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SPHERICAL MARCINKIEWICZ-ZYGMUND INEQUALITIES
AND POSITIVE QUADRATURE

H. N. MHASKAR, F. J. NARCOWICH, AND J. D. WARD

Abstract. Geodetic and meteorological data, collected via satellites for ex-
ample, are genuinely scattered and not confined to any special set of points.
Even so, known quadrature formulas used in numerically computing integrals
involving such data have had restrictions either on the sites (points) used or,
more significantly, on the number of sites required. Here, for the unit sphere
embedded in Rq, we obtain quadrature formulas that are exact for spheri-
cal harmonics of a fixed order, have nonnegative weights, and are based on
function values at scattered sites. To be exact, these formulas require only a
number of sites comparable to the dimension of the space. As a part of the
proof, we derive L1-Marcinkiewicz-Zygmund inequalities for such sites.

1. Introduction

In many practical applications, one needs to evaluate certain integrals on a sphere
embedded in a Euclidean space. Often, these integrals cannot be computed in closed
form, and a quadrature (numerical integration, cubature) formula is necessary. For
example, given that the gravitational potential is assumed known on the earth’s sur-
face, its value at other levels is given by a convolution integral ([6, p. 9]). Numerical
estimates of its actual values were given in [6] using low accuracy quadrature rules.
Certain initial value problems involving the Gauss-Weierstrass (heat) kernels have
solutions expressed as convolution integrals (see [7, p. 6]). Again, application of high
accuracy quadrature rules will give accurate numerical solutions. More generally,
whenever Galerkin techniques are used to solve differential equations numerically,
high accuracy quadrature formulas are of critical importance.

Let q ≥ 1 be an integer, and Sq denote the (surface of the) unit sphere embed-
ded in the Euclidean space Rq. In this paper, we obtain quadrature formulas that
use function values at scattered points (sites) on Sq. These formulas are exact for
spherical harmonics of degree less than or equal to a given integer n, and have non-
negative weights that can be computed by known methods from linear or quadratic
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programming. The number of sites required is comparable to the dimension of the
spherical harmonics for which the formulas are exact.

In the case of “equal-angle” sites, Driscoll and Healy [2] and Potts, Steidl, and
Tasche [17] obtained quadrature formulas on Sq that have the other properties
mentioned above. More recently, Petrushev [16] found quadrature formulas that
use specific sites, which are not “equal-angle”, that collect around the poles of Sq.
Jetter, Stöckler, and Ward [11] obtained quadrature formulas for scattered sites;
these formulas used weights that were real, but possibly negative.

The quadrature formulas given in this paper are based on new Marcinkiewicz-
Zygmund inequalities for Sq, which are derived in Section 3. These inequalities
provide isomorphisms between the space of spherical harmonics having degree at
most n and the space comprising the restrictions of these spherical harmonics to
finitely many scattered sites; the former space is endowed with the Lp norm, and the
latter, with a weighted `p norm. The results derived in this paper are apparently
new even in the case of the circle.

In addition to being of central importance in the development of quadrature for-
mulas, the Marcinkiewicz-Zygmund inequalities play a role in establishing uniform
boundedness of discretized operators used to approximately reconstruct functions
from data sampled at scattered sites. We will discuss these operators and the
related reconstruction methods in a follow-up paper [13].

The outline of this paper is as follows. In the next section, after summarizing
certain central facts about spherical harmonics and establishing notation, we dis-
cuss delayed-mean operators, which were introduced by Stein [18]. These kernels,
together with an adaptation of the Mastroianni-Totik theory of doubling weights,
discussed in subsection 3.1, and decompositions of Sq related to scattered sites, de-
veloped in subsection 3.2, are the ingredients we use in subsection 3.3 to prove the
estimate that is central to obtaining Lp versions of Marcinkiewicz-Zygmund (MZ)
inequalities for Sq. In Section 4, we use the MZ inequalities and the estimate from
subsection 3.3 to obtain scattered site quadrature formulas for Sq. In that section,
we also discuss ways of computing the weights.

2. Delayed means

2.1. Spherical harmonics. Let q ≥ 1 be an integer which will be fixed throughout
the rest of this paper, and let Sq be the (surface of the) unit sphere in the Euclidean
space Rq+1, with dµq being its usual volume element. We note that the volume
element is invariant under arbitrary coordinate changes. The volume of Sq is

ωq :=
∫
Sq
dµq =

2π(q+1)/2

Γ((q + 1)/2)
.(2.1)

Corresponding to dµq, we have the inner product and Lp(Sq) norms,

〈f, g〉Sq :=
∫
Sq
f(x)g(x)dµq(x),(2.2)

‖f‖Sq, p :=


{∫

Sq
|f(x)|pdµq(x)

}1/p

if 1 ≤ p <∞,
ess sup

t∈S
|f(t)| if p =∞.

(2.3)

The class of all measurable functions f : Sq → C for which ‖f‖Sq, p < ∞ will
be denoted by Lp(Sq), with the usual understanding that functions that are equal
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almost everywhere are considered equal as elements of Lp(Sq). All continuous
complex valued functions on Sq will be denoted by C(Sq).

For integer ` ≥ 0, the restriction to Sq of a homogeneous harmonic polynomial of
degree ` is called a spherical harmonic of degree `. Most of the following information
is based on [15] and [19, §IV.2], although we use a different notation. The class of all
spherical harmonics of degree ` will be denoted by Hq

` , and the class of all spherical
harmonics of degree ` ≤ n will be denoted by Πq

n. Of course, Πq
n =

⊕n
`=0 Hq

` , and
it comprises the restriction to Sq of all algebraic polynomials in q + 1 variables of
total degree not exceeding n. The dimension of Hq

` is given by

d q` := dim Hq
` =


2`+ q − 1
`+ q − 1

(
`+ q − 1

`

)
if ` ≥ 1,

1 if ` = 0,
(2.4)

and that of Πq
n is

∑n
`=0 d

q
` .

The spherical harmonics have an intrinsic characterization as the eigenfunctions
of the Laplace-Beltrami operator, ∆Sq . The operator ∆Sq is an elliptic, (unbounded)
self-adjoint operator on L2(Sq), is invariant under arbitrary coordinate changes, and
its spectrum comprises distinct eigenvalues λ` := `(` + q − 1), ` = 0, 1, . . . , each
having finite multiplicity, dq` . The space Hq

` can be characterized intrinsically as
the eigenspace corresponding to λ`.

Since the λ`’s are distinct and the operator is self-adjoint, the spaces Hq
` ’s are

mutually orthogonal relative to (2.2). Also, L2(Sq) = closure
{⊕

` Hq
`

}
. Hence, if

we choose an orthonormal basis {Y`,k : k = 1, . . . , dq`} for each Hq
` , then the set

{Y`,k : ` = 0, 1, . . . , and k = 1, · · · , d q`} is an orthonormal basis for L2(Sq). Finally,
one has the well-known addition formula [15]

d q∑̀
k=1

Y`,k(x)Y`,k(y) =
d q`
ωq
P`(q + 1; x · y), ` = 0, 1, . . . ,(2.5)

where P`(q + 1;x) is the degree-` Legendre polynomial in q + 1-dimensions. (We
note that Müller’s ωq and N(q, `) are the same as our ωq+1 and d q+1

` .)
The Legendre polynomials are normalized so that P`(q + 1; 1) = 1, and satisfy

the orthogonality relations [15, Lemma 10]∫ 1

−1

P`(q + 1;x)Pk(q + 1;x)(1− x2)
q
2−1dx =

ωq
ωq−1d

q
`

δ`,k.(2.6)

They are related to the ultraspherical (Gegenbauer) polynomials P ( q−1
2 )

` (cf. [20],
[15, p. 33]), and the Jacobi polynomials, P (α,β)

` , with α = β = q
2 − 1, via

P
( q−1

2 )

` (x) =
(
`+ q − 2

`

)
P`(q + 1;x) (q ≥ 2),(2.7)

P
( q2−1, q2−1)

` (x) =
(
`+ q

2 − 1
`

)
P`(q + 1;x).(2.8)

When q = 1, the Legendre polynomials P`(2;x) coincide with the Chebyshev poly-
nomials T`(x); the ultraspherical polynomials P (0)

` (x) = (2/`)T`(x), if ` ≥ 1. For
` = 0, P (0)

0 (x) = 1.
In addition to the inner product and norms defined above on Sq, we will need

the following related inner product and norms for [−1, 1], with weight function
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wq(x) := (1 − x2)
q
2−1:

〈f, g〉wq :=
∫ 1

−1

f(x)g(x)wq(x)dx, wq(x) := (1− x2)
q
2−1,(2.9)

‖f‖wq, p :=


{∫ 1

−1

|f(x)|pwq(x)dx
}1/p

if 1 ≤ p <∞,

ess sup
x∈[−1,1]

|f(x)| if p =∞.
(2.10)

Finally, we note that for any φ ∈ L1
wq [−1, 1], and y ∈ Sq, we have∫

Sq
φ(x · y)dµq(x) = ωq−1

∫ 1

−1

φ(x)wq(x)dx.(2.11)

2.2. Cesàro means and delayed means. The addition formula allows us to
express a variety of projection operators directly in terms of simple kernels. For
example, the projection of f ∈ L2(Sq) onto Hq

` is just

P`f(x) := Proj Hq
`
f(x) =

d q`
ωq

∫
Sq
P`(q + 1; x · y)f(y)dµq(y).(2.12)

For the sequence {P`}n`=0 of these mutually orthogonal projections, we can form
the order-k Cesàro means in the usual way,

Σ(k)
n :=

(
n+ k

n

)−1 n∑
`=0

(
n− `+ k

n− `

)
P` .(2.13)

The resulting Cesàro operators have simple representations in terms of kernels. One
need only replace the projections above by their kernels given in (2.12), the result
being

σ(k)
n (x · y) =

(
n+ k

n

)−1 n∑
`=0

(
n− `+ k

n− `

)
d q`
ωq
P`(q + 1; x · y).(2.14)

The kernel σ(k)
n is a univariate polynomial having degree n. Concerning the L1(wq)

norms of these polynomials, we have the following.

Proposition 2.1. The sequence of L1 norms ‖σ(k)
n ‖wq ,1 is uniformly bounded if

and only if k > q−1
2 .

Proof. From (2.6) and (2.10), we have ‖P`(q + 1; ·)‖2wq ,2 = ωq
ωq−1d

q
`
. Since

P`(q + 1; 1) = 1, we also have that

d q`
ωq
P`(q + 1;x) = ω−1

q−1‖P`(q + 1; ·)‖−2
wq,2
P`(q + 1; 1)P`(q + 1;x).

Because the expression on the right above is homogeneous in P`(q + 1; ·), we will
not alter it if we replace P` by the Jacobi polynomial P ( q2−1, q2−1)

` . Also, following
[20, §4.3], let h( q2−1, q2−1) = ‖P ( q2−1, q2−1)

` ‖2wq,2. Making all of these replacements in
(2.14), we obtain

σ(k)
n (x) = ω−1

q−1

(
n+ k

n

)−1 n∑
`=0

(
n− `+ k

n− `

)
{h(α,β)}−1P

(α,β)
` (1)P (α,β)

` (x),(2.15)
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where α = β = q
2 − 1. From [20, §9.41], we see that the sequence ‖σ(k)

n ‖wq,1 is
bounded if and only if k > α+ 1

2 = q−1
2 .

It immediately follows from (2.15) and formula (2.11) that for every g ∈ C(Sq),

‖Σ(k)
n (g)‖Sq,∞ ≤ ωq−1‖σ(k)

n ‖wq,1‖g‖Sq,∞.
Along with Proposition 2.1 this yields

Corollary 2.1. If k > q−1
2 , then there is a constant C such that the linear opera-

tors Σ(k)
n : L∞(Sq)→ C(Sq) satisfy ‖Σ(k)

n ‖ ≤ C for all n.

The Cesàro operators are needed to construct the delayed-mean operators intro-
duced by Stein [18]. These operators reduce to the identity on Πq

n and have other
desirable properties. A simple example is

T (1)
n := 2Σ(1)

2n−1 − Σ(1)
n−1 =

n∑
`=0

P` +
2n−1∑
`=n+1

2n− `
n

P` , n ≥ 1.

The first sum on the right is the orthogonal projection onto Πq
n and the second

maps Πq
n to 0. If q is 1 or 2, then by Corollary 2.1 the sequence of operators

T
(1)
n : L∞(Sq) → C(Sq) satisfies ‖T (1)

n ‖ ≤ 3C for all n ≥ 1. We remark that if
q = 3, then we need k > (3 − 1)/2 = 1. In general, we denote the smallest integer
k for which k > q−1

2 by

kq :=
⌊
q − 1

2

⌋
+ 1 =

{
q+1

2 if q is odd;
q
2 if q is even.

(2.16)

The general form of a delayed-mean operator is this:

T (k)
n :=

k+1∑
j=1

ak,nj Σ(k)
jn−1 , n ≥ 1.(2.17)

Theorem 2.1 ([18, Theorem 1]). Let k be a fixed nonnegative integer. There is
a positive integer Nq such that for n ≥ Nq, one can find coefficients ak,nj ∈ R,

j = 1, . . . , k + 1 such that T (k)
n : L∞(Sq)→ C(Sq) in (2.17) satisfies

T (k)
n =

n∑
`=0

P` +
(k+1)n−1∑
`=n+1

bk,n` P` ,(2.18)

where the bk,n` are linear combinations of the ak,nj ’s. Moreover, the coefficients ak,nj
satisfy |ak,nj | ≤ A, where A is independent of n and j. Finally, if k ≥ kq, then the

norms ‖T (k)
n ‖ are uniformly bounded in n.

Proof. See [18]. Only the last statement requires comment. For k ≥ kq > q−1
2 , the

Cesàro operators in (2.17) are uniformly bounded. Since the coefficients are also
uniformly bounded, the norms of T (k)

n are too.

The delayed-mean operators T (k)
n inherit a kernel representation from the Cesàro

operators; namely,

τ (k)
n (x · y) =

k+1∑
j=1

ak,nj σ
(k)
jn−1(x · y).(2.19)
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Concerning these, we obtain the following result by combining the previous results
in this section.

Corollary 2.2. Let k ≥ kq > q−1
2 be a fixed integer. If n ≥ Nq, then τ (k)

n in (2.19)
is a univariate polynomial of degree (k+1)n−1, the norms ‖τ (k)

n ‖wq,1 are uniformly
bounded in n, and τ (k)

n is a “reproducing kernel” on Πq
n.

From the kernel representation for T (k)
n , and Theorem 1 of [14], we have the

following stronger version of Theorem 2.1.

Corollary 2.3. Let 1 ≤ p ≤ ∞. With the notation as in Theorem 2.1, the operator
norms of T (k)

n : Lp(Sq)→ Lp(Sq) are uniformly bounded for k ≥ kq; i.e., for every
f ∈ Lp(Sq) and k ≥ kq, we have

‖T (k)
n f‖Sq,p ≤ c‖f‖Sq,p.(2.20)

3. Marcinkiewicz-Zygmund inequalities for Sq

The main objective of this section is to derive Marcinkiewicz-Zygmund (MZ)
inequalities for Πq

n, which in turn will help us to establish the existence of the
quadrature formulas. To do this, we first need to discuss doubling weights, which
were introduced by Mastroianni and Totik [12], and their connection with Markov-
Bernstein inequalities for trigonometric polynomials. These Markov-Bernstein in-
equalities will lead to the MZ inequalities for Sq, described in Theorem 3.1.

3.1. Doubling weights. Following Mastroianni and Totik [12], a 2π-periodic, in-
tegrable, and nonnegative function W will be called a doubling weight if for any
x ∈ [−π, π] and ρ > 0, ∫ x+2/ρ

x−2/ρ

W (t)dt ≤ 2γ
∫ x+1/ρ

x−1/ρ

W (t)dt.(3.1)

For example, for any κ > −1, | sin t|κ is a doubling weight. Moving averages
of doubling weights will play an important role here. Consider any interval I =
[x− 1/ρ, x+ 1/ρ]. We associate with W the following family of moving averages,

Wρ(x) :=
1
|I|

∫
I

Wdt =
ρ

2

∫ x+1/ρ

x−1/ρ

W (t)dt .(3.2)

By multiplying both sides of (3.1) by ρ/4, we obtain an equivalent definition in
terms of moving averages,

Wρ/2(x) ≤ 2γ−1Wρ(x) .(3.3)

We need the following results due to Erdélyi [4].

Proposition 3.1. Let W be a doubling weight, ρ > 0, Wρ be as in (3.2), 0 < p <
∞, and T be a trigonometric polynomial. The constants used here, denoted simply
by C, depend only on γ.
(a) For every x, y ∈ R,

Wρ(x)
(2 + 2ρ|x− y|)γ ≤Wρ(y) ≤ (2 + 2ρ|x− y|)γWρ(x).(3.4)
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(b) If deg T ≤ ρ, then∫ π
−π |T (t)|pW (t)dt
C(1 + p)C

≤
∫ π

−π
|T (t)|pWρ(t)dt ≤ C(1 + p)C

∫ π

−π
|T (t)|pW (t)dt.(3.5)

(c) The following Bernstein inequalities hold for any T :∫ π

−π
|T ′(t)|pW (t)dt ≤ C1+p(deg T )p

∫ π

−π
|T (t)|pW (t)dt.(3.6)

Remark. In [4], an integer n was used instead of the continuous variable ρ. However,
it is straightforward to show that if n ≤ ρ ≤ n+ 1, then

ρ

n+ 1
Wn+1(x) ≤Wρ(x) ≤ n

ρ
Wn(x).

Hence, we may use the continuous variable ρ in place of the integer n.
We conclude our discussion of doubling weights with the following lemma.

Lemma 3.1. Let W be a doubling weight, I be a closed interval, and g : I → [0,∞)
be integrable and have I as its support. If |I| ≤ 2ρ−1, then∫

I

g(t)dt
∫
I

W (u)du ≤ 22γ+1ρ−1

∫
I

g(t)Wρ(t)dt.(3.7)

Proof. Regard g as a weight function. Since Wρ is continuous, the mean value
theorem for integrals implies that there exists t̄ ∈ I such that

Wρ(t̄) =

∫
I g(t)Wρ(t)dt∫

I g(t)dt
.

If tc is the center of the interval I, then∫
I

W (t)dt ≤
∫ tc+1/ρ

tc−1/ρ

W (t)dt =
2
ρ
Wρ(tc),

and |tc − t̄| < |I|/2 < ρ−1. By (3.4), we have∫
I

W (t)dt ≤ 2
ρ
Wρ(tc) ≤

2
ρ

(2 + 2)γWρ(t̄) =
22γ+1ρ−1

∫
I g(t)Wρ(t)dt∫

I
g(t)dt

.

The result follows on multiplying both sides by
∫
I g(t)dt and combining the inequal-

ities above.

3.2. Scattered points and compatible decompositions. We now want to con-
sider a finite subset C0 ⊂ Sq comprising distinct, scattered points. This set will
provide the sites required in the quadrature formulas we will derive later. The
mesh norm for C0 is defined by

δC0 := max
x∈Sq

dist(x, C0) := max
x∈Sq

min
y∈C0

dist(x,y),(3.8)

where dist(x,y) := arccos(x · y) is the geodesic distance between x,y ∈ Sq.
In addition to these sites, we need a decomposition R for Sq.

Definition 3.1. Let R be a finite collection of closed, nonoverlapping (i.e., having
no common interior points) regions R ⊂ Sq such that

⋃
R∈RR = Sq. We will say

thatR is C0-compatible if eachR ∈ R contains at least one point of C0 in its interior.
The partition norm for R is defined by

‖R‖ := max
R∈R

diamR.



1120 H. N. MHASKAR, F. J. NARCOWICH, AND J. D. WARD

If R is a C0-compatible decomposition, we can choose one point ξ ∈ C0 interior
to each region. We can then use this point to label uniquely the region as Rξ; the
set of such points will be denoted by C. Of course, C ⊆ C0 and R = {Rξ}ξ∈C.
Furthermore, no point in Rξ can be farther from ξ than diam Rξ ≤ ‖R‖; hence,
δC0 < ‖R‖. Moreover, it is also easy to see that R is C-compatible, so δC < ‖R‖.
Finally, removing points from C0 only increases its mesh norm; hence, we have the
bounds

δC0 ≤ δC < ‖R‖ .(3.9)

Once we have found a C0-compatible decomposition R, we will make use only of
the points in the reduced set C. For that reason, we will work only with C. Using the
remaining points from C0 will have no effect on how well our quadrature formulas
behave for smooth functions. They can, however, be used to average values in a
region and reduce noise. We will not address this topic here.

A C0-compatible decomposition R serves to cluster dense subsets in C0 into
regions, so that such subsets can be treated as units. The interior point of R then
represents the cluster. For q ≥ 2, it is possible to use a boundary point in C0 ∩ R
for the same purpose. However, ambiguities arise, and little is gained by it. In the
q = 1-case, the circle, no ambiguities arise, since the regions are closed intervals in
[−π, π], and boundary points are just endpoints of such intervals. We make use of
this fact in the proof of Corollary 4.1.

In our next result, we will show that for every C0 we can always construct a
C0-compatible decomposition R for which ‖R‖, δC0 , δC , |C|−

1
q are all comparable.

This will be very important in what follows.
To do this, we will make use of regions that are spherical simplices. For q = 2,

these are just spherical triangles, and for q = 3 they are spherical tetrahedra. See
Flanders’ book [5, §5.6] for more details.

Proposition 3.2. If C0 and δC0 are as above, then there exists a C0-compatible
decomposition R for which each R ∈ R is a spherical simplex. A reduced set C can
be found with each point ξ ∈ C in the interior of Rξ. In addition, the norm of R,
the mesh norm δC0 , and the common cardinality of R and C satisfy

2δC0 ≤ ‖R‖ ≤ 8q
√

2q(q + 1)δC0 ,(3.10)

|R| = |C| = 2q+1

⌊
1

2q
√
q + 1 δC0

⌋q
,(3.11)

2√
q(q + 1)

(|C|/2)−
1
q ≤ ‖R‖ ≤ 4

√
2q (|C|/2)−

1
q .(3.12)

Further, for any R ∈ R and x in the interior of R, any geodesic through x intersects
R in exactly two points.

Proof. First, we illustrate the proof for the 2-sphere, where slightly better constants
can be obtained. Divide the sphere into octants; these are of course bounded by
geodesics (arcs of great circles). Consider the first octant, OI . Let u = (1 1 1). If
x ∈ OI , then X = x

x·u sets up a one-to-one correspondence between points in OI
and the (equilateral) triangle TI formed by the points (1 0 0), (0 1 0), and (0 0 1).
The most important feature of this correspondence is that the geodesic joining two
points x ∈ OI and y ∈ OI corresponds to the line segment joining X and Y on TI ,
because all four points lie on a plane through the origin. Moreover, with a little
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work, one sees that if θ ∈ [0, π/2] is the geodesic distance between x,y ∈ OI , then

1
2
θ ≤ 2√

3
sin(θ/2) ≤ ‖X − Y ‖ ≤ 4 sin(θ/2) ≤ 2θ ,

where ‖X − Y ‖ denotes the Euclidean distance between X and Y . Divide TI
into N2 congruent equilateral triangles, with sides of length L =

√
2/N . Each of

these triangles contains an inscribed circle of radius L/(2
√

3). The corresponding
spherical triangles thus contain a spherical cap of radius L/(4

√
3). They are no

longer equilateral, but their sides have lengths less than 2L. Now, choose N =
b(2
√

6δC0)−1c, so that N ≤ (2
√

6δC)−1 < N + 1, so that δC0 ≤ (2
√

6N)−1 =
L/(4

√
3).

Repeat this procedure for each octant. If necessary, rotate the set of triangles
to ensure that no point of C0 lies on the boundary of one of the spherical triangles.
Since no point of the sphere is at a distance greater than δC0 from C0, and since
each spherical triangle contains a cap of radius L/(4

√
3) ≥ δC0 , with no points of

the cap lying on the edge of the triangle, there must be a point, ξ, interior to the
triangle that is in C0. Label the triangle (interior plus boundary) as Rξ. Note that
2δC0 < diamRξ ≤ 2L ≤ 8

√
3δC0 . Since a geodesic passing through the interior of

an Rξ corresponds to a straight line intersecting the corresponding planar triangle,
it will intersect ∂Rξ twice. Thus, {Rξ} is C0-compatible, and (3.10) holds with
8
√

3δC0 on the right hand side instead of the stated estimate. Concerning |R|, note
that the number of spherical triangles per octant is N2 = b(2

√
6δC0)−1c2, so there

are 8b(2
√

6δC0)−1c2 in the decomposition and in the reduced set C. For the last set
of bounds involving |C|, see the general case below.

The q-dimensional sphere, Sq, may be dealt with similarly. Sq is divided into
2q+1 spherical simplices analogous to octants. Let OI be the spherical simplex
on which all the coordinates of x ∈ Sq ⊂ Rq+1 are nonnegative, and let TI =
{
∑q+1
j=1 tjej | tj ∈ [0, 1],

∑
j tj = 1} be the (equilateral) Euclidean simplex formed

from the standard set of unit vectors in Rq+1, {ej}q+1
j=1. As before, one can eas-

ily show how distances on the spherical simplices are related to distances on the
corresponding Euclidean simplices; namely, if θ ∈ [0, π/2] is the geodesic distance
between x,y ∈ OI , then

1
2
√
q
θ ≤ 2 sin(θ/2)√

q + 1
≤ ‖X − Y ‖ ≤ 2

√
q + 2 sin(θ/2) ≤ 2

√
q θ.

It is straightforward to show that an equilateral Euclidean simplex, with L being
the length of a side, contains a sphere of radius L/

√
2q(q + 1). The corresponding

spherical simplex then contains a cap of radius L/(2q
√

2(q + 1)). Let L =
√

2/N .
Taking N = b(1/(2q

√
q + 1) δC0)c gives us a radius larger than δC0 , so 2δC0 ≤

diam Rξ. Moreover,

diam Rξ ≤ 2
√
qL =

2
√

2q
N

≤ 4
√

2q
N + 1

≤ 8q
√

2q(q + 1) δC0 .

Hence, R is a C0-compatible decomposition, which satisfies also the condition re-
garding the choice of a reduced subset and the geodesic condition. Further, (3.10)
holds. The number of simplices in one “octant” is N q, and so the cardinality of R
is 2q+1b(1/(2q

√
q + 1) δC0)cq. Since there is one point in C per simplex, this is also

equal to |C|. This proves (3.11).
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To obtain the bounds involving |C|, observe that 2N = (|C|/2)1/q, and so the
right side of the third inequality follows from ‖R‖ ≤ 2

√
2q
N . For the left side, note

that each spherical simplex contains a spherical cap of radius L/(2q
√

2(q + 1)) =
1/(2q

√
(q + 1)N), so 2/(q

√
(q + 1)2N) ≤ ‖R‖. Replacing 2N by (|C|/2)1/q com-

pletes the proof.

We point out that in the Sq case, we used somewhat cruder bounds than in the
q = 2 demonstration. This results in somewhat different bounds when we reduce
the numbers in the general q case to q = 2.

3.3. Fundamental estimate. Let V (·) be a univariate polynomial having degree
at least n. In addition, we require that for every P ∈ Πq

n, we have

P (x) =
∫
Sq
V (x · y)P (y)dµq(y).(3.13)

In other words, V is a reproducing kernel for Πq
n. We wish to estimate the quantity

EC(P ) :=
∣∣∣∣ ∫
Sq
|P (x)|dµq(x)−

∑
ξ∈C
|P (ξ)|µq(Rξ)

∣∣∣∣ .(3.14)

From the triangle inequality and (3.13), one has that

EC(P ) ≤
∑
ξ∈C

∫
Rξ

|P (x)− P (ξ)| dµq(x)

≤ ‖P‖Sq,1 sup
y∈Sq

∑
ξ∈C

∫
Rξ

|V (x · y) − V (ξ · y)| dµq(x)

 .

(3.15)

We want to estimate the sum on the right above.
Consider the standard parametrization of Sq embedded in Rq+1 in terms of the

angles θ1, . . . , θq, where −π ≤ θ1 ≤ π and 0 ≤ θk ≤ π for k = 2, . . . , q. If x ∈ Sq,
then the kth component of x is given by

xk =


∏q
j=1 sin θj k = 1,

cos θk−1

∏q
j=k sin θj 2 ≤ k ≤ q,

cos θq k = q + 1 .
(3.16)

The measure µq on Sq can be expressed in these coordinates as

dµq(x) =
q∏

k=1

sink−1(θk)dθk.(3.17)

Note that

dµq = sinq−1(θq)dθqdµq−1,(3.18)

and that one can extend sinq−1(θq) to the even, 2π-periodic doubling weight
W (·) = | sin(·)|q−1.

Proposition 3.3. Let R be a C-compatible decomposition of Sq, with mesh norm
‖R‖. If V (·) is a univariate polynomial for which degV ≤ (2‖R‖)−1, then

sup
y∈Sq

∑
ξ∈C

∫
Rξ

|V (x · y) − V (ξ · y)| dµq(x)

 ≤ Cq‖R‖ degV ‖V ‖wq,1,(3.19)
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where Cq depends only on the dimension q.

Proof. Fix a point y ∈ Sq and use spherical coordinates, with the point y taken to
be the north pole. If we set θ = θq in (3.16), then x · y = cos θ and y · ξ = cos θξ,
and

Iξ :=
∫
Rξ

|V (x · y)− V (ξ · y)| dµq(x) =
∫
Rξ

∣∣∣∣ ∫ θ

θξ

d

dt
V (cos t)dt

∣∣∣∣dµq(x).

If θ± are the low and high values for the coordinate θq in the region Rξ, then we
have

Iξ ≤ µq(Rξ)
∫ θ+

θ−

∣∣∣∣ ddtV (cos t)
∣∣∣∣dt.(3.20)

Of course, θξ ∈ [θ−, θ+], because ξ is in Rξ.
The next step is to cover the sphere with overlapping “bands”. Take N = b π

‖R‖c.
For k = 1, . . . , N , let Jk := [(k − 1)π/N, kπ/N ], and for k = 1, . . . , N − 1, define
Bk to be all x ∈ Sq with θq ∈ Jk ∪ Jk+1. The common length for each interval is
π/N ≥ ‖R‖ ≥ diam(Rξ) ≥ θ+−θ−. Thus, if θ− ∈ Jk, then [θ−, θ+] ⊂ Jk∪Jk+1 or,
when k = N − 1, [θ−, θ+] ⊂ JN−1 ⊂ JN−2 ∪ JN−1. It follows that when θ− ∈ Jk,
we have Rξ ⊂ Bk and that the bound in equation (3.20) may be replaced by

Iξ ≤ µq(Rξ)
∫ (k+1)π/N

(k−1)π/N

∣∣∣∣ ddtV (cos t)
∣∣∣∣dt.

Note that the Rξ’s are nonoverlapping (no common interior points), so that we
have

∑
Rξ⊂Bk µq(Rξ) ≤ µq(Bk). Summing Iξ from all Rξ ⊂ Bk then yields∑

Rξ⊂Bk

Iξ ≤ µq(Bk)
∫ (k+1)π/N

(k−1)π/N

∣∣∣∣ ddtV (cos t)
∣∣∣∣dt.

Since each Rξ is contained in at least one band, summing over the contribution
from each band majorizes

∑
ξ∈C Iξ. Combining this with the previous estimate

yields the bound,∑
ξ∈C

Iξ ≤
N−1∑
k=1

µq(Bk)
∫ (k+1)π/N

(k−1)π/N

∣∣∣∣ ddtV (cos t)
∣∣∣∣dt .

Moreover, the volume of Bk is given by µq(Bk) = ωq−1

∫ (k+1)π/N

(k−1)π/N
W (t)dt, where

W (t) = | sin(t)|q−1 extends sinq−1(t) to be an even doubling weight. After inserting
this in the bound above, we obtain∑

ξ∈C
Iξ ≤

N−1∑
k=1

ωq−1

∫ (k+1)π/N

(k−1)π/N

W (t)dt
∫ (k+1)π/N

(k−1)π/N

∣∣∣∣ ddtV (cos t)
∣∣∣∣dt .(3.21)

We now apply Lemma 3.1 to the product of the two integrals in equation (3.21).
Choose ρ = (2‖R‖)−1 < N/π. From (3.21) and (3.7), we arrive at∑

ξ∈C
Iξ ≤ 22γ+1ρ−1ωq−1

N−1∑
k=1

∫ (k+1)π/N

(k−1)π/N

∣∣∣∣ ddtV (cos t)
∣∣∣∣Wρ(t)dt

≤ 22γ+1ρ−1ωq−1

∫ π

0

∣∣∣∣ ddtV (cos t)
∣∣∣∣Wρ(t)dt.

(3.22)
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It is easy to check that W , being even in t, implies Wρ is even as well. Moreover,
the function

∣∣ d
dtV (cos t)

∣∣ is also even, and d
dtV (cos t) is a trigonometric polynomial.

Thus, by (3.5) and (3.6) with p = 1 and our assumption that ρ = (2‖R‖)−1 ≥ deg V
we have ∫ π

0

∣∣∣∣ ddtV (cos t)
∣∣∣∣Wρ(t) dt =

1
2

∫ π

−π

∣∣∣∣ ddtV (cos t)
∣∣∣∣Wρ(t) dt

≤ 1
2
C̃

∫ π

−π

∣∣∣∣ ddtV (cos t)
∣∣∣∣W (t) dt

≤ degV
2

C

∫ π

−π
|V (cos t)|W (t) dt

≤ C deg V
∫ π

0

|V (cos t)|W (t) dt.

Putting this together with the previous inequality, with W (t) = sinq−1(t) on [0, π],
and using ρ = (2‖R‖)−1, we see that∑

ξ∈C
Iξ ≤ 22γ+2ωq−1‖R‖(deg V )C

∫ π

0

|V (cos t)| sinq−1(t) dt

= 22γ+2ωq−1‖R‖(deg V )C‖V ‖wq,1 .
Both γ and C above depend on the doubling weight, which in turn depends on the
dimension q. Finally, letting Cq = 22γ+2Cωq−1 we obtain the desired inequality.

Recall that in §2.1, we discussed the delayed-mean kernels τ (k)
n . When k > q−1

2
is an integer, and n ≥ Nq, these ((k+ 1)n− 1)-degree polynomials are reproducing
kernels on Πq

n (cf. Corollary 2.2). If k = kq := b(q − 1)/2c + 1, the condition
on k is satisfied. Moreover, by Corollary 2.2, the norms ‖τ (kq)

n ‖wq,1 are uniformly
bounded in n. Thus, for n ≥ Nq, we may use V = τ

(kq)
n and deg V = (kq + 1)n− 1

in Proposition 3.3 and apply the inequality there in (3.15) to obtain the following
estimate on EC(P ).

Corollary 3.1. Take V = τ
(kq)
n to be the reproducing kernel for Πq

n, n ≥ Nq. If R
is any C-compatible decomposition for which ‖R‖ < 1

2(kq+1)n , then for all P ∈ Πq
n

we have

EC(P ) ≤
∑
ξ∈C

∫
Rξ

|P (x)− P (ξ)| dµq(x) ≤ C̃q(kq + 1)n ‖R‖ ‖P‖Sq,1,(3.23)

where EC(P ) is defined in (3.14) and C̃q := Cq supn≥Nq{‖τ
(kq)
n ‖wq,1}.

We remark that the case of the circle (q = 1) is simpler, and can be handled
without using the reproducing kernel V or the theory of doubling weights. The key
estimate, ∫

Rξ

|P (θ)− P (ξ)|dθ ≤ diam(Rξ)
∫
Rξ

|P ′(θ)|dθ,

is easy to establish. If we sum over the ξ’s, use the L1 Bernstein inequality [21],
‖P ′‖S1,1 ≤ n‖P‖S1,1, and take the maximum diameter above, then we arrive at the
following sharper result.
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Corollary 3.2. In the case of the circle (q = 1),

EC(P ) ≤
∑
ξ∈C

∫
Rξ

|P (θ)− P (ξ)| dθ ≤ n ‖R‖‖P‖S1,1, P ∈ Π1
n.(3.24)

3.4. Lp Marcinkiewicz-Zygmund inequalities. The estimate (3.23) will lead
to the Marcinkiewicz-Zygmund inequalities for Sq (see Theorem 3.1 below). Using
the notation from the Corollary 3.1, define the quantity

%q := min

{
1

2(kq + 1)
,

1

(kq + 1)C̃q

}
.(3.25)

For future reference, note that from (2.16), kq ≥ 1, and, consequently,

%q ≤ 1.(3.26)

Theorem 3.1. Let R be a C-compatible decomposition, and let Nq be as in Theo-
rem 2.1. If n ≥ Nq, η ∈ (0, 1), and the norm ‖R‖ satisfies

‖R‖ < η

n
%q ,(3.27)

where %q is given by (3.25), then for all P ∈ Πq
n

(1 − η)‖P‖Sq,p ≤ ‖P |C‖C,p ≤ (1 + η)‖P‖Sq,p ,(3.28)

where ‖ · ‖C, p is the weighted `p norm defined for all f : C → R by

‖f‖C,p :=


(∑

ξ∈C |f(ξ)|pµq(Rξ)
)1/p

if 1 ≤ p <∞,
supξ∈C{|f(ξ)|} if p =∞.

(3.29)

Proof. Using (3.14), (3.23), and (3.27), we deduce that if P ∈ Πq
n, then∣∣∣∣‖P‖Sq,1 −∑

ξ∈C
|P (ξ)|µq(Rξ)

∣∣∣∣ < η‖P‖Sq,1 ,

which in turn implies (3.28) with p = 1.
Using a Markov inequality established by Bos et al. [1], Jetter, Stöckler and

Ward [10] implicitly obtained (3.28) in the case p = ∞ under the condition that
δC < η/n. By (3.9) and (3.26), we see that if ‖R‖ ≤ (η/n)%q, then δC < η/n.
Hence, (3.28) also holds under the stated condition on ‖R‖.

Next, we consider the “intermediate” cases. Let T : Πq
n → Πq

n|C ⊂ R|C| be the
linear transformation defined via T (P ) = P |C , where ‖·‖Sq,p is used as the norm for
Πq
n and ‖ · ‖C,p is that for R|C|. Since the spaces involved are finite dimensional, the

operator norm ‖T ‖p < ∞ for 1 ≤ p ≤ ∞. By [3, Theorem VI.10.10, p. 524], ‖T ‖p
is a convex function of 1/p. Thus, ‖T ‖p ≤ max{‖T ‖1, ‖T ‖∞}, and so, from the
already proved estimates (3.28) in the cases p = 1 and p =∞, we have ‖T ‖p ≤ 1+η.
This establishes the right side of (3.28).

To get the left side, note that the spaces Πq
n and T (Πq

n) = Πq
n|C are isomorphic,

so T−1 : Πq
n|C → Πq

n ⊂ Lp(Sq) exists. Reversing the roles of the two spaces in the
argument above then yields the desired inequality.

In the case when q = 1, if one uses (3.24) from Corollary 3.2 instead of (3.14),
then the result we get is sharper. Before stating it, we note that the Marcinkiewicz-
Zygmund inequalities for the circle were obtained by many authors. In contrast to
Erdelyi’s version in [4], our estimates below do not require a minimal separation
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condition on the points, but they do require more points for a trigonometric poly-
nomial of given degree.

Proposition 3.4. Let q = 1 and let P be a trigonometric polynomial of degree at
most n. If ‖R‖ < η

n , then (3.28) holds.

4. Quadrature formulas

We will now derive Lp quadrature formulas that are exact for spherical harmonics
of degree n, have positive weights, and require a number of evaluations roughly
proportional to the dimension of the underlying space of spherical harmonics, Πq

n.
These results improve similar ones obtained in [11] in two important respects. First,
the weights we give are guaranteed to be positive; the ones in [11] were of uncertain
sign. Second, our results hold for all Lp, 1 ≤ p ≤ ∞. In [11], only the L∞ case
was treated. To begin our derivation, we need to generalize slightly the notion of a
norming set, which was central to the arguments in [10].

4.1. Norm generating sets. Let X be a finite dimensional vector space with
norm ‖ · ‖X , and let Z ⊂ X∗ be a finite set.

Definition 4.1. We will say that Z is a norm generating set for X if the mapping
TZ : X → R|Z| defined by TZ(x) = (z(x))z∈Z is injective. We will call TZ the
sampling operator.

We remark that if V := TZ(X) is the range of TZ , then the injectivity of TZ
implies that T−1

Z : V → X exists. Let R|Z| have a norm ‖ · ‖R|Z| , with ‖ · ‖R|Z|∗
being its dual norm on R|Z|∗. Equip V with the induced norm, and let ‖T−1

Z ‖ :=
‖T−1
Z ‖V→X . In addition, let K+ be the positive cone of R|Z|; that is, all (rz) ∈ R|Z|

for which rz ≥ 0.

Proposition 4.1. Let Z be a norm generating set for X, with TZ being the cor-
responding sampling operator. If y ∈ X∗, with ‖y‖X∗ ≤ A, then there exist real
numbers {az}z∈Z , depending only on y such that for every x ∈ X,

y(x) =
∑
z∈Z

azz(x)(4.1)

and

‖(az)‖R|Z|∗ ≤ A‖T−1
Z ‖.(4.2)

Also, if V contains an interior point v0 ∈ K+ and if y(T−1
Z v) ≥ 0 when v ∈ V ∩K+,

then we may choose aξ ≥ 0 in (4.1).

Proof. We can define a linear functional ỹ on V via ỹ(v) := y(T−1
Z v). From this

and ‖y‖X∗ ≤ A, we see that ‖ỹ‖V∗ ≤ A‖T−1
Z ‖. By the Hahn-Banach theorem, ỹ

has a norm-preserving extension to a functional ỹext on R|Z|. Hence, there exists
(az) ∈ R|Z|

∗
such that for all (rz) ∈ R|Z| we have

ỹext((rz)) =
∑
z∈Z

azrz , ‖(az)‖R|Z|∗ ≤ A‖T−1
Z ‖.(4.3)

By construction, y(x) = ỹ(v) = ỹext(v), with v = TZx = (z(x)). Consequently,
using v = TZx in equation (4.3) gives equation (4.1), with (4.2) being the norm
condition on (az) from (4.3). The second part of the theorem is a consequence of
the Krein-Rutman theorem [9, p. 20].
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4.2. Scattered-site quadrature formulas for Sq. By means of Theorem 3.1
and Proposition 4.1, we can deduce the following quadrature formula.

Theorem 4.1. Adopt the notation and assumptions of Theorem 3.1. Let 1 ≤ p ≤
∞, and let ‖ · ‖C,p be the weighted `p norm defined in (3.29) for R|C|. Then, if
η < 1

2 , there exist nonnegative numbers {aξ}ξ∈C, such that for every P ∈ Πq
n, we

have ∫
Sq
P (x)dµq(x) =

∑
ξ∈C

aξP (ξ)(4.4)

and ∥∥∥∥( aξ
µq(Rξ)

)∥∥∥∥
C, p′
≤ ω1/p′

q (1− η)−1, 1 ≤ p′ :=
p

p− 1
≤ ∞.(4.5)

If we choose 1
2 ≤ η < 1, then (4.4) and (4.5) continue to hold, although the coeffi-

cients {aξ} are no longer guaranteed to be nonnegative.

Proof. In Proposition 4.1, we take X = Πq
n, ‖P‖X = ‖P‖Sq,p, and Z to be the set

of point evaluation functionals {δξ}ξ∈C. The operator TZ is then the restriction
map P 7→ P |C , with ‖ · ‖R|C| taken to be weighted `p norm ‖ · ‖C,p. The inequalities
(3.28) give ‖T−1

Z ‖ ≤ (1− η)−1. We now take y to be the functional

y : P 7→
∫
Sq
P (x)dµq(x).

By Hölder’s inequality, ‖y‖X∗ ≤ ω
1/p′

q . Proposition 4.1 now implies that (4.4)
holds, subject to ‖(aξ)‖RC∗ ≤ ω

1/p′

q (1 − η)−1. Since ‖(aξ)‖RC∗ = ‖( aξ
µ(Rξ)

)‖C,p′ ,
where p′ := p/(p− 1), we also obtain (4.5).

To see that the aξ’s may be chosen to be nonnegative, note that the constant
polynomial P0(x) = 1 is in Πq

n, and v0 := P0|C = (1, 1, . . . , 1) is an interior point
of K+. Next, note that TZP = P |C is in V ∩ K+ if and only if P (ξ) ≥ 0 for ξ ∈ C.
Observe that if P (ξ) ≥ 0 for ξ ∈ C, then using (3.23), (3.27), (3.28), we obtain∣∣∣∣y(P )− ‖P |C‖C,1

∣∣∣∣ =

∣∣∣∣∣∣
∑
ξ∈C

∫
Sq

(P (x)− P (ξ)) dµq(x)

∣∣∣∣∣∣
≤

∑
ξ∈C

∫
Sq
|P (x)− P (ξ)|dµq(x)

≤ C̃q(kq + 1)n ‖R‖ ‖P‖Sq,1
≤ η(1− η)−1‖P |C‖C,1 .

Therefore,

y(P ) ≥ 1− 2η
1− η ‖P |C‖C,1 ,

and y(P ) > 0 if η < 1
2 . Applying the last part of Proposition 4.1 then completes

the proof.

Remark. The condition for the quadrature formula to hold is stated in terms of
‖R‖ in equation (3.27). Essentially, the condition states that ‖R‖ ∼ n−1. In
Proposition 3.2, we pointed out that it was possible to find R such that ‖R‖ ∼
|C|−1/q, where |C| is the cardinality of the (reduced) set C. Thus, for this choice of
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R, we have that |C| ∼ nq, which is the order of the dimension of the space that we
are exactly integrating.

It is worthwhile to examine the special case of the circle (q = 1). We suppose
that we have a finite set C comprising K distinct points that are located at angles
−π =: ξ0 < ξ1 < ξ2 · · · < ξK := π. Set Rj := [ξj , ξj+1] for j = 0, . . . ,K − 1. As we
pointed out in subsection 3.2, the decomposition R = {Rj}K−1

j=0 is compatible with
C, even though the points in C are at the endpoints of the intervals. In addition,
µ(Rj) = ξj+1− ξj is just the length of the arc Rj . The mesh norm δC and partition
norm ‖R‖ are

δC =
1
2

max
0≤j≤K−1

|ξj+1 − ξj |,(4.6)

‖R‖ = max
0≤j≤K−1

|ξj+1 − ξj | ≤ 2δC .(4.7)

The last equation above implies that if δC < η/(2n), then ‖R‖ < η/n. Using
Proposition 3.4 in place of Theorem 3.1 in the proof of Theorem 4.1 above yields
the following result.

Corollary 4.1. For the case of the circle, if 0 < η < 1
2 and δC < η/(2n), then

there exist nonnegative numbers wj such that for every trigonometric polynomial
P ∈ Π1

n, we have ∫ π

−π
P (θ)dθ =

K−1∑
j=0

wjP (ξj),(4.8)

where ∥∥∥∥( wj
ξj+1 − ξj

)∥∥∥∥
C, p′
≤ (2π)1/p′ (1− η)−1, 1 ≤ p′ :=

p

p− 1
≤ ∞.(4.9)

If one has 1
2 ≤ η < 1, then (4.8) and (4.9) continue to hold, but the coefficients

{wj} may fail to be positive.

4.3. Computation of positive weights. The results established in Theorem 4.1
give the existence of positive weights, provided η < 1

2 is satisfied; that is,

‖R‖ < η

n
%q <

1
2n
%q ,

where %q is defined in (3.25). As we pointed out in the remark after Theorem 4.1,
this condition is equivalent to one involving the cardinality of C and the dimension
of the space we are integrating exactly. There are, however, two items that need to
be addressed.

The constant %q depends on a number of factors: the various constants used in
connection with doubling weights; an estimate on the uniform bound on the norms
of the Cesàro operators; and the constant relating norms of the delayed mean oper-
ators to the norms of the Cesàro operators. For general q ≥ 3 these are not known.
For q = 1, all of the constants are determined. For the important case q = 2,
numerical experiments indicate that an estimate on the uniform bound for Cesàro
operators involved (namely the Σ(1)

n ’s) is 3; however, we know of no theoretical es-
timates. As we pointed out in subsection 2.2, the delayed mean operators T (1)

n have
norms that are 3‖Σ(1)

n ‖, giving a uniform bound for them of roughly 9. However,
for the q = 2 case, the constants related to doubling weights are unknown. Thus,
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except for q = 1, the constant %q is unknown. This raises the question, how do we
know that we have satisfied the required inequality? We will come back to this.

If we have satisfied the condition that η < 1
2 , then there exist positive weights

for the quadrature formulas. How do we compute them?
Take p = 1 in Theorem 4.1, and assume that (3.27) holds. The coefficients aξ

then satisfy the following constrained linear system:
0 ≤ aξ ≤ µ(Rξ)

1−η , ξ ∈ C,
ωg =

∑
ξ∈C aξ,

0 =
∑

ξ∈C aξY`,k(ξ), k = 1 . . . d q` , ` = 1 . . . n.
(4.10)

This system, which we know has at least one solution, will undoubtedly have many.
In the problem of spherical design [8], one requires that the weights aξ all be equal,
which is possible only for a special set of points. From the middle equation in
(4.10), we see that the average weight is ā := 〈(aξ)〉 = ωg

|C| , and that the variance is
given by

var(a) := 〈(aξ −
ωg
|C|)

2〉 = ‖(aξ)‖2`2 −
ω2
g

|C| .

This shows that minimizing the variance—which amounts to choosing weights to
be as close to the same as possible—is equivalent to minimizing the norm ‖(aξ)‖`2 .
This leaves us with a feasible quadratic programming problem: minimize ‖(aξ)‖`2 ,
subject to the constrained linear system in (4.10). This always has a unique solu-
tion, and there are many standard algorithms that can be used to solve it.

Not only are there many algorithms, but there are fast algorithms for solving
quadratic programming problems. This gives us a way of getting around knowing
the condition that we mentioned above is satisfied. From dimensional arguments,
start with n ≈ ω

1/q
q /‖R‖. If the program converges, then positive weights are

obtained. If not, there are two choices. Lower n or add sites that lower ‖R‖.
We close by remarking that we are currently working on getting good, practical

bounds on the various constants mentioned above.
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