K the nth minimal error, n ≥ 3, satisfies

T 3/2

2
√

3 (n+ 3/2)

(
L+

K

2

)
≤ error(n,F) ≤ 3T 3/2

n− 2

√
2
3
L2 +K2,

and the complexity of stochastic integration satisfies(
T 3/2

2
√

3 ε

(
L+

K

2

)
− 3

2

)
c ≤ comp(ε,F) ≤

(
3 +

3T 3/2

ε

√
2
3
L2 +K2

)
(c + 8).

Moreover, the Milstein algorithm An from Theorem 2 or its modification Ãn from
Remark 1 is almost optimal.

Proof. The upper bounds on the nth minimal error and complexity follow from The-
orem 2 applied for the algorithm Abn/3c, since then we use 3bn/3c ≤ n evaluations
of the function. (We also estimated 1/bn/3c by 3/(n−2).) The lower bound on the
nth minimal error is obtained from Theorem 1 applied to f(t, y) = Lt+y2K/2, i.e.,
for a = 0, b = L and c = K/2. The lower bound on the complexity easily follows
from the lower bound on the nth minimal error.

The essence of Theorem 3 is that the complexity depends linearly on ε−1, L and
K. The dependence on the length of the interval T of stochastic integration is a
little more significant, since the complexity is proportional to T 3/2.

6. Final comments

We end this paper with a number of remarks concerning other classes of functions
and Stratonovich stochastic integration.

Remark 2 (Smooth Classes). We stress that the complexity of stochastic integra-
tion as a function of ε−1 does not decrease for classes of smooth integrands. Indeed,
let

F(r1, r2) = {f : [0, T ]× R : ‖f i,j‖ ≤ 1, i = 0, 1, . . . , r1, j = 0, 1, . . . , r2}
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for some integers r1 ≥ 1 and r2 ≥ 2, and T ≥ 1. Then the complexity is proportional
to ε−1 even for large r1 and r2. Indeed, the function f(t, y) = t/T belongs to
F(r1, r2) for all considered values of r1 and r2. Theorem 1 then yields a lower
bound of order ε−1 on the complexity. The algorithm An works for the class
F(r1, r2), since F(r1, r2) ⊂ F(1, 2). This yields an upper bound on the complexity
of order ε−1.

Remark 3 (Lipschitz Class). We have so far assumed that integrands f are twice
continuously differentiable with respect to the second argument. It is also of interest
to consider the class of once differentiable functions. In particular, let us consider
the Lipschitz class of functions with respect to two arguments,

FLip = {f : |f(t, y)− f(z, y)| ≤ L|t− z|, |f(t, y)− f(t, w)| ≤ K|y − w|,
∀ t, z ∈ [0, T ], y, w ∈ R}.

Then the Milstein algorithm An is not well defined, since the partial derivatives of
f with respect to y may not exist. We may modify this algorithm just by dropping
the terms with the partial derivatives. Then we obtain the Euler algorithm, see [4],

An(f,B) =
n∑
i=1

f(ai, Bai)(Bai+1 −Bai)

with the same sample points ai = (i− 1)T/n.
It is known that error(n,FLip) = O(n−1/2). More precisely, one can show along

the lines of the proof of Theorem 2 that

error(An,FLip) ≤
(

2L2T 3

3n2
+
K2T 2

n

)1/2

.

This yields an upper bound of order ε−2 on the complexity. We do not know if
this bound is sharp, although we conjecture that this is the case.2 Observe that
Theorem 1 gives only a lower bound of order n−1 on the nth minimal error, which
does not match the error of An.

We also remark that the error of the algorithm An is of a similar form for the
following Hölder class of integrands F (α,β):

F (α,β) = {f : |f(t, y)− f(z, y)| ≤ L|t− z|α, |f(t, y)− f(t, w)| ≤ K|y − w|β ,
∀ t, z ∈ [0, T ], y, w ∈ R}

for α, β ∈ (0, 1]. Then

error(An,F (α,β)) ≤
√

2
(

L2T 2α+1

(2α+ 1)n2α
+
K2T β+1cβ
(β + 1)nβ

)1/2

with cβ = (2π)−1/2
∫∞
−∞ |t|

2βe−t
2/2 dt = Γ(β + 1/2) 2β/

√
π.

Remark 4 (Generalized Class). We have considered stochastic Ito integration for
integrands of the form f(t, Bt). That is, the only dependence on the Brownian
motion is through its value at the point t. Obviously, it is also of interest to
consider more general forms of integrands. For instance, consider the functions

2As already mentioned, this conjecture has been established by P. Hertling.
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of the form f(t, B) which may depend on the whole Brownian motion. The Ito
integral

I(f,B) =
∫ T

0

f(t, B)dBt

is well defined only if the dependence on B in f(t, B) is restricted to B|[0,t] as, for

instance, f(t, B) = g
(
t,
∫ t

0 Bs ds
)

for some function g. Assuming this property, we
consider the class

F = {f : |f(t, B)− f(z,B)| ≤ L ‖B‖ |t− z|α +K|Bg(t) −Bg(z)| }
for some nonnegative L,K, α, and a function g : [0, T ] → [0, T ] which satisfies
the condition |g(t) − g(z)| ≤ M |t − z|β for some nonnegative M and β. Here
‖B‖ = maxt∈[0,T ] |Bt|.

For example, observe that f(t, B) = B(t/a) with a ≥ 1 belongs to the class F
with arbitrary L,α and K = 1, g(t) = t/a for which β = 1 and M = 1/a. On the
other hand, the function f(t, B) =

∫ t
0
Bs ds belongs to the class F with L = α = 1

and arbitrary K and g.
We assume that we can compute the values of f(t, B) and again consider the

Euler algorithm

An(f,B) =
n∑
i=1

f(ai, B)(Bai+1 −Bai).

It is easy to check that the upper bound on the error of An satisfies

error(n,F) ≤
(

2L2 E(‖B‖2)T 2α+1

(2α+ 1)n2α
+

2K2M2

β + 1
T β+1

nβ

)1/2

= O
(
n−min(α,β/2)

)
.

This yields an upper bound on the complexity of order ε−1/min(α,β/2). It would
be interesting to know whether this bound is sharp.

Remark 5 (Stratonovich Stochastic Integration). The Stratonovich stochastic inte-
gral is defined differently than the Ito integral. Roughly speaking, see [4], both are
defined as the mean-square limit of the sums

n∑
j=1

((1 − λ)f(tj,n, B) + λf(tj+1,n, B)) (Btj+1,n −Btj,n),

where the evaluation points tj,n are ordered, t1,n = 0 < t2,n < · · · < tn+1,n = T ,
and maxj(tj+1,n − tj,n) goes to zero as n approaches infinity. Here λ ∈ [0, 1]. For
λ = 0 we obtain the Ito integral, whereas for λ = 1/2 we obtain the Stratonovich
integral, which is denoted by

IS(f,B) =
∫ T

0

f(t, B) ◦ dBt.

Despite similar definitions, the complexity of Stratonovich integration may be
quite different from the complexity of Ito integration. To illustrate this difference
we consider the simplified case in which the function f(t, B) = h(Bt) depends only
on the value of the Brownian motion at t, and the function h belongs to the class

Fr,α = {h : R→ R | h(r) is continuous and sup
x∈R
|h(r)(x)(1 + |x|)α| ≤ 1 }

for an integer r and α ≤ 0.
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For the Stratonovich integral, see [4, p. 101], we have∫ T

0

h(Bt) ◦ dBt =
∫ BT

0

h(t)dt.

Hence, the integral depends only on the value of BT . The approximation of such
Stratonovich integrals corresponds to approximation of the function h and then to
integration over the interval [0, BT ].

It is proven in [10] that there exist sample points xi and piecewise polynomial
functions ai such that the algorithm Mn(h, x) =

∑n
i=1 h(xi)ai(x) approximates h

with error

|h(x)−Mn(h, x)| ≤ Cn−r exp(|x|), ∀x ∈ R, ∀h ∈ Fr,α, ∀n,

where C is a positive constant. Define the algorithm

An(h,B) =
n∑
i=1

h(xi)
∫ BT

0

ai(x)dx.(15)

This algorithm uses n function values of h and one function value of B. Further-
more, it requires only O(n) arithmetic operations. It is easy to check that

errorS(An,Fr,α) := sup
h∈Fr

√
E(IS(h,B)−An(h,B))2

= O
(
E(|BT | exp(|BT |)n−r

)
= O

(
n−r

∫ ∞
0

te(t−t2/(2T ))dt

)
= O(n−r).

This yields an upper bound O(ε−1/r) on the complexity compS(ε,Fr,α) of Strato-
novich integration. In fact, this bound is sharp. This follows from the fact that the
complexity of approximation of the functions h from the class Fr,α is of order ε−1/r,
see [10]. Furthermore, integration over [0, BT ] is not easier than integration over
the interval [0, a] if |BT | ≥ a > 0 holds. The last inequality holds with a positive
probability. Hence,

compS(ε,Fr,α) = Θ(ε−1/r).

This proves that the complexity of Stratonovich integration does depend on the
smoothness, and decreases with increasing smoothness. Since the complexity of Ito
integration does not depend on smoothness, this shows that the complexities of
Stratonovich and Ito integration may be quite different.

It is easy to find the complexity of Ito integration for the class Fr,0. For r = 2
the complexity of Ito integration is of order ε−1, since the function h(y) = y2/2
belongs to Fr,0, and the algorithm An given by (8) can be applied. For r > 2, the
complexity of Ito integration is infinite, since the functions h(y) = cy2 for arbitrary
c belong to Fr,0 and the error of any algorithm must be infinite due to Theorem 1.

Of course, the last negative result can be avoided if we restrict the class to
Fr,α ∩ F2,0. Then the second derivatives are bounded, and the complexity of Ito
integration is of order ε−1 independently of the smoothness parameter r. This
restriction of the class does not lower the complexity of Stratonovich integration,
and it remains of order ε−1/r.

Remark 6 (Application of Ito and Stratonovich Integration). We now show how al-
gorithms for Ito and Stratonovich integration can be used for nonlinear Lebesgue
integration in the average case setting.
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Let r ≥ 2. For a function h ∈ Fr,α ∩F2,0 we want to approximate the Lebesgue
integral

Ih(B) =
∫ T

0

h′(Bt)dt.

We assume that we can compute the values of h, h′ andB. The error of an algorithm
is defined as before, i.e., the worst case with respect to h from h ∈ Fr,α ∩ F2,0 and
the average case with respect to B. Observe that if h′ is not linear, then we have
nonlinear dependence on B. That is why this is a nonlinear integration problem.
We are interested in the complexity compnon(ε) of this nonlinear problem.

This problem can be solved by using the relation between Ih(B), Ito and Strato-
novich integrals. From [4, p. 101] we have

Ih(B) = 2IS(h,B) − 2I(h,B).

Since we know the complexity and almost optimal algorithms for Ito and Stratono-
vich integration, we can easily see that

compnon(ε) = Θ(ε−1).

Furthermore to achieve the cost bound proportional to ε−1 it is enough to use the
algorithm (15) for Stratonovich integration and the algorithm (8) for Ito integration.

The same problem can be also studied for the class F1,0. Then the same relation
with Ito and Stratonovich integrals holds, and we may apply algorithms discussed
before to get an upper bound on the complexity of the nonlinear problem of order
ε−2. We do not know whether this bound is sharp.
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