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BOUNDS ON DIFFERENCES OF ADJACENT ZEROS
OF BESSEL FUNCTIONS AND ITERATIVE RELATIONS

BETWEEN CONSECUTIVE ZEROS

JAVIER SEGURA

Abstract. Bounds for the distance |cν,s− cν±1,s′ | between adjacent zeros of
cylinder functions are given; s and s′ are such that @cν,s′′ ∈ ]cν,s, cν±1,s′ [;
cν,k stands for the kth positive zero of the cylinder (Bessel) function Cν(x) =
cosαJν(x)− sinαYν(x), α ∈ [0, π[, ν ∈ R.

These bounds, together with the application of modified (global) New-
ton methods based on the monotonic functions fν(x) = x2ν−1Cν(x)/Cν−1(x)

and gν(x) = −x−(2ν+1)Cν(x)/Cν+1(x), give rise to forward (cν,k → cν,k+1)
and backward (cν,k+1 → cν,k) iterative relations between consecutive zeros of
cylinder functions.

The problem of finding all the positive real zeros of Bessel functions Cν(x)
for any real α and ν inside an interval [x1, x2], x1 > 0, is solved in a simple
way.

Introduction

The positive zeros of cylinder functions have many applications in physics, tech-
nology and applied mathematics. Let us denote by cν,s the sth positive zero of a
cylinder function

Cν(x) = cosαJν(x) − sinαYν(x),(0.1)

which satisfies the recurrence relations

Cν+1(x) + Cν−1(x) = 2ν
x Cν(x),

C′ν(x) = (Cν−1(x)− Cν+1(x))/2.
(0.2)

Several approximations exist to evaluate the zeros of Bessel functions of the first
and second kinds Jν(x) and Yν(x). In particular, McMahon’s and Olver’s asymp-
totic expansions and Olver’s uniform asymptotic expansions ([1, 14, 11, 26]) can
be used to obtain zeros for large ν and/or large s. Series expansions [17], rational
approximations [15], Chebyshev series expansions [16], and further asymptotic ex-
pansions [2, 5] have been developed which can serve as complement to McMahon’s
and Olver’s asymptotic expansions. Additional information on monotonicity and
convexity properties of the zeros, bounds for the first zeros of Bessel functions, and
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Sturm’s inequalities can be found in [3, 4, 6, 7, 12, 13] and in previous publications
by the same authors.

Several methods have been developed for the evaluation of the zeros of Bessel
functions, among them:

1. N. M. Temme developed an ALGOL 60 computer program to evaluate the
zeros of Jν(x), Yν(x), J ′ν(x) and Y ′ν(x) for positive orders. Several asymptotic
and uniform asymptotic expansions [26, 1, 23] were considered to obtain first
approximations to the roots which were refined by applying a second order
Newton iteration [22]. A Fortran 77 version of this algorithm can be found in
[8].

2. R. Piessens presented a software package for the computation of the zeros of
Jν(x) for orders ν > −1 and its turning points for positive orders [18]. These
programs use Chebyshev expansions [16] and asymptotic expansions for the
zeros and turning points.

3. M. N. Vrahatis et al. developed the code RFSNFS [25] which uses the concept
of topological degree to isolate the real zeros of the Bessel functions Jν(x) and
Yν(x) and their derivatives; a modified bisection rule is applied to evaluate the
zeros and turning points for real and positive orders. In addition, a method
to evaluate the complex zeros for real orders has been developed by the same
group [9].

4. A novel approach to evaluate the zeros of Bessel functions was considered
in [20]. A global Newton method convergent for cylinder functions Cν(x) =
cosα Jν(x)− sinαYν(x) was introduced. The Newton iteration based on the
monotonic function fν(x) = x2ν−1Cν(x)/Cν−1(x) was proven to be convergent
for any real values of ν and α and for any starting values x0 > 0. The function
fν(x) is similar to the trigonometric function tanx in its monotonicity and
convexity properties. In this way, given a real starting value x0 > 0 lying
inside some branch of fν(x), the Newton iteration defined in [20] converges
to the zero of Cν(x) in this same branch (if any).

By using this global Newton method, complemented with rough (but suffi-
ciently accurate) first approximations to the roots, codes to evaluate the zeros
of Jν(x) in intervals [xmin, xmax], xmin > 0, were built [21]. Such algorithms
proved to be particularly efficient for the evaluation of the first positive zeros
for moderate orders (positive or negative).

In this paper, a simple and easy to implement procedure for finding the positive
real zeros of any real solution of equations 0.2 is presented. The method gives with
certainty all the positive roots of the equation cosαJν(x) − sinαYν(x) = 0 inside
any given interval [xmin, xmax], xmin > 0, for any real α and ν.

The following ingredients will be taken into account in order to build this pro-
cedure:

1. Two globally convergent Newton methods based on the functions fi,ν(x) =
−ix2iν−1Cν(x)/Cν+i(x), i = ±1, which generalize the Newton iteration pre-
sented in [20].

2. Bounds for differences of adjacent zeros |cν,s − cν±1,s′ |, with s, s′ such that
@cν,s′′ ∈ ]cν,s, cν±1,s′ [.

3. Forward (cν,k → cν,k+1) and backward (cν,k+1 → cν,k) iterative relations
between consecutive zeros of cylinder functions Cν(x) which are based on the
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two globally convergent Newton iterations and the bounds on differences of
adjacent zeros.

Numerical examples will illustrate the method to find the positive roots of Cν(x)
inside real intervals.

1. Global Newton methods

In this section, two globally convergent Newton iterations based on the mono-
tonic functions

fi,ν(x) = −ix−2iν−1Cν(x)/Cν+i(x), i = ±1(1.1)

will be built. First, the concepts of consecutive and adjacent zeros of Bessel func-
tions are introduced. Then the monotonicity and convexity properties of
f+1,ν(x) are proved to follow immediately from those already shown for f−1,ν(x) =
x2ν−1Cν(x)/Cν−1(x) [20].

1.1. Consecutive and adjacent zeros. It is a well known fact that cylinder
functions Cν(x) have an infinite and countable number of positive real zeros and
that all such zeros are simple. Besides, the zeros of Bessel functions of consecutive
orders are interlaced:

Theorem 1.1 (Interlacing). Between two consecutive positive zeros of Cν+1(x),
there is one and only one zero of Cν(x) and, conversely, between two consecutive
positive zeros of Cν(x) there is exactly one zero of Cν+1(x).

Notation 1.2. We adopt the standard notation cν,s for the sth positive zero of a
Bessel function Cν(x). Zν will denote the set of positive zeros of a cylinder function
Cν . Similarly, Zν+i is the set of positive zeros of Cν+i(x) with i = +1 or i = −1.

The zeros cν,s and cν,s+1 are, for obvious reasons, said to be consecutive.

A zero cν±1,s′ which lies between two consecutive zeros cν,s and cν,s+1, will be
said to be adjacent to them (and vice versa). In other words:

Definition 1.3 (Adjacent zeros of Cν(x) and Cν±1(x)). Let cν,s and cν′,s′ be such
that cν,s < cν′,s′ , and let ν′ = ν + 1 or ν′ = ν − 1. cν,s and cν′,s′ are adjacent zeros
⇔ Cν(x) 6= 0 and Cν′(x) 6= 0 ∀x ∈ ]cν,s, cν′,s′ [.

Given Theorem 1.1, there is one and only one zero cν,s in each interval
]cν′,s′ , cν′,s′+1], ν′ = ν ± 1. Thus, the following definition can be considered:

Definition 1.4 (Bi(cν,s): branch containing cν,s). Let i = +1 or i = −1.
1. If cν,s ∈ ]cν+i,s′ , cν+i,s′+1], we write Bi(cν,s) ≡ ]cν+i,s′ , cν+i,s′+1].
2. If cν+i,1 < cν,1, we write Bi(0ν) ≡ ]0, cν+i,1].
3. If cν,1 < cν+i,1, we write Bi(cν,1) ≡ ]0, cν+i,1] and Bi(0ν) = ∅.

Remark 1.5. Considering Theorem 1.1, it becomes obvious that

R+ = Bi(0ν) ∪
( ∞⋃
s=1

Bi(cν,s)

)
;Bi(0ν) ∩Bi(cν,s) = ∅∀s ∈ N;

Bi(cν,s) ∩Bi(cν,s′) = ∅ ⇐⇒ s 6= s′, s, s′ ∈ N.
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Let us now state a well known theorem on the distance between consecutive
zeros [23]. Theorem 1.6 will be useful in order to prove several results in Sections
3 and 4. Later (Section 2), bounds on the distance between adjacent zeros will be
established.

Theorem 1.6 (Bounds for differences of consecutive zeros). Let cν,s, cν,s+1 be two
positive zeros of Cν(x).

1. If |ν| 6= 1/2, then (cν,s+1 − cν,s − π)(|ν| − 1/2) > 0.
2. If |ν| = 1/2, then cν,s+1 − cν,s − π = 0.

Theorem 1.6 can be proved using Sturm’s comparison theorem [23].

1.2. The monotonic functions f±1,ν(x). In reference[20], the function f−1,ν(x)
(equation 1.1) was shown to be monotonic in the positive real axis except at the
zeros of Cν−1(x) (Zν−1). A global Newton method to find the zeros of cylinder
functions Cν(x) for any real order ν was built. That method was based on the
monotonicity and convexity properties of f−1,ν(x).

Let us show that a second global Newton algorithm can be built based on the
function f+1,ν(x) = −x−2ν−1Cν(x)/Cν+1(x). First, we define in compact form the
functions under study (keeping temporarily the angle α in the notation):

Definition 1.7. Letting Cν(x, α) = cosαJν(x)− sinαYν(x) and i = +1 or i = −1,
we define

Hi,ν(x, α) = −iCν(x, α)/Cν+i(x, α),
fi,ν(x, α) = x−δi(ν)Hi,ν(x, α),

δi(ν) = 2iν + 1.
(1.2)

The following relations can be proved with ease.

Lemma 1.8. H−1,−ν(x, α) = H+1,ν(x, α + νπ); f−1,−ν(x, α) = f+1,ν(x, α + νπ).

Proof. Use the reflection formula C−ν(x, α) = Cν(x, α+ νπ) [20].

Remark 1.9. We will use the notation

Cν(x) ≡ Cν,α(x), Hi,ν(x) ≡ Hi,ν(x, α) , fi,ν(x) ≡ fi,ν(x, α)(1.3)

for any fixed α and i = ±1.

Lemma 1.8 demonstrates that the monotonicity and convexity properties of the
functions H−1,ν(x) and f−1,ν(x) have their counterpart for H+1,ν(x) and f+1,ν(x).
Lemma 1.10 generalizes some of the results presented in [20].

Lemma 1.10. Let i = +1 or i = −1.
1. Hi,ν(x), fi,ν(x) and their derivatives are continuous functions in R+ \ Zν+i.
2. Hi,ν(x) has an infinite and countable number of positive zeros (Zν) and sin-

gularities (Zν+i). The zeros and singularities are interlaced. The same holds
for fi,ν(x).

3. H ′i,ν(x) = 1 +Hi,ν(x)2 + δi(ν)Hi,ν (x)/x ∀x ∈ R+ \ Zν+i.
4. f ′i,ν(x) = x−δi(ν)(1 +Hi,ν(x)2) ∀x ∈ R+ \ Zν+i.
5. Hi,ν(x), i = ±1 is strictly increasing for x > min(cν,1, cν+i,1), x ∈ R+ \Zν+i.
6. fi,ν(x), i = ±1 is strictly increasing in R+ \ Zν+i.
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The proof of Lemma 1.10 is omitted because all the properties described were
demonstrated for i = −1 in [20]. The generalization to i = ±1 becomes straight-
forward by taking into account Lemma 1.8.

Considering Lemma 1.10, parts 2 and 5, the next corollary follows.

Corollary 1.11. If x ∈ Bi(cν,s), x 6= cν,s, then (x− cν,s)Hi,ν(x) > 0.

This result together with the formula for H ′i,ν(x) (Lemma 1.10) will be used to
derive bounds on differences of adjacent zeros.

1.3. Global convergence of the Newton iterations. Global Newton methods
can be built based on the functions fi,ν(x), i = ±1. In order to generalize the
global Newton method presented in reference [20], one only needs to replace Hν(x)
(≡ H−1,ν(x)) by Hi,ν(x) in Theorem 2.1 of [20]. The functions Ti,ν(x) resulting
from such replacement (Definition 1.12) constitute a pair of global Newton iterations
(Theorem 1.13).

Definition 1.12 (Globally convergent Newton iterations Ti,ν(x), i = ±1).

Ti,ν(x) = Θ(T̄i,ν(x))T̄i,ν(x) + Θ(−T̄i,ν(x))αx, 0 < α < 1,

Θ(y) = 1 for y > 0, Θ(y) = 0 for y ≤ 0,

T̄i,ν(x) = x− S̄i,ν(x) , S̄i,ν(x) = H̄i,ν(x)
1 + H̄i,ν(x)2 ,

H̄i,ν(x) =


Hi,ν(x)
|Hi,ν(x)| min(1, |Hi,ν(x)|), x /∈ ZCν+i,

1, x ∈ ZCν+i.

Theorem 1.13 (Global convergence). Let us denote by T (n)
i,ν (x0) the nth iteration

of Ti,ν over a starting value x0 > 0. Then ∃limn→∞T (n)
i,ν (x0) , ∀x0 > 0, ∀ν ∈

R , i = ±1 and

1. If x0 ∈ Bi(cν,s), then limn→∞ T (n)
i,ν (x0) = cν,s.

2. If x0 ∈ Bi(0ν), then limn→∞ T (n)
i,ν (x0) = 0.

Remark 1.14. By taking into account Remark 1.5 one observes that given any x0 >
0 there is one and only one branch Bi(cν,s) (or Bi(0ν)) such that x0 ∈ Bi(cν,s)
(or x0 ∈ Bi(0ν)). Thus, by virtue of Theorem 1.13 and given x0 > 0, either
limn→∞ T (n)

i,ν (x0) = cν,s for some s or limn→∞ T (n)
i,ν (x0) = 0. Convergence to 0 will

only take place when x0 ∈ ]0, cν+i,1] and cν+i,1 < cν,1, that is, when x0 ∈ Bi(0ν) 6= ∅
(see Definition 1.4).

2. Bounds on the differences |cν,s − cν±1,s′ | between adjacent zeros

The iteration of Ti,ν converges to cν,s (Theorem 1.13) for any a starting value
x0 ∈ Bi(cν,s). In Section 3, we will describe how to evaluate cν,s±1 once cν,s is
known. Bounds on the differences of adjacent zeros are required in order to build
such (iterative) relations between cν,s and cν,s±1.
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Theorem 2.1 (Bounds for differences of adjacent zeros). Let cν,s, cν+i,s′ , i = ±1,
be adjacent zeros. Let δi(ν) = 2iν + 1.

1. If δi(ν) 6= 0, then δi(ν)(cν+i,s′ − cν,s) [π/2− |cν+i,s′ − cν,s|] > 0.
2. If δi(ν) = 0, then |cν+i,s′ − cν,s| = π/2.

Proof. Let δi(ν) 6= 0 (the case δi(ν) = 0 is trivial). From Lemma 1.10 we know
that

H ′i,ν(x) = 1 +Hi,ν(x)2 + δi(ν)Hi,ν(x)/x.(2.1)

Equation 2.1 can be proved by deriving Hi,ν(x) (equations 1.2) with respect to x
and employing the recurrences (equation 0.2) to rewrite the derivative in terms of
Hi,ν(x). From this equation,

δi(ν)Hi,ν(x)
[

H ′i,ν(x)
1 +Hi,ν(x)2 − 1

]
=

δ2
i (ν)Hi,ν(x)2

x(1 +Hi,ν(x)2)
∀x ∈ R+ \ Zν+i

and then

δi(ν)Hi,ν (x)
[

H ′i,ν(x)

1 +Hi,ν(x)2 − 1
]
> 0 ∀x ∈ R+ \ Zν

⋃
Zν+i.

In particular, the inequality holds ∀x ∈ B◦i (cν,s) \ cν,s and for any given s ∈ N.
B◦i (cν,s) denotes the interior of Bi(cν,s).

Considering Corollary 1.11 we have

hi,ν(x) ≡ δi(ν) sign[x− cν,s]
[

H ′i,ν(x)

1 +Hi,ν(x)2 − 1
]
> 0 ∀x ∈ B◦i (cν,s) \ {cν,s}

and then for all x′ ∈ B◦i (cν,s) \ cν,s,

sign

[∫ x′

cν,s

hi,ν(x)dx

]
= sign[x′ − cν,s]

⇒ sign[x′ − cν,s]
∫ x′

cν,s

hi,ν(x)dx > 0.

Writing si(ν, x′) ≡ δi(ν)(x′ − cν,s),

si(ν, x′)
∫ x′

cν,s

sign[x− cν,s]
(

H ′i,ν(x)
1 +Hi,ν(x)2

− 1
)
dx

= si(ν, x′) sign[x′ − cν,s]
∫ x′

cν,s

(
H ′i,ν(x)

1 +Hi,ν(x)2
− 1
)
dx > 0.

By integrating we obtain

si(ν, x′) sign[x′ − cν,s](arctan (Hi,ν(x′))− (x′ − cν,s)) > 0,

and by taking into account Corollary 1.11

si(ν, x′)(| arctan (Hi,ν(x′)) | − |x′ − cν,s|) > 0 ∀x′ ∈ B◦i (cν,s) \ cν,s.
Taking now the limit x′ → cν+i,s′ , being cν+i,s′ adjacent to cν,s, we have

Hi,ν(x′)→ ±∞ and si(ν, cν+i,s′)(π/2− |cν+i,s′ − cν,s|) > 0, and then

δi(ν)(cν+i,s′ − cν,s)(π/2 − |cν+i,s′ − cν,s|) > 0.



ITERATIVE RELATIONS BETWEEN CONSECUTIVE ZEROS OF Cν(x) 1211

3. Iterative relations between consecutive zeros cν,s, cν,s±1

Once two global Newton iterations have been defined and bounds on differences
of adjacent zeros have been given, iterative relations between consecutive zeros of
Cν(x) can be established.

In this section, the main result is Theorem 3.6 part 2: once a zero cν,s is known,
the starting value cν,s±π guarantees convergence to cν,s±1 by appropriately choos-
ing one of the two Newton iterations.

First, it is shown that cν,s ± π is inside Bi(cν,s±1) either for i = +1 or i = −1
(there is a possible exception when |ν| < 1/2). This result (Lemma 3.5), together
with the global convergence of the Newton iterations Ti,ν(x) (Theorem 1.13) is
enough to prove the main result (Theorem 3.6).

Notation 3.1. From now on sign(x) will denote the function sign(x) = +1 if x ≥ 0
and sign(x) = −1 when x < 0. The next results could have been stated in the same
way had we chosen sign(0) = −1.

Lemma 3.2. Let |ν| > 1/2. Let i = ±1, s ∈ N be such that k ≡ s+ sign(iν) > 0.
Then cν,s + γ sign(iν) ∈ Bi(cν,k) ∀γ ∈ [π/2, π].

Proof. Let cν,s, cν+i,s′ be adjacent zeros. Considering that sign(δi(ν)) = sign(iν)
when |ν| > 1/2, we have that (see Theorem 2.1)

1. If iν > 0, |cν+i,s′ − cν,s| < π/2 when cν+i,s′ > cν,s, then cν,s + γ > cν+i,s′ for
γ ≥ π/2.

2. If iν < 0, |cν+i,s′ − cν,s| < π/2 when cν+i,s′ < cν,s, then cν,s − γ < cν+i,s′ for
γ ≥ π/2.

Thus,

x1 ≡ cν,s + γ sign(iν) 6∈ Bi(cν,s) for γ ≥ π/2.(3.1)

Now it is a simple matter to check that x1 ∈ Bi(cν+i,k) when γ ≤ π, where
k = s + sign(iν). From Theorem 1.6, it follows that cν,s+1 − cν,s ≥ π ∀s ∈ N
(since |ν| > 1/2) and then cν,s + γ < cν,s+1 for γ ≤ π. Similarly, cν,s − γ > cν,s−1

(when s − 1 > 0). Thus, choosing π/2 ≤ γ ≤ π, x1 necessarily lies in a branch
contiguous to Bi(cν,s).

The following result, valid for |ν| ≤ 1/2, can be proved by considering Theorem
1.6.

Lemma 3.3. Let j = ±1 and s ∈ N be such that s + j > 0. If |ν| ≤ 1/2, then
cν,s + jπ ∈ Bi(cν,s+j) both for i = +1 and i = −1 except, possibly, when s+ j = 1
and cν,1 < cν+i,1.

Proof. |ν| ≤ 1/2⇒ cν,n+1 − cν,n ≤ π and cν+i,n′+1 − cν+i,n′ ≥ π ∀n, n′ ∈ N. Thus
given the interlacing properties (Lemma 1.1), the sequence of zeros

cν,s < cν+i,s′+1 < cν,s+1 < cν+i,s′+2,

with s ≥ 0, is such that cν,s+1 < cν,s + π < cν+i,s′+2. In other words

cν,s + π ∈ Bi(cν,s+1) ∀s ∈ N.
Similarly, for s ≥ 3 can write

cν+i,s′−1 < cν,s−1 < cν+i,s′ < cν,s(3.2)
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and cν+i,s′ < cν,s − π < cν,s−1, that is

cν,s − π ∈ Bi(cν,s−1) s ≥ 3(3.3)

while for s = 2, the first inequality (cν+i,s′−1 < cν,s−1) can only be considered when
cν+i,1 < cν,1. This is why exceptions to Lemma 3.3 can be found when s = 2 and
j = −1 (and cν,1 < cν+i,1).

Remark 3.4. When |ν| < 1/2 and cν,1 < cν+i,1, it may happen that cν,1 < cν,2 ≤ π
and cν,2 − π ≤ 0. This fact also explains the exception in Lemma 3.3 and in the
next two results. Such exception never takes place for |ν| ≥ 1/2, since in this case,
as we will later show, cν,2 ≥ π (Lemma 4.6), and besides, cν,s − π > cν,s−1 for
s ≥ 2. This exception is inherited by Lemma 3.5 and Theorem 3.6. Theorem 4.4
will overcome this limitation.

By taking into account Lemmas 3.3 and 3.2 one can prove the following result.

Lemma 3.5. Let j = ±1 and s ∈ N be such that s + j > 0. Then cν,s + jπ ∈
Bsign(jν)(cν,s+j) except, possibly, when |ν| ≤ 1/2, s+ j = 1 and cν,1 < cν+sign(jν),1.

Proof. For |ν| < 1/2, the result is a consequence of Lemma 3.3. The proof for
|ν| > 1/2 follows from Lemma 3.2 for the particular case γ = π, since

cν,s + sign(jν)π ∈ Bj(cν,s+sign(jν)) ⇐⇒ cν,s + jπ ∈ Bsign(jν)(cν,s+j).

Finally, the main result follows from Lemmas 3.3, 3.5 and Theorem 1.13.

Theorem 3.6 (Iterative relations between consecutive zeros). Let j = ±1 and s ∈
N be such that s+ j > 0.

1. If |ν| ≤ 1/2, then cν,s+j = lim
n→∞

T (n)
i,ν [cν,s + jπ] for i = +1 or i = −1, except,

possibly, when s+ j = 1 and cν,1 < cν+i,1.
2. cν,s+j = lim

n→∞
T (n)

sign(jν),ν [cν,s + jπ] ∀ν ∈ R except, possibly, when |ν| < 1/2,
s+ j = 1 and cν,1 < cν+sign(jν),1.

4. Algorithms to find all the positive real zeros

in an interval [xmin, xmax], xmin > 0

The iterative relations given by Theorem 3.6 enable us to build algorithms ca-
pable of finding all the zeros of any real cylinder function inside a given interval
[xmin, xmax], with xmin > 0. For example, taking x1 = limn→∞ T (n)

− sign(ν),ν(xmax)

and xk = limn→∞ T (n)
− sign(ν),ν(xk−1 − π) for k > 1, the series of zeros of Cν(x) in an

interval [xmin, xmax] can be generated in decreasing order. However, the exception
in the results of Section 3 will have to be overcome in order to obtain with certainty
cν,1 once cν,2 has been evaluated.

The zeros can also be generated in increasing order by using the forward iterative
relations, starting from xmin. We will now prove that, for any xmin > 0 and any
real values of ν and α, limn→∞ T (n)

sign(ν),ν(xmin) is a positive zero of Cν(x). This fact
ensures that the forward sweep is always valid and that no a priori estimations for
the zeros are needed to start this sweep.

Being the globally convergent Newton iteration, we know from Theorem 1.13
that limn→∞ T (n)

sign(ν),ν(xmin) = cν,s when cν,s ∈ Bsign(ν)(cν,s). Thus, the only case
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in which the forward iteration may not to converge to a positive zero of Cν(x) is when
xmin ∈ Bsign(ν)(0ν), which is the same as saying that 0 < xmin < cν+sign(ν),1 < cν,1;
however, this situation cannot take place:

Theorem 4.1 (Ordering between cν,1 and cν+sign(ν),1). The following statements
are equivalent and hold for any real values of ν and α:

1. Bsign(ν)(0ν) = ∅.
2. cν,1 < cν+1,1 if ν ≥ 0 and cν,1 < cν−1,1 if ν ≤ 0.
3. limx→0+ fsign(ν),ν(x) < 0.

Proof. Statements 1 and 2 are clearly equivalent, given Definition 1.4. On the other
hand, since fsign(ν),ν(x) is monotonic, we have that

cν,1 < cν+sign(ν) ⇔ lim
x→0+

fsign(ν),ν(x) < 0.

Thus, 2 and 3 are also equivalent.
Given the symmetry between positive and negative orders (Lemma 1.8) all that

remains to be proved is that

lim
x→0+

f+1,ν(x) < 0 ∀ν ≥ 0.

By noticing that, as x→ 0+ [10],

J0(x) ' 1 , Y0(x) ' − 2
π

log
2
x

and

Jν(x) ' xν

2νΓ(1 + ν)
, Yν ' −

2νΓ(ν)
πxν

for ν > 0

and writing Cν(x) = cosαJν(x)− sinαYν(x) we see that, when x→ 0+,

f+1,ν(x) ' −2(ν + 1)x−2(ν+1) for ν ≥ 0 and α = 0,
f+1,0(x) ' − log 2

x for ν = 0 and α 6= 0,
f+1,ν(x) ' − 1

2ν x
−2ν for ν > 0 and α 6= 0.

Therefore limx→0+ f+1,ν(x) = −∞ for ν ≥ 0 ∀α.

From Theorems 1.13 and 4.1 easily follows that the iteration Tsign(ν),ν(x) al-
ways converges to a positive real zero of Cν(x) for any starting value x0 > 0 and,
differently from T− sign(ν),ν(x), it will never converge to 0. In particular, we have:

Corollary 4.2 (Iterative formula for the first zero of cylinder functions). The
first positive real zero of any real cylinder function can be written as

cν,1 = lim
n→∞

T (n)
sign(ν),ν(x) ∀x ∈ ]0, cν+sign(ν),1[.(4.1)

Given Corollary 4.2, a prescription to evaluate all the zeros of a given cylinder
function Cν(x) inside an interval [xmin, xmax] can be established:

Theorem 4.3 (Forward evaluation of the zeros). The zeros of any real cylinder
function Cν(x) inside an interval [xmin, xmax], xmin > 0, can be evaluated in the
following way:
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1. Evaluate x1 ≡ limm→∞ T (m)
sign(ν),ν(xmin). Then x1 = cν,s for some integer

s > 0 provided there is at least one positive zero of Cν(x), cν,s′ , such that
cν,s′ ≥ xmin.

2. Given cν,k with k ≥ s, use the forward iterative relation

cν,k+1 = lim
m→∞

T (m)
sign(ν),ν(cν,k + π)

to generate the sequence of zeros

cν,s < cν,s+1 < · · · < cν,s+n ≤ xmax < cν,s+n+1.

Then {cν,s+i, i = (0), 1, ..., n} is the set of all the zeros inside the interval
[xmin, xmax] (cν,s is excluded when cν,s < xmin).

Although the forward sweep suffices to find all the zeros inside a given interval, we
will prove, for completeness, that a backward method can also be built to perform
this same task. No previous estimations from asymptotics are needed, similar to
the forward method. The main difference between both procedures, apart from the
use of the iteration T− sign(ν),ν instead of Tsign(ν),ν , can be found in the stopping
rules which terminate the backward sweep. Particular care must be taken (rule 4
in the next theorem) in order to overcome the exception in Theorem 3.6.

Theorem 4.4 (Backward evaluation of the zeros). The zeros of any real cylinder
function Cν(x) inside an interval [xmin, xmax], xmin > 0, can be evaluated in the
following way:

1. Evaluate x1 ≡ limm→∞ T (m)
− sign(ν),ν(xmax). Then x1 = cν,s for some integer

s > 0 provided there is at least one positive zero of Cν(x), cν,s′ , such that
cν,s′ ≤ xmax.

2. Given cν,k with 0 < k ≤ s, use the backward iterative relation

cν,k−1 = lim
m→∞

T (m)
− sign(ν),ν(cν,k − π)

to generate the sequence of zeros

cν,s > cν,s−1 > · · · > cν,s−n ≥ xmin.

3. The backward sweep must be applied reiteratively until, after the evaluation of
n zeros, one of the following conditions is met:
(a) 0 < xf < xmin, being xf ≡ limm→∞ T (m)

− sign(ν),ν(cν,s−n − π).
(b) xf = 0 (xf as defined above).
(c) cν,s−n − π ≤ 0.

4. When cν,s−n − π ≤ 0, |ν| < 1/2 and xmin < π, a further step is required.
One should evaluate xn+1 ≡ limm→∞ T (m)

sign(ν),ν(xmin). If xmin ≤ xn+1, then
xn+1 ≡ cν,s−(n+1) is also a zero of Cν(x) in [xmin, xmax] (the first positive
zero).

{cν,s−i, i = (0), 1, ..., n, (n + 1)} is the set of all the zeros inside the interval
[xmin, xmax]. cν,s is excluded when cν,s > xmax. cν,s−(n+1) is included when case 4
applies and cν,s−n 6= cν,s−(n+1).

Remark 4.5. Of course, in a numerical implementation of the stopping rule 3(b),
we would stop the backward sweep when 0 < xf < ε, ε being a small positive
number.
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Proof of Theorems 4.3 and 4.4. Theorems 4.3 and 4.4 follow from Theorem 3.6 and
1.13.

Given Corollary 4.2, convergence to the first zero in the interval [xmin, xmax],
xmin > 0, is guaranteed for the forward method. This fact, together with Theorems
3.6 and 1.13, proves Theorem 4.3.

For the backward method, the stopping rules in Theorem 4.4 steps 3, 4 remain to
be proved. The situations in which the iteration must terminate are the following:

1. When cν,1 < xmin, the stopping rules 3(a) and 3(c) are sufficient to guarantee
the proper termination of the sweep. Indeed, convergence to 0 can only take
place whenB− sign(ν)(0ν) 6= 0 (Definition 1.4), that is, when cν−sign(ν),1 < cν,1;
but then, and for s ≥ 2, cν,s − π is a starting value which guarantees conver-
gence to cν,s−1 (Theorem 3.6). Therefore, there is no possible convergence to
0 and rule 3(b) does not apply. We are left with two possibilities:
(a) The backward sweep must be halted when convergence to a zero of Cν(x)

smaller than xmin takes place (stopping rule 3(a)).
(b) When cν,1 < xmin < cν,2, it is possible that cν,2 − π ≤ 0 and then the

stopping rule 3(c) applies. Notice that the algorithm is not asked to
evaluate cν,1, since cν,1 < xmin.

2. When cν,1 ≥ xmin the algorithm will give the set of zeros {cν,s, s = 1, ..., n},
where xmin < cν,1 < cν,2 < · · · < cν,n < xmax. In this case, the stopping rules
become more involved, especially because the exception in Theorem 3.6 has
to be resolved in order to be able to find with certainty the first positive zero
cν,1 once cν,2 is known.
(a) When cν−sign(ν),1 < cν,1, cν,2 − π is a starting value that provides con-

vergence to cν,1 (Theorem 3.6). After the evaluation of cν,1, two different
stopping rules will apply for the case cν,1 ≤ π, and for the case cν,1 > π:
(i) When cν,1 > π then necessarily |ν| > 1/2 (Lemma 4.8), and by

Lemma 2.1, cν,1−π ∈ ]0, cν−sign(ν),1] ≡ B− sign(ν)(0ν); then the New-
ton method will converge to 0. This situation corresponds to rule
3(b).

(ii) When cν,1 ≤ π, the rule 3(c) applies.
(b) When cν,1 < cν−sign(ν),1, then cν,1 ≤ π, as will be shown in Lemma 4.7.

There are two possibilities in this case:
(i) When cν,2 > π, cν,2 − π is a starting value which guarantees conver-

gence to cν,1 because B− sign(ν) = ∅ and 0 < cν,2 − π < cν−sign(ν),1,
which means that cν,2 − π ∈ B− sign(ν)(cν,1). This is a consequence
of Lemma 3.2 for |ν| > 1/2; for |ν| ≤ 1/2 we have cν,2 − cν,1 ≤ π
(Theorem 1.6) and then 0 < cν,2 − π < cν,1 < cν−sign(ν),1. After cν,1
has been evaluated, the stopping rule 3(c) terminates the sweep since
cν,1 − π < 0.

(ii) If cν,2 ≤ π, the algorithm would stop just after the evaluation of
cν,2 because cν,2 − π ≤ 0 (rule 3(c)); the zero cν,1 would then be
skipped. This situation constitutes the exception in Lemmas 3.3, 3.5
and Theorem 3.6 and it is handled and resolved by applying rule 4
(which is based on Theorem 4.2). This possibility may only be found
when |ν| < 1/2 since cν,2 ≥ π for |ν| ≥ 1/2 (Lemma 4.6).

We end this section with the proof of several results used in the preceding proof
of the stopping rules 2(b).
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Lemma 4.6. If |ν| ≥ 1/2, then cν,2 ≥ π.

Proof. The zeros of two different real cylinder functions of a same order ν are
interlaced (see [26]); in particular, the zeros of Cν(x) (α 6= kπ , k ∈ Z) and Jν(x)
are interlaced; thus, cν,2 > jν,1. Given that jν,1 = π and that djν,1

dν > 0 for ν > −1
[26], we have that cν,2 ≥ π for ν ≥ 1/2 and similarly (Lemma 1.8) cν,2 ≥ π for
ν ≤ −1/2.

Lemma 4.7. If cν,1 < cν−sign(ν),1, then |ν| < 1, ν 6= 0 and cν,1 ≤ π.

Proof. Given Theorem 4.1, cν,1 < cν−sign(ν),1 cannot take place when |ν| > 1 or
ν = 0.

Let us consider ν ∈ ]0, 1[ to show that cν,1 ≤ π; then the use of Lemma 1.8
guarantees that the same inequality holds for ν ∈ ]− 1, 0[.

Since yν,1 < jν,1 < yν,2 < jν,2 < ... for ν > 0, where yν,s and jν,s are the sth
positive zeros of Jν(x) and Yν(x), respectively, and given that for x→ 0+

Jν(0+) = 0+ , J ′ν(0+) > 0 , Yν(0+) < 0,

we have that
1. Cν(yν,1) > 0 and Cν(jν,1) < 0 for α ∈ ]0, π/2[. Then cν,1 ∈ [yν,1, jν,1] for
α ∈ [0, π/2] by Rolle’s theorem.

2. Cν(0+) > 0 and Cν(yν,1) < 0 for α ∈ ]π/2, π[. Then cν,1 ∈ ]0, yν,1[, where
Cν(x) = cosαJν(x)− sinαYν(x).

Thus,

cν,1 ≤ jν,1 ∀α.(4.2)

Besides, since Cν−1(x) = − cos(α+νπ)J1−ν(x)+s(α+νπ)Y1−ν(x) (Lemma 1.8),
by repeating the same argument we have that cν−1,1 ≤ j1−ν,1, ν ∈ ]0, 1[. But our
hypothesis is cν,1 < cν−1,1 for ν > 0 and then

cν,1 < j1−ν,1 ∀α ∀ν ∈ ]0, 1[.(4.3)

Equations 4.2 and 4.3 together with the fact that djν,1/dν > 0 for ν > −1 [26]
leads to

cν,1 ≤ j1/2,1 = π.

Lemma 4.8. If |ν| ≤ 1/2, then cν,1 ≤ π.

Proof. Similar to Lemma 4.7, cν,1 ≤ jν,1 and then cν,1 ≤ π.

5. Numerical examples

In this section, several examples of the application of Lemmas 4.3 and 4.4 are
provided. Both the forward and backward sweeps have been proven to be capable
of obtaining all the real zeros of any real cylinder function. Therefore, a sufficiently
accurate method of evaluation of cylinder functions is all that is needed to evaluate
their zeros.

As discussed in [20] and [21], a continued fraction (CF) can be used for first kind
Bessel functions to evaluate Jν(x)/Jν+i(x), i = ±1. The use of the CF gives rise
to a short and accurate method of computation.

To obtain the zeros of combinations cosαJν(x) − sinαYν(x) with α 6= 0, a
continued fraction is no longer available since the resulting cylinder function is
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no longer minimal with respect to recursion over orders. However, we can evaluate
both Jν(x) and Yν(x) by using some external program. We use SLATEC routines
DBESJ and DBESY to evaluate Jν(x) and Yν(x) for ν ≥ 0, and we apply Lemma
1.8 for ν < 0.

Overflows in the evaluation of cylinder functions can be expected. The main
problem is due to the fact that Yν(x) goes to −∞ as x → 0+. This behaviour
causes rounding problems when trying to obtain the first positive zero for ν > 0
and α = kπ − ε with 0 < ε � 1 (cν,1 → 0+ as ε → 0+). For ν < 0 the same
cancellation problems appear when −νπ + α = kπ − ε, 0 < ε� 1. This limitation
is difficult to overcome and was also present in the evaluation of the zeros of Jν(x)
[21] for negative orders ν = −k + ε.

In addition, one has to detect and avoid overflows in the ratio Cν(x)/Cν+i(x)
(i = ±1) when x is close to a zero of Cν+i(x). As discussed in [20] and [21], the use
of the Lentz-Thompson algorithm [19, 24] to evaluate the CF for Jν(x)/Jν±1(x)
overcomes this problem while, for general combinations, one has to take explicit
precautions. This overflow problem can be handled with ease.

Apart from the roundoff error limitations, to evaluate the first positive zeros
in the cases when cν,1 is small, the application of Theorems 4.3 and 4.4 provides
a general algorithm to find all real roots of any real cylinder function. As an
illustration, the zeros for Cν(x) for ν = 0.2 and ν = 10 and α varying in [0, π[
(taking steps ∆α = 0.1) are shown in Figure 1. We also show the zeros of the
contiguous cylinder functions Cν±1(x) and starting values used both by the forward
and backward algorithms.

The left figure shows the zeros found in the interval [15, 35] for Cν(x) with ν =
10 , 9 , 11 and α ∈ [0, π[. In this figure, the smallest zeros are the first positive
zeros. Starting values used to evaluate the zeros of C10(x), for both the forward
and backward sweep are shown (×-points).

Note that for a fixed value of α the starting values for the backward iteration
always lie between two consecutive zeros of C9(x) (�-points) which are adjacent to
the zero of C10(x) to which the Newton iteration converges (Theorem 1.13). The
last starting value (the lowest) is such that the Newton iteration would converge
to zero, which is the situation corresponding to the stopping rule 3(b) of Theorem
4.4.

On the other hand, the starting values for the forward iteration always lie be-
tween two consecutive zeros of C11(x) (+-points) which are adjacent to a same zero
of C10(x). The last (highest) starting value lies outside the interval [15, 35] and
gives convergence to a zero outside this interval (stopping rule of Theorem 4.3).

A graphical explanation for the different Newton iterations used by the forward
and backward sweeps can be given by considering Figure 1 (left). Given two con-
secutive starting values for the backward sweep there is one and only one curve of
�-points (zeros of C9(x)) crossing between both starting values. In addition, be-
tween each two consecutive starting values for the forward sweep there is one and
only one curve of +-points crossing (zeros of C11(x)). This property shows that
two consecutive starting values always lie in consecutive (and different) branches
Bsign(iν)(cν,s), Bsign(iν)(cν,s±1) (i = +1 for the forward sweep, i = −1 for the back-
ward case). However, we see in Figure 1 (left) that there is a case in which two lines
of �-points cross between two consecutive starting values for the forward sweep;
one can also observe that there are two consecutive starting values for the backward



1218 JAVIER SEGURA

Figure 1. First positive zeros of the cylinder functions Cν(x) =
cosαJν(x) − sinαYν(x) for ν = 10 (left) and ν = 0.2 (right) and
α ∈ [0, π[. The zeros for the contiguous cylinder functions Cν±1

and the starting values considered to evaluate several zeros cν,s
are also shown.

sweep which are not separated by any curve of +-points. This fact explains graph-
ically why two different Newton iterations are needed depending upon the type of
sweep considered (forward/backward).

The right figure shows the first zeros for the orders ν = 0.2 , −0.8 , 1.2 within
the interval [0.001,10]. The most interesting differences with respect to the right
figure can be found in the stopping rules for the backward iteration.

The starting values for the forward sweep guarantee convergence to all zeros in
the interval [0.001, 10]. The finding of zeros stops when a zero larger than xmax = 10
is found.

In a similar way, all the starting values for cos(α) = 0 used by the backward
sweep guarantee, without exception, convergence to all positive zeros in the interval
[0.001, 10]. The last starting value is negative given that cν,1 < π (stopping rule
3(c) of Theorem 4.4).

Finally, the starting values for the backward algorithm when cosα ' −1, illus-
trate the exception to Theorem 3.6 and the necessity of stopping rule 4 in Theorem
4.4. Observe that 0 ' cν,1 < cν,2 < π so that, after cν,2 has been evaluated, the new
starting value cν,2 − π is smaller than zero. The algorithm stops due to rule 3(c)
but the first zero can be evaluated a posteriori by using rule 4 with xmin = 0.001.

6. Conclusions

Two global Newton iterations have been built, based on the monotonic functions
f±1,ν(x). This pair of global Newton iterations (Theorem 1.13), complemented
with the bounds on differences of adjacent zeros (Theorem 3.2), enabled us to find
forward and backward iterative relations (Theorem 3.6) between consecutive zeros
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of general cylinder functions Cν(x). By using these iterative relations all the zeros
of any real cylinder function inside a given interval [xmin, xmax], xmin > 0, can be
found. Forward or backward sweeps have been built which are able to perform this
calculation (Theorems 4.3 and 4.4).

These global methods are expected to be particularly efficient for the evaluation
of the smallest zeros for low |ν| (as happened for Jν(x) [21]), precisely when as-
ymptotic expansions tend to fail. Furthermore, the method presented here is valid
for any real cylinder function of any real order.
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