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HIGHER-ORDER CARMICHAEL NUMBERS

EVERETT W. HOWE

Abstract. We define a Carmichael number of order m to be a composite
integer n such that nth-power raising defines an endomorphism of every Z/nZ-
algebra that can be generated as a Z/nZ-module by m elements. We give a
simple criterion to determine whether a number is a Carmichael number of
order m, and we give a heuristic argument (based on an argument of Erdős for
the usual Carmichael numbers) that indicates that for every m there should
be infinitely many Carmichael numbers of order m. The argument suggests a
method for finding examples of higher-order Carmichael numbers; we use the
method to provide examples of Carmichael numbers of order 2.

1. Introduction

A Carmichael number is defined to be a positive composite integer n that is a
Fermat pseudoprime to every base; that is, a composite n is a Carmichael number
if an ≡ a mod n for every integer a. Clearly one can generalize the idea of a
Carmichael number by allowing the pseudoprimality test in the definition to vary
over some larger class of tests (perhaps including some of those found in [1], [2],
[4], [6], [8], [9], [11], [16], [19], [26]), and indeed such generalizations have been
considered (see for example [5], [8], [13], [15], [17], [18], [19], [21], [22], [27]). But
there is also a natural algebraic way of generalizing the concept of a Carmichael
number that makes no mention of pseudoprimality. To motivate the definition
we note that (1) an integer n > 1 is prime if and only if nth-power raising is
an endomorphism of every Z/nZ-algebra, and (2) a positive composite integer n
is a Carmichael number if and only if nth-power raising is an endomorphism of
Z/nZ. So if m is a positive integer, we define a Carmichael number of order m
to be a positive composite integer n such that the function x 7→ xn defines an
endomorphism of every Z/nZ-algebra that can be generated as a Z/nZ-module by
m elements.

Although our definition does not explicitly mention pseudoprimality, a Car-
michael number n of order m will pass many reasonable pseudoprimality tests.
For example, if α is an algebraic integer of degree d with d ≤ m, then we have

TrQ(α)/Q(αn) ≡ TrQ(α)/Q(α) mod n,

so n will pass a Dickson-like pseudoprimality test based on the recurrence sequence
of order d consisting of the traces of the powers of α. Also, n will pass the “Frobenius
step” of the Frobenius pseudoprime test of Grantham [8] with respect to every
polynomial of degree at most m.
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We will prove the following theorem, which provides a characterization of the
Carmichael numbers of order m that generalizes Korselt’s criterion [12] for the usual
Carmichael numbers:

Theorem 1. Let m and n be positive integers with n composite. Then n is a
Carmichael number of order m if and only if the following two conditions hold :

(i) n is squarefree;
(ii) for every prime divisor p of n and for every integer r with 1 ≤ r ≤ m, there

is an integer i ≥ 0 such that n ≡ pi mod (pr − 1).

Theorem 1 allows us to formulate a heuristic argument (based on an argument
of Erdős [7] for the usual Carmichael numbers, and similar to an argument of
Pomerance [25] for the Baillie-PSW pseudoprimes) that indicates that for every m
there should be infinitely many Carmichael numbers of order m. The heuristics
suggest a method of searching for higher-order Carmichael numbers; we implement
this method for the case m = 2 and find many examples, some of which we present
below. In fact, the numbers n produced by our argument have the property that
n is congruent to 1 modulo pr − 1 for every prime divisor p of n and every integer
r with 1 ≤ r ≤ m. We call such n rigid Carmichael numbers of order m, and in
Section 5 we show by example that not all higher-order Carmichael numbers are
rigid. Our choice of the adjective “rigid” is explained in Section 6, where we prove
that a positive composite n is a rigid Carmichael number of order m if and only
if nth-power raising is the identity on every finite étale Z/nZ-algebra that can be
generated as a module by m elements.

We would like to replace the heuristic arguments of this paper with actual proofs,
but that seems to be difficult; we have been unable to adapt the argument of Alford,
Granville, and Pomerance [3] for the infinitude of the usual Carmichael numbers to
the case of higher-order Carmichael numbers. However, in a recent paper [10], Hsu
proves that there are infinitely many “Carmichael polynomials”, which are Drinfeld
module analogues of Carmichael numbers and higher-order Carmichael numbers.

We know of only one example of a higher-order Carmichael number other than
the ones produced by the computations described in this paper: one finds the
number 17 · 31 · 41 · 43 · 89 · 97 · 167 · 331, which is a rigid Carmichael number of
order 2, on the list of the Carmichael numbers less than 1016 that was computed
by Richard Pinch (see [23], [24]).

Acknowledgments. The author thanks Dan Gordon, Jon Grantham, Andrew
Granville, Hendrik Lenstra, Greg Martin, Carl Pomerance, and Trevor Wooley
for their comments. The author is especially grateful to Lenstra for suggesting
Lemma 2 and its proof, and for suggesting various ways of defining “finite étale”
without using much algebra. The author also thanks the anonymous referee for his
or her suggestions for improving the exposition of the material in this paper.

Conventions. All rings in this paper are supposed to be commutative and to have
an identity element, and all ring homomorphisms R→ S are supposed to take the
identity of R to the identity of S.

2. Proof of Theorem 1

Suppose that n is a Carmichael number of order m. The ring Z/nZ is an algebra
over itself and is generated by a single element as a module over itself, so x 7→ xn

must be an endomorphism of this ring. The only endomorphism of Z/nZ is the
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identity, so we have x = xn for all x in Z/nZ. But if n were divisible by the square
of a prime p we would have pn 6≡ p mod n, a contradiction. Thus n is squarefree,
and condition (i) holds.

Let p be a prime divisor of n and let r be an integer with 1 ≤ r ≤ m. The finite
field Fpr is a Z/pZ-algebra, and is therefore also a Z/nZ-algebra via the projection
Z/nZ → Z/pZ. It is clear that Fpr can be generated as a Z/nZ-module by m
elements, so nth-power raising is an automorphism of Fpr . Every automorphism of
Fpr is of the form x 7→ xp

i

for some i, so there is an integer i such that xn = xp
i

for every x ∈ Fpr . Since the multiplicative group of Fpr is cyclic of order pr − 1,
we see that n ≡ pi mod (pr − 1). Thus condition (ii) holds.

Now suppose that conditions (i) and (ii) hold. First we prove the following
statement:

Lemma 2. If r is an integer with 1 ≤ r ≤ m, then
(
n
r

)
≡ 0 mod n.

Proof. Since n is assumed to be squarefree, the statement we are to prove is equiv-
alent to the statement that all prime divisors of n are greater than m. Suppose, to
obtain a contradiction, that n had a prime divisor q with q ≤ m. Since n is assumed
to be composite as well as squarefree, n must have another prime divisor p 6= q. If
we apply statement (ii) of the theorem with this p and with r = q− 1, we find that
there is an i ≥ 0 such that n ≡ pi mod (pq−1 − 1), and since q divides pq−1 − 1 it
follows that n ≡ pi mod q. But q | n, so we find that q | pi, a contradiction.

Now suppose R is a Z/nZ-algebra that can be generated as a module by m
elements. Then R is a finite ring, and so is a product of finite local rings Ri, each
of which is a Z/nZ-algebra that can be generated as a Z/nZ-module by m elements.
If nth-power raising is an endomorphism of each Ri, then it is an endomorphism of
R as well, so it suffices to consider the case where R is local. Since n is squarefree,
there is a prime divisor p of n such that pR = 0, so that R is an Fp-algebra. Let p

be the maximal ideal of R and let k be the field R/p. Since R can be generated by
m elements as an Fp-module, we see that [k : Fp] ≤ m and that pm = 0. Since k
is separable over Fp, Hensel’s lemma shows that there is a homomorphism k → R
compatible with the reduction map R → k; we view k as a subring of R via this
map. We find that every element of R may be written in a unique way as a sum
a+ z with a ∈ k and z ∈ p.

If a ∈ k and z ∈ p, then we have

(a+ z)n =
n∑
r=0

(
n

r

)
an−rzr = an,

where the second equality is obtained from the facts that zr = 0 when r ≥ m and(
n
r

)
= 0 in R when 1 ≤ r ≤ m. But since n ≡ pi mod (p[k:Fp] − 1) we see that

(a+z)n = ap
i

, so nth-power raising on R is simply the reduction map to k followed
by the automorphism x 7→ xp

i

followed by the lifting map k → R. In particular,
nth-power raising is a homomorphism. Thus, n is a Carmichael number of order m.
This completes the proof of Theorem 1.

3. A construction and heuristics

Let m > 0 be given. In this section we will give a construction that associates
to every positive integer L a (possibly empty) set C(m,L) of Carmichael numbers
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of order m. We will also give a heuristic argument that indicates that one should
be able to find values of L that will make #C(m,L) as large as one pleases. The
construction and argument generalize those of Erdős [7] for the usual Carmichael
numbers; Pomerance uses a similar argument in [25] to show that there should be
infinitely many Baillie-PSW pseudoprimes.

First, the construction. Let P (m,L) be the set of prime numbers p that do
not divide L and that have the property that for every positive integer r ≤ m,
the integer pr − 1 divides L. Let C(m,L) be the set of squarefree integers n > 1
that are congruent to 1 modulo L and whose prime divisors all lie in P (m,L).
We claim that the elements of C(m,L) are Carmichael numbers of order m. For
suppose n is an element of C(m,L), suppose r is an integer with 1 ≤ r ≤ m, and
suppose p is a prime divisor of n. Then pr − 1 divides L, and L divides n− 1, so
n ≡ p0 mod (pr−1). By Theorem 1, the integer n is a Carmichael number of order
m.

Our heuristic argument for the existence of L for which #C(m,L) is large de-
pends on the following assumption (in addition to the usual assumptions and ap-
proximations made in such arguments):

Assumption. Suppose f is an element of Z[x] with f(0) 6= 0. Then there exist
real numbers u and v with 1 < v < u such that for all sufficiently large y, there are
at least yv primes q less than yu such that f(q) is y-smooth.

(Recall that an integer z is said to be y-smooth if all of its prime divisors are
less than or equal to y.) Note that this assumption is in fact true if f is a product
of linear elements of Z[x], as is shown by Theorem 4 of [20].

Let f be the least common multiple of the polynomials xr − 1 for 1 ≤ r ≤ m,
and apply the above assumption to this f to obtain real numbers u and v with the
properties mentioned in the assumption. For every y let L be the least common
multiple of the prime powers pe such that p < y and pe < ymu. We will argue that
one should expect log #C(m,L)� yv.

Let us estimate the cardinality of the set S(y, u) of primes q between y and yu

such that f(q) is y-smooth. By our choice of u and v, when y is sufficiently large
there are yv primes q less than yu such that f(q) is y-smooth. Since there are fewer
than y primes less than y, we find that #S(y, u)� yv.

Suppose q is an element of S(y, u) and let r be an integer with 1 ≤ r ≤ m. Since
f(q) is y-smooth, we see that all of the prime factors of qr − 1 are less than y.
Suppose p is a prime divisor of qr − 1 and suppose pe is the largest power of p that
divides qr − 1. Then certainly pe ≤ qr − 1 < qm ≤ ymu, so pe divides L. It follows
that qr − 1 divides L. Thus S(y, u) is contained in P (m,L), and #P (m,L)� yv.

Consider the map from the power set of P (m,L) to (Z/LZ)∗ defined by sending
a subset of P (m,L) to the residue modulo L of the product of its elements. It
seems reasonable to assume that the elements of (Z/LZ)∗ will each have roughly
the same number of preimages in the power set of P (m,L), so we expect that there
should be roughly 2#P (m,L)/ϕ(L) subsets X of P (m,L) such that the product of
the elements of X is 1 modulo L. In other words, we expect

log #C(m,L) ≈ #P (m,L) log 2− logϕ(L).

Now, logϕ(L) is less than logL, and logL � y. It follows that we should have
log #C(m,L) � yv, and so we expect to be able to find integers L for which
#C(m,L) is as large as we like.
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4. Constructing Carmichael numbers of order 2

The argument given in Section 3 suggests a method for finding Carmichael num-
bers of order m: Find a value of L for which #P (m,L) log 2− logϕ(L) is large, and
then search for subsets of P (m,L) the products of whose elements are 1 modulo L.
Only about 1 out of every ϕ(L) subsets of P (m,L) will have the desired property,
so if L is too large we will have trouble finding such subsets. If m is greater than
2, we must take L to be extremely large in order for our heuristics to predict that
C(m,L) is nonempty, so examples of Carmichael numbers of order 3 or more seem
to be out of reach for the moment. However, as we will show in this section, it is
possible to use the above method to find Carmichael numbers of order 2.

Let us define the fecundity of a number L to be

F (L) = #P (2, L)− (logϕ(L))/ log 2,

so that we expect C(2, L) to contain about 2F (L) elements. When L does not have
too many divisors, one can compute the set P (2, L) näıvely by listing the divisors
d of L and searching for those d such that d + 1 is the square of a prime. We
computed F (L) by this method for many L built up of primes less than or equal
to 37, and we found several L with positive fecundity. For example, let

L1 = 27 · 33 · 52 · 7 · 11 · 13 · 17 · 19 · 29

and

L2 = 27 · 33 · 52 · 7 · 11 · 13 · 17 · 19 · 29 · 31.

Then #P (2, L1) = 45 and #P (2, L2) = 58, so that F (L1) ≈ 8.039 and F (L2) ≈
16.132.

We calculated the entire set C(2, L1), and found many elements of the set
C(2, L2), by using a modified “meet-in-the-middle” approach written using the
mathematics package MAGMA and run on one 195-MHz MIPS R10000 IP27 pro-
cessor of a Silicon Graphics Origin 2000 computer. Before we give the details of
our computation, let us first describe an unmodified meet-in-the-middle algorithm
for computing C(2, L).

Let L be given. Suppose we divide the set P (2, L) into two disjoint subsets S1

and S2 of roughly equal size, and for each i = 1, 2 let mi be the product of the primes
in Si. We can then calculate the set X of multiplicative inverses of the residues
(modulo L) of the 2#S1 divisors of m1 and the set Y of the residues (modulo L)
of the 2#S2 divisors of m2. For every element x in the intersection X ∩ Y , we can
then find all divisors e of m1 such that e ≡ x−1 mod L and all divisors f of m2

such that f ≡ x mod L. For each such pair (e, f) the product ef is congruent to
1 modulo L, and is therefore an element of C(2, L) (unless e = f = 1). This gives
a reasonably efficient method for computing C(2, L), but it requires that we store
about 2#P (2,L)/2 numbers of size about L. We used a slightly different method that
reduces the storage requirements at the expense of reducing the efficiency of the
algorithm.

To calculate C(2, L1), we divided the set P (2, L1) into three disjoint subsets S1,
S2, and S3 with #S1 = #S2 = 19 and #S3 = 7, and for each i = 1, 2, 3 we let mi

be the product of the primes in Si. We calculated the sets X and Y associated to
S1 and S2 as above, and for every one of the 27 divisors d of m3 we calculated the
set Yd = {dy : y ∈ Y }. For every element x in the intersection X ∩ Yd, we found
all divisors e of m1 such that e ≡ x−1 mod L1 and all divisors f of m2 such that
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df ≡ x mod L1. For each such triple (d, e, f) the product def is congruent to 1
modulo L1, and so is an element of C(2, L1) (unless d = e = f = 1). We found
that #C(2, L1) = 246, whereas our heuristic argument suggested that there would
be approximately 2F (L1) ≈ 263 elements in this set. The two elements of C(2, L1)
with the smallest number of prime divisors are

31 · 37 · 101 · 103 · 109 · 199 · 419 · 449 · 521 · 571 · 911 · 2089 · 2551 · 5851 · 11969

and

41 · 67 · 79 · 181 · 199 · 233 · 239 · 307 · 449 · 521 · 1217 · 1871 · 4159 · 5851 · 9281.

We used a similar method to construct elements of C(2, L2). We divided the set
P (2, L2) into the set S1 of its 20 smallest members, the set S2 of the 20 smallest
elements not in S1, and the set S3 of the remaining 18 elements, and we defined the
mi as before. We expect that there are about 2F (L2) ≈ 216.132 elements in C(2, L2),
so we expect that for every 4 divisors d of m3 we should find one element in X ∩Yd.
This expectation is borne out by experimentation. For example, of the 18 prime
divisors of m3, four give rise to Carmichael numbers of order 2; these Carmichael
numbers are

23 · 43 · 59 · 61 · 79 · 89 · 113 · 131 · 151 · 191 · 307 · 311 · 373
· 419 · 433 · 463 · 701 · 1217 · 2551,

23 · 53 · 59 · 79 · 89 · 101 · 109 · 113 · 131 · 181 · 199 · 233 · 307
· 349 · 433 · 701 · 911 · 1217 · 4523,

61 · 67 · 71 · 89 · 101 · 103 · 113 · 151 · 181 · 191 · 199 · 233
· 239 · 271 · 307 · 419 · 463 · 521 · 571 · 701 · 911 · 5279,

and

41 · 43 · 53 · 61 · 89 · 103 · 113 · 151 · 191 · 311 · 349
· 373 · 419 · 433 · 463 · 521 · 571 · 701 · 929 · 15313.

5. Examples of non-rigid Carmichael numbers

Let m be a positive integer. Recall that we defined a rigid Carmichael number of
order m to be a Carmichael number n of order m such that for every prime divisor
p of n and every integer r with 1 ≤ r ≤ m we have n ≡ 1 mod (pr − 1). We see
that every element of the set C(m,L) from Section 3 is a rigid Carmichael number
of order m. It is natural to ask whether all Carmichael numbers of order m are
rigid. The answer is no; we prove this by producing several Carmichael numbers n
of order 2 each having a prime divisor p with n 6≡ 1 mod (p2 − 1).

Let L0 be a positive integer and let p0 be a prime number that does not divide
L0 and such that gcd(L0, p

2
0−1) divides p0−1. Let P (2, L0) be as in Section 3, and

let C(2, L0, p0) denote the set of integers of the form p0n0, where n0 is a squarefree
integer, all of whose prime factors lie in P (2, L0), such that n0 ≡ 1 mod (p2

0−1) and
p0n0 ≡ 1 mod L0. (Our assumption on gcd(L0, p

2
0−1) ensures that such n0 are not

barred from existence by congruence conditions.) Then for every n in C(2, L0, p0)
and every prime divisor p of n we have

n ≡
{

1 mod (p2 − 1) if p 6= p0,

p mod (p2 − 1) if p = p0.
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Since such an n is squarefree, Theorem 1 shows that it is a Carmichael number of
order 2, but it certainly is not a rigid Carmichael number of order 2.

If L0 and p0 are as above, let L be the least common multiple of L0 and p2
0 −

1. Heuristics as in Section 3 indicate that we should expect there to be about
2#P (2,L0)/ϕ(L) elements in the set C(2, L0, p0).

For example, suppose we take L0 to be 27 ·33 ·52 ·7 ·11 ·13 ·17 ·19 ·29 ·31 (the num-
ber called L2 in Section 4), and suppose we let p0 = 1153 (the smallest prime that
does not divide L0 and that satisfies the gcd condition mentioned above). Since
#P (2, L0) = 58 and logϕ(L)/ log 2 ≈ 52, we expect there to be about 64 integers
in C(2, L0, p0). We used a slightly modified version of the technique described in
the preceding section to search for elements of C(2, L0, p0). (We chose the subsets
S1 and S2 of P (2, L0) so that they each contained only quadratic residues modulo 5
— this allowed us to immediately disregard those divisors of m3 that are quadratic
residues modulo 5, since we were trying to find a divisor of m1m2m3 that is con-
gruent modulo L to a quadratic nonresidue modulo 5.) We found there to be 53
elements in C(2, L0, p0); the smallest of these is

23 · 67 · 71 · 89 · 109 · 113 · 191 · 199 · 233 · 239 · 271 · 307 · 373
· 419 · 521 · 911 · 929 · 1153 · 1217 · 1429 · 2089 · 2729 · 23561,

and the largest is

23 · 37 · 43 · 53 · 59 · 61 · 67 · 71 · 89 · 103 · 109 · 113 · 131 · 181 · 191 · 199 · 239 · 271
· 311 · 373 · 379 · 419 · 433 · 463 · 521 · 683 · 701 · 911 · 929 · 991 · 1153 · 1429

· 2089 · 2551 · 3191 · 4159 · 5279 · 11969 · 15809 · 23561 · 23869 · 244529.

6. Finite étale algebras

In this section we will show that the rigid Carmichael numbers have a natural
interpretation in terms of finite étale algebras, an interpretation that explains our
choice of the term “rigid”.

For the benefit of those readers unfamiliar with finite étale R-algebras, we present
a definition equivalent to the usual one (found for example in Section I.3 of [14])
that is applicable when R is a finite product of local rings. First suppose that
R is itself a local ring — that is, a ring with a unique maximal ideal. Then an
R-algebra S is finite étale if it is free of finite rank as an R-module and if for some
(or equivalently, every) R-module basis {e1, . . . , en} of S, the determinant of the
n-by-n matrix [TrS/R(eiej)] is a unit of R; here TrS/R is the trace map from S to
R. Now suppose that R is equal to R1 × · · · × Rm, where the Ri are local. Then
an R-algebra S is finite étale if it is of the form S = S1 × · · · × Sm, where each
Si is a finite étale Ri-algebra. (Note that the zero ring is a finite étale Ri-algebra,
so some of the Si may be zero.) Since every finite ring is a finite product of local
rings, our definition can be used when R is finite. We see, for example, that if n is
a squarefree integer then a finite étale Z/nZ-algebra is simply a finite product of
finite fields, each of whose characteristics divides n.

Theorem 3. Let m and n be positive integers with n composite.
(a) The integer n is a Carmichael number of order m if and only if nth-power

raising is an endomorphism of every finite étale Z/nZ-algebra that can be
generated as a Z/nZ-module by m elements.
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(b) The integer n is a rigid Carmichael number of order m if and only if nth-
power raising is the identity map on every finite étale Z/nZ-algebra that can
be generated as a Z/nZ-module by m elements.

Proof. Let us prove the “if” parts of statements (a) and (b). Suppose nth-power
raising is an endomorphism of every finite étale Z/nZ-algebra that can be generated
as a Z/nZ-module by m elements. Since Z/nZ is a finite étale Z/nZ-algebra, the
argument that we gave in the first paragraph of the proof of Theorem 1 shows that
n is squarefree. Now let p be a prime divisor of n and let r be an integer with
1 ≤ r ≤ m. By the comment just before the statement of the theorem, the finite
field Fpr is a finite étale Z/nZ-algebra, so the argument that we gave in the second
paragraph of the proof of Theorem 1 shows that there is an integer i such that
n ≡ pi mod (pr − 1); furthermore, we have n ≡ 1 mod (pr − 1) if nth-power raising
is the identity on Fpr . Thus n satisfies the two conditions of Theorem 1, so n is a
Carmichael number of order m, and n is rigid if nth-power raising is the identity
on every finite étale Z/nZ-algebra that can be generated as a Z/nZ-module by m
elements.

The “only if” part of statement (a) is obvious. Let us prove the “only if” part of
statement (b). If n is a rigid Carmichael number of order m, then Theorem 1 shows
that n is squarefree. It is immediate from the definition of rigidity that nth-power
raising is the identity map on every finite étale Z/nZ-algebra of the form Fpr , where
p is a prime divisor of n and 1 ≤ r ≤ m. But every finite étale Z/nZ-algebra R
that can be generated as a Z/nZ-module by m elements is a product of algebras of
the form Fpr with 1 ≤ r ≤ m, so nth-power raising is the identity on every such R
as well.

References

[1] W. W. Adams: Characterizing pseudoprimes for third-order linear recurrences, Math. Comp.
48 (1987), 1–15. MR 87k:11014

[2] W. W. Adams and D. Shanks: Strong primality tests that are not sufficient, Math. Comp.
39 (1982), 255–300. MR 84c:10007

[3] W. R. Alford, A. Granville, and C. Pomerance: There are infinitely many Carmichael
numbers, Ann. of Math. (2) 139 (1994), 703–722. MR 95k:11114

[4] R. Baillie and S. S. Wagstaff, Jr.: Lucas pseudoprimes, Math. Comp. 35 (1980),
1391–1417. MR 81j:10005

[5] A. Di Porto and P. Filipponi: Generating M -strong Fibonacci pseudoprimes, Fibonacci
Quart. 30 (1992), 339–343. MR 93i:11013

[6] A. Di Porto, P. Filipponi, and E. Montolivo: On the generalized Fibonacci pseudoprimes,
Fibonacci Quart. 28 (1990), 347–354. MR 91m:11007
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des nombres (Quebec, PQ, 1987) (J.-M. De Koninck and C. Levesque, eds.), de Gruyter,
Berlin-New York, 1989. MR 90k:11166

[10] C.-N. Hsu: On Carmichael polynomials, J. Number Theory 71 (1998), 257–274.
MR 99i:11116
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