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ON ITERATES OF MÖBIUS TRANSFORMATIONS ON FIELDS

SAM NORTHSHIELD

Abstract. Let p be a quadratic polynomial over a splitting field K, and S be
the set of zeros of p. We define an associative and commutative binary relation
on G ≡ K∪{∞}−S so that every Möbius transformation with fixed point set
S is of the form x “plus” c for some c. This permits an easy proof of Aitken
acceleration as well as generalizations of known results concerning Newton’s
method, the secant method, Halley’s method, and higher order methods. If
K is equipped with a norm, then we give necessary and sufficient conditions
for the iterates of a Möbius transformation m to converge (necessarily to one
of its fixed points) in the norm topology. Finally, we show that if the fixed
points of m are distinct and the iterates of m converge, then Newton’s method
converges with order 2, and higher order generalizations converge accordingly.

Consider the Fibonacci sequence F1 = F2 = 1 and, for n ≥ 1, Fn+2 = Fn+1 +Fn.
It is known that the ratios rn ≡ Fn+1/Fn converge (and in fact are continued
fraction convergents) to the “golden ratio” 1+

√
5

2 (see, for example, [1], [2]). If
m(x) = 1 + 1/x, then the sequence (rn) satisfies the recursion rn+1 = m(rn)
and so, letting n approach ∞, the iterates of m converge to a fixed point of m.
We associate to m its characteristic polynomial θ(x) ≡ x2 − x − 1 (the monic
polynomial whose zeros are the fixed points of m). Hence the iterates of m (starting
with 1) converge to a zero of θ. Iteration by Newton’s method (applied to θ and
starting with 1) also converges to this zero and, in fact, gives the 1st, 2nd, 4th, 8th,
16th, . . . iterates of m (see [2]). Iteration by the secant method (applied to θ and
starting with 1,2) gives the 1st, 2nd, 3rd, 5th, 8th, 13th, . . . iterates of m (see [2]).

This paper grew out of an attempt to understand these and other (known [1],
[2], [3], [4], [5]) phenomena. We shall first generalize some of the results of [2], [3],
[4], [5] to the case where m is a Möbius transformation (i.e., function of the form
x 7−→ ax+b

cx+d) where a, b, c, d, x are elements of an arbitrarily chosen field K. We
shall generalize results of [2], [4] to our case as well as introduce generalizations of
Newton’s method. We shall also derive a generalization of Aitken acceleration (a
main result of [3], [5]). Our proofs are different (and perhaps simpler) than the the
extant proofs.

Next, we shall assume that K is equipped with a norm or absolute value and
that K contains the fixed points of m. We give necessary and sufficient conditions
for the iterates of m (with a given starting point) to converge to a given fixed
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point of m. Given convergence of the iterates of m, we show that Newton’s method
converges quadratically and that its generalizations converge with correspondingly
high order.

Let θ(x) ≡ x2 − ax− b. We shall assume that K contains the two zeros (ξ1 and
ξ2) of θ; we allow for the possibility that ξ1 = ξ2. For any c, it is easily seen that θ
is the characteristic polynomial of the Möbius transformations

m(x) =
cx+ b

x− a+ c
and m−1(x) =

(a− c)x+ b

x− c .(1)

As in the real case, we introduce two conditions regarding ∞: m(∞) = c and
m(a− c) =∞. Let G = K ∪{∞}−{ξ1, ξ2}. Given any r0, we can form a sequence
(rn) in both directions:

rn+1 = m(rn), rn−1 = m−1(rn).(2)

Interestingly, the numbers rn are ratios of “generalized Fibonacci numbers”.
Given initial values G0 = 1 and G1 = r0, define

Gn+2 =
cGn+1 + bGn

Gn+1 + (c− a)Gn
.

Note that when c = a, Gn+2 = aGn+1 + bGn. In any case, r0 = G1/G0 and,
if rn = Gn+1/Gn, then rn+1 = m(rn) = m(Gn+1/Gn) = Gn+2/Gn+1 so that
rn = Gn+1/Gn for all n.

Given x, y ∈ G, let

x⊕ y =
xy + b

x+ y − a .

Here the conventions regarding ∞ are x⊕ (a− x) =∞ and x⊕∞ = x. Although
it is clear that the binary relation ⊕ is commutative, it is perhaps less clear that
it is associative. In the real case, it is a challenging problem to show geometrically
that this is so. (The connection to geometry in this case is that the line through
(x, θ(x)) and (y, θ(y)) has the x-intercept x⊕ y).

Theorem 1. The relation ⊕ is associative.

Proof. Given any two-by-two matrix A =
(
a b
c d

)
, define an associated Möbius trans-

formation ΦA(x) = ax+b
cx+d . It is well known (and easy to verify) that the composition

of such functions corresponds to matrix multiplication; that is, ΦA ◦ ΦB = ΦAB.
Let M =

(
0 b
1 −a

)
. Note that ΦM+xI(y) = x⊕ y. Hence

(x⊕ y)⊕ z = ΦM+zI(x⊕ y) = ΦM+zI(ΦM+xI(y)) = Φ(M+zI)(M+xI)(y).

Since M + zI and M + xI commute, we have (x⊕ y)⊕ z = (z ⊕ y)⊕ x.

We remark that by this theorem (G,⊕) is an abelian group with identity ∞
such that a − x is the inverse of x. By the proof above, (M + xI)(M + yI) is a
scalar multiple of M + (x ⊕ y)I, and so the map x 7−→ M + xI is a projective
representation of G into GL2(K).

We let x⊕n denote the n-fold “sum” of x (i.e., x⊕1 = x and x⊕(n+1) = x⊕ x⊕n).
This definition extends to any integer n by x⊕0 =∞ and x⊕(−n) = (a−x)⊕n. Note
that, by (1),

m(x) = x⊕ c and m−1(x) = x⊕ (a− c).
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Therefore, with rk defined above,

rn+k = rk ⊕ c⊕n(3)

for any n and k. By associativity and commutativity,
rl−iri + b

rl−i + ri − a
= rl−i ⊕ ri = rk ⊕ rk ⊕ c⊕(l−2k) = rk ⊕ rl−k.

Hence, for any i and j
rl−iri + b

rl−i + ri − a
=

rl−jrj + b

rl−j + rj − a
.

Since they are equal, they are also equal to the ratio of differences (i.e., if A/B =
C/D, then A/B = (A− C)/(B −D)) and we have

Theorem 2. For all i, j and k such that the denominator of the fraction below is
nonzero,

rl−iri − rl−jrj
rl−i + ri − rl−j − rj

= rk ⊕ rl−k.

Note that if r1 = c (equivalently, r0 = ∞), then rn = c⊕n. We shall use this
in the next four results. The reader is invited to extend those results to the case
when r1 6= c. The following is a generalization of the Aitken acceleration formula
(see [3], [5])

Corollary 3. If r1 = c, then for all n and l,

rn+lrn−l − r2
n

rn+l − 2rn + rn−l
= r2n.

Proof. Replace i, j, k, and l in Theorem 2 by n− l, n, l, and 2n, respectively.

When K = R, Newton’s method to approximate the zeros of θ is, given a starting
point t0, to define a sequence inductively

tn+1 = tn −
θ(tn)
θ′(tn)

,

which converges (in many cases) to a zero of θ. In our case, this boils down to

tn+1 =
t2n + b

2tn − a
= tn ⊕ tn.

We take this to be the definition of Newton’s method in the general case.
If we take t0 = c, then a simple induction argument shows that tn = c⊕2n . If

(rn) is defined as in (2) above, then rn = r0 ⊕ c⊕n and we have

Theorem 4. If t0 = c, then tn = (a− r0)⊕ r2n .

One may generalize further. Let g(n)(x) = x⊕n. For example,

g(3)(x) =
x3 + 3bx− ab

3x2 − 3ax+ b+ a2
, g(4)(x) =

x4 + 6bx2 − 4abx+ b(a2 + b)
4x3 − 6ax2 + 4(a2 + b)x+ a3 − 2ab

.

Iteration of g(3) is Halley’s method applied to θ. The rational functions g(n) appear,
with different notation, in [4]. In that paper, a larger family of iterative procedures
is introduced; our family is that of [4] when the parameter d introduced there is 1.
This will be clear from a closed form for g(n) in terms of the numbers un defined
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by u0 = 0, u1 = 1, and un+2 = aun+1 + bun. Note that these numbers are a special
case of the “generalized Fibonacci numbers” Gn introduced earlier.

We define polynomials Pn and Qn to be the unique polynomials satisfying x⊕n =
Pn(x)/Qn(x), where Pn is monic and of minimal degree.

Hence P0(x) = 1 and Q0(x) = 0. Letting M be the matrix in the proof of
Theorem 1, note that (

Pn+1(x)
Qn+1(x)

)
= (M + xI)

(
Pn(x)
Qn(x)

)
.

Let
(
vn
wn

)
= (−1)nMn

(
1
0

)
. Then(

Pn(x)
Qn(x)

)
= (M + xI)n

(
1
0

)
=

n∑
k=0

(
n

k

)
(−1)kxn−k

(
vk
wk

)
.

Since M satisfies its characteristic equation, M2 + aM − bI = 0 and thus (vn) and
(wn) satisfy the difference equation xn+2 = axn+1+bxn. Since v0 = 1, w0 = 0 = v1,
and w1 = −1, we may write vn = bun−1 and wn = −un. Hence,

Proposition 5. x⊕n = Pn(x)/Qn(x), where Pn(x) = b
∑n
k=0

(
n
k

)
xn−k(−1)kuk−1

and Qn(x) = −
∑n
k=0

(
n
k

)
xn−k(−1)kuk.

Iterates of g(k) give an exponential subsequence of iterates of m. Let t(k)
n+1 =

g(k)(t(k)
n ). As for Theorem 4,

Theorem 6. If t0 = c, then t
(k)
n = (a− r0)⊕ rkn .

The secant method is, given two starting points s0 and s1, to construct a sequence
defined by,

sn+1 = sn −
θ(sn)(sn − sn−1)
θ(sn)− θ(sn−1)

,

which, in our case, boils down to

sn+1 =
snsn−1 + b

sn + sn−1 − a
= sn ⊕ sn−1.

As above, we take this to be the definition of the secant method in the general case.
The Fibonacci sequence (Fn) defined at the beginning shows up in a perhaps

surprising way (see [2]).

Theorem 7. sn = s
⊕Fn−1
0 ⊕ s⊕Fn1 .

Proof. Taking F−1 = 1 and F0 = 0, the theorem clearly holds for n = 0, 1. Suppos-
ing it holds for all k ≤ n, sn+1 = sn ⊕ sn−1 = s

⊕Fn−1
0 ⊕ s⊕Fn1 ⊕ s⊕Fn−2

0 ⊕ s⊕Fn−1
1 =

s⊕Fn0 ⊕ s⊕Fn+1
1 . By induction, the theorem is proven.

To discuss convergence, we assume that K has a topology defined by a norm (or
absolute value) | · |. That is, for all x, y ∈ K,

a) |x| = 0 if and only if x = 0,
b) |x+ y| ≤ |x|+ |y|, and
c) |xy| = |x||y|.
If rn → ξ, then, by (2) and the definition of absolute value, ξ = m(ξ) and so ξ

must be a zero of θ. We still assume then that the zeros (ξ1 and ξ2) of θ are in K.
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We now define a function on G. Let f(∞) = 1 and, for x ∈ K − {ξ1, ξ2},

f(x) =
∣∣∣∣x− ξ1x− ξ2

∣∣∣∣ .
Lemma 8. For all x, y ∈ K − {ξ1, ξ2},

f(x⊕ y) = f(x)f(y).

Proof. Since x2 − ax − b = (x − ξ1)(x − ξ2), we have ξ1 + ξ2 = a and ξ1ξ2 = −b.
Hence, z = x⊕ y = xy−ξ1ξ2

x+y−ξ1−ξ2 , which implies

z − ξ1
z − ξ2

=
xy − (x+ y)ξ1 + ξ2

1

xy − (x+ y)ξ2 + ξ2
2

.

Taking the absolute value of both sides,

f(z) =
∣∣∣∣ (x− ξ1)(y − ξ1)
(x− ξ2)(y − ξ2)

∣∣∣∣ = f(x)f(y).

We remark that f is a group homomorphism from (G,⊕) into the group of
positive real numbers under multiplication. If K = R, then G is an example of a
disconnected Lie group and f is two-to-one.

We are now able to say some things about the convergence of (rn).

Theorem 9. Let m(z) = z ⊕ c and mn be the n-th iterate of m.
a) If |c − ξ1| > |c − ξ2|, then, for z 6= ξ1, mn(z) converges to ξ2 in the norm

topology.
b) If |c − ξ1| = |c − ξ2| but ξ1 6= ξ2, then, for all z /∈ {ξ1, ξ2}, mn(z) does not

converge.
c) If ξ is the only zero of θ, then, for all z 6= ξ, mn(z) converges to ξ if and only

if K is Archimedean (i.e., limn→∞ |ñ| = ∞ where ñ denotes the n-fold sum of the
unit in K).

Proof. a) If |c − ξ1| > |c − ξ2|, then f(c) > 1 and, by Lemma 8 and induction,
f(mn(z)) = f(z)f(c)n. Unless f(z) = 0 (equivalently, z = ξ1), f(mn(z)) → ∞.
Since f is bounded outside any neighborhood of ξ2 (triangle inequality), the result
follows.

b) If |c− ξ1| = |c − ξ2|, then f(c) = 1 and so, for any z /∈ {ξ1, ξ2}, f(mn(z)) is
nonzero and independent of n. Since mn(z) can converge only to ξ1 or ξ2 (in which
case f(mn(z)) would converge to 0 or ∞), the result follows.

c) If ξ is the only zero of θ, then x⊕ y = xy−ξ2

x+y−2ξ and a simple calculation gives

1
x⊕ y − ξ =

1
x− ξ +

1
y − ξ .

Hence, by induction, ∣∣∣∣ 1
mn(x) − ξ −

1
x− ξ

∣∣∣∣ =
|ñ|
|c− ξ| ,

and the result follows.
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We say xn converges to x with order k if |xn+1−x|
|xn−x|k converges to a nonzero constant.

For example, we shall see that Newton’s method converges with order two and
Halley’s method converges with order three.

Let t(k)
n be defined as above.

Theorem 10. If θ has distinct zeros and rn → ξ, then t
(k)
n → ξ with order k.

Proof. Suppose rn → ξ. We write f(x) � g(x) if limx→ξ
f(x)
g(x) exists and is nonzero.

Suppose y depends on x and y → ξ as x→ ξ. Using the fact that ξ2 = aξ + b,

(x− ξ)(y − ξ) = xy + b− (x+ y − a)ξ = (x + y − a)(x⊕ y − ξ).
Since the zeros of θ are assumed distinct, 2ξ 6= ξ1 + ξ2 = a and so |x + y − a| � 1.
Hence |x− ξ||y− ξ| � |x⊕ y− ξ|. If |y− ξ| � |x− ξ|k, then |x⊕ y− ξ| � |x− ξ|k+1

and so, by induction,

|x⊕k − ξ| � |x− ξ|k.
The result follows.
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