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THE NUMERICAL SOLUTION
OF INTEGRAL-ALGEBRAIC EQUATIONS OF INDEX 1
BY POLYNOMIAL SPLINE COLLOCATION METHODS

J.-P. KAUTHEN

Abstract. In this paper, we study polynomial spline collocation methods
applied to a particular class of integral-algebraic equations of Volterra type.
We analyse mixed systems of second and first kind integral equations. Global
convergence and local superconvergence results are established.

1. Introduction

In this paper, we study numerical methods for the solution of a mixed system of
Volterra integral equations of the first and second kind. More precisely, we consider
the system

y(t) = f(t) +
∫ t

0

(K11(t, s)y(s) +K12(t, s)z(s)) ds,(1.1)

0 = g(t) +
∫ t

0

(K21(t, s)y(s) +K22(t, s)z(s)) ds,(1.2)

and its nonlinear counterpart

y(t) = f(t) +
∫ t

0

k(t, s, y(s), z(s)) ds,(1.3)

0 = g(t) +
∫ t

0

`(t, s, y(s), z(s)) ds.(1.4)

Here we assume that t ∈ I = [0, T ] and that the data functions f , g, Kij , i, j = 1, 2,
k and ` are sufficiently smooth. Furthermore we suppose that g(0) = 0, |K22(t, t)| ≥
k0 > 0 for all t ∈ I and that the partial derivative of the function ` w.r. to its
fourth variable ∂4`(t, t, y, z) is invertible for t ∈ I and y, z in a neighborhood of the
solution. It then follows that the systems (1.1), (1.2) or (1.3), (1.4), respectively,
have a continuous solution y, z on I. This can be seen easily as follows. We first
differentiate equations (1.2) and (1.4) w.r. to t and consider the resulting equations
as equations of the second kind for z. We formally solve for z and replace the
resulting expressions in (1.1), (1.3), respectively. We thus obtain equations of the
second kind for y. However it has to be pointed out that this reduction to an
integral equation of the second kind for y is not practical from a numerical point
of view.
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Coupled systems of Volterra equations of the first and second kind arise for
example in a slightly different form in problems of identification of memory kernels
in heat conduction and viscoelasticity (see, e.g., [5] and [6]). As a starting point for
our investigations we have chosen the form (1.1), (1.2). The systems (1.1), (1.2)
and (1.3), (1.4) are also special cases of the integral-algebraic equations

a(y) = a(y0) +
∫ t

0

k(t, s, y(s)) ds,(1.5)

considered in [2], where it is asssumed that A = ay = ∂a/∂y is singular. In analogy
with the theory of differential-algebraic equations (see, e.g., [4]) we call the systems
(1.1), (1.2) and (1.3), (1.4) semi-explicit index 1 problems.

The system (1.1), (1.2) (and similarly (1.3), (1.4)) can be seen as the limit as
ε→ 0 of the singularly perturbed problem

y(t) = f(t) +
∫ t

0

(K11(t, s)y(s) +K12(t, s)z(s)) ds,(1.6)

εz(t) = g(t) +
∫ t

0

(K21(t, s)y(s) +K22(t, s)z(s)) ds.(1.7)

Systems of the type (1.1), (1.2) also naturally arise when computing asymptotic
expansions of the solution of (1.6), (1.7) and when studying numerical methods for
such problems (see [7]).

The outline of this paper follows. In Section 2 we apply polynomial spline col-
location methods to (1.1), (1.2) and (1.3), (1.4). A global convergence analysis
is presented in Section 3, and Section 4 deals with superconvergence results. We
conclude with a numerical illustration in Section 5.

2. Polynomial spline collocation

Let ΠN be a uniform partition of the interval I with grid points tn = nh,
n = 0, . . . , N , and let h be the stepsize. Define the subintervals σ0 = [t0, t1],
σn = (tn, tn+1], n = 1, . . . , N − 1. Let the collocation parameters be 0 < c1 <
c2 < · · · < cm ≤ 1 and the collocation points be tnj = tn + cjh, j = 1, . . . ,m,
n = 0, . . . , N − 1. We consider polynomial spline approximations u(t), v(t) of the
exact solution y(t), z(t) in the spline space

S
(−1)
m−1(ΠN ) = {u : un = u|σn ∈ πm−1, n = 0, . . . , N − 1}.

This is the space of piecewise polynomials of degree (at most) m−1. Its dimension
is Nm, i.e., the same as the number of collocation points. In what follows we will
consider the linear system (1.1), (1.2), but everything carries over to the nonlinear
case (see Remark 4.2). We seek u and v such that the collocation equations

u(t) = f(t) +
∫ t

0

(K11(t, s)u(s) +K12(t, s)v(s)) ds,(2.1)

0 = g(t) +
∫ t

0

(K21(t, s)u(s) +K22(t, s)v(s)) ds,(2.2)
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are satisfied for t = tnj , j = 1, . . . ,m, n = 0, . . . , N − 1. Let Ynj = un(tnj) and
Znj = vn(tnj). Since un, vn ∈ πm−1, it holds for τ ∈ (0, 1],

un(tn + τh) =
m∑
j=1

Lj(τ)Ynj , vn(tn + τh) =
m∑
j=1

Lj(τ)Znj .(2.3)

Here Lj(τ) = Πk 6=j(τ − ck)/(cj − ck), j = 1, . . . ,m, denote the fundamental La-
grange polynomials. Inserting (2.3) into (2.1), (2.2), we obtain, for each n =
0, . . . , N − 1, a linear system for the unknowns Ynj , Znj , j = 1, . . . ,m,

Ynj = f(tnj) + h

m∑
k=1

(∫ cj

0

K11(tnj , tn + τh)Lk(τ) dτ
)
Ynk(2.4)

+ h
m∑
k=1

(∫ cj

0

K12(tnj , tn + τh)Lk(τ) dτ
)
Znk

+ h
n−1∑
i=0

m∑
k=1

(∫ 1

0

K11(tnj , ti + τh)Lk(τ) dτ
)
Yik

+ h

n−1∑
i=0

m∑
k=1

(∫ 1

0

K12(tnj , ti + τh)Lk(τ) dτ
)
Zik,

0 = g(tnj) + h

m∑
k=1

(∫ cj

0

K21(tnj , tn + τh)Lk(τ) dτ
)
Ynk(2.5)

+ h

m∑
k=1

(∫ cj

0

K22(tnj , tn + τh)Lk(τ) dτ
)
Znk

+ h

n−1∑
i=0

m∑
k=1

(∫ 1

0

K21(tnj , ti + τh)Lk(τ) dτ
)
Yik

+ h

n−1∑
i=0

m∑
k=1

(∫ 1

0

K22(tnj , ti + τh)Lk(τ) dτ
)
Zik.

For the nonlinear system (1.3), (1.4) we obtain of course a nonlinear system for
Ynj , Znj, j = 1, . . . ,m. In the gridpoints, the numerical solutions are defined as

y0 = f(t0), z0 =
m∑
j=1

Lj(0)Z0j ,(2.6)

yn+1 = un(tn+1), zn+1 = vn(tn+1), n = 0, . . . , N − 1.(2.7)

For the numerical solution of these systems, the integrals in (2.4), (2.5) have to
be approximated by appropriate quadrature rules. Here we will use∫ ci

0

f(τ) dτ ≈
m∑
j=1

aijf(cj), i = 1, . . . ,m,(2.8)

∫ 1

0

f(τ) dτ ≈
m∑
j=1

bjf(cj),(2.9)

where the coefficients aij and bj are defined by aij =
∫ ci

0 Lj(τ) dτ , bj =
∫ 1

0 Lj(τ) dτ ,
i, j = 1, . . . ,m. The resulting approximations of y, z are denoted by û, v̂ and are
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defined by

Ŷnj = f(tnj) + h
m∑
k=1

ajkK11(tnj , tnk)Ŷnk + h
m∑
k=1

ajkK12(tnj , tnk)Ẑnk(2.10)

+ h
n−1∑
i=0

m∑
k=1

bkK11(tnj , tik)Ŷik + h
n−1∑
i=0

m∑
k=1

bkK12(tnj , tik)Ẑik,

0 = g(tnj) + h

m∑
k=1

ajkK21(tnj , tnk)Ŷnk + h

m∑
k=1

ajkK22(tnj , tnk)Ẑnk(2.11)

+ h

n−1∑
i=0

m∑
k=1

bkK21(tnj , tik)Ŷik + h

n−1∑
i=0

m∑
k=1

bkK22(tnj , tik)Ẑik,

and equations similar to (2.3), (2.6) and (2.7). The internal stages Ŷnj and Ẑnj
of this discretized collocation method are thus equivalent to those of an extended
implicit Volterra-Runge-Kutta method (see [1]).

3. Global convergence analysis

Let ‖ · ‖∞ be the supremum norm. We have the following global convergence
result:

Theorem 3.1. Consider the polynomial spline approximations u, v in S
(−1)
m−1(ΠN )

to the solution y, z of the system (1.1), (1.2) and defined by (2.3)–(2.5). For
every choice of cm, (0 < cm ≤ 1), the collocation approximation u converges to the
solution y. If cm = 1, the collocation approximation v converges to the solution z,
and if cm < 1, the collocation approximation v converges to the solution z for any
m ≥ 1 if and only if

−1 ≤ R(∞) = (−1)m
m∏
i=1

1− ci
ci

≤ 1.(3.1)

Moreover, the following error estimates hold :

‖y − u‖∞ = O(hm),

‖z − v‖∞ =


O(hm) if cm = 1,
O(hm) if cm < 1 and −1 ≤ R(∞) < 1,
O(hm−1) if cm < 1 and R(∞) = 1,

as h→ 0 with Nh ≤ const.

Proof. It holds for the exact solution that

y(tn + τh) =
m∑
j=1

Lj(τ)y(tnj) + rn(τ), rn(τ) = hm
y(m)(ηn(τ))

m!

m∏
i=1

(τ − ci),

z(tn + τh) =
m∑
j=1

Lj(τ)z(tnj) + sn(τ), sn(τ) = hm
z(m)(ζn(τ))

m!

m∏
i=1

(τ − ci),
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with τ ∈ [0, 1]. It follows that the errors e = y− u and ε = z− v have the following
representation

en(tn + τh) =
m∑
j=1

Lj(τ)en(tnj) + rn(τ),(3.2)

εn(tn + τh) =
m∑
j=1

Lj(τ)εn(tnj) + sn(τ),(3.3)

where en = e|σn and εn = ε|σn . On the other hand, the errors satisfy the system

en(tnj) =
∫ tnj

0

(K11(tnj , s)e(s) +K12(tnj , s)ε(s)) ds,(3.4)

0 =
∫ tnj

0

(K21(tnj , s)e(s) +K22(tnj , s)ε(s)) ds.(3.5)

This gives

en(tnj) = h

∫ cj

0

(K11(tnj , tn + τh)en(tn + τh) +K12(tnj , tn + τh)εn(tn + τh)) dτ

(3.6)

+ h

n−1∑
i=0

∫ 1

0

(K11(tnj , ti + τh)ei(ti + τh)+K12(tnj , ti + τh)εi(ti + τh)) dτ,

0 = h

∫ cj

0

(K21(tnj , tn + τh)en(tn + τh) +K22(tnj , tn + τh)εn(tn + τh)) dτ

(3.7)

+ h

n−1∑
i=0

∫ 1

0

(K21(tnj , ti + τh)ei(ti + τh) +K22(tnj , ti + τh)εi(ti + τh)) dτ.

We now rewrite (3.7) with n replaced by n− 1 and j = m, subtract this equation
from (3.7) and divide by h. (This process is the numerical analog of transforming
a first kind equation into a second kind equation by differentation.) We obtain

∫ cj

0

(K21(tnj , tn + τh)en(tn + τh) +K22(tnj , tn + τh)εn(tn + τh)) dτ

(3.8)

=
∫ cm

0

(K21(tn−1m, tn−1 + τh)en−1(tn−1 + τh)

+K22(tn−1m, tn−1 + τh)εn−1(tn−1 + τh)) dτ

−
n−1∑
i=0

∫ 1

0

(K21(tnj , ti + τh)ei(ti + τh) +K22(tnj , ti + τh)εi(ti + τh)) dτ

+
n−2∑
i=0

∫ 1

0

(K21(tn−1m, ti + τh)ei(ti + τh)

+K22(tn−1m, ti + τh)εi(ti + τh)) dτ.

We now have to distinguish between two cases, cm = 1 and cm < 1.
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Case I: cm = 1. Now (3.8) becomes

∫ cj

0

(K21(tnj , tn + τh)en(tn + τh) +K22(tnj , tn + τh)εn(tn + τh)) dτ

(3.9)

=
n−1∑
i=0

∫ 1

0

(K21(tn−1m, ti + τh)ei(ti + τh) +K22(tn−1m, ti + τh)εi(ti + τh)) dτ

−
n−1∑
i=0

∫ 1

0

(K21(tnj , ti + τh)ei(ti + τh) +K22(tnj , ti + τh)εi(ti + τh)) dτ.

Using

Kk`(tn−1m, ti + τh)−Kk`(tnj , ti + τh) = h ∂1Kkl(·, ti + τh), k, ` = 1, 2,
(3.10)

with · between tn−1m and tnj ,

∫ cj

0

K22(tnj , tn + τh)Lk(τ) dτ = K22(tn, tn) ajk +O(h), j, k = 1, . . . ,m,

(3.11)

and with (3.2) and (3.3), we arrive at

m∑
k=1

(∫ cj

0

K21(tnj , tn + τh)Lk(τ) dτ
)
en(tnk)

+
m∑
k=1

(K22(tn, tn)ajk +O(h)) εn(tnk)

= h

n−1∑
i=0

m∑
k=1

(∫ 1

0

∂1K21(·, ti + τh)Lk(τ) dτ
)
ei(tik)

+ h

n−1∑
i=0

m∑
k=1

(∫ 1

0

∂1K22(·, ti + τh)Lk(τ) dτ
)
εi(tik) +O(hm)

We also rewrite (3.6) using (3.2) and (3.3)

en(tnj) = h

m∑
k=1

(∫ cj

0

K11(tnj , tn + τh)Lk(τ) dτ
)
en(tnk)(3.12)

+ h

m∑
k=1

(∫ cj

0

K12(tnj , tn + τh)Lk(τ) dτ
)
εn(tnk)

+ h

n−1∑
i=0

m∑
k=1

(∫ 1

0

K11(tnj , ti + τh)Lk(τ) dτ
)
ei(tik)

+ h
n−1∑
i=0

m∑
k=1

(∫ 1

0

K12(tnj , ti + τh)Lk(τ) dτ
)
εi(tik) +O(hm).
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Let En = (en(tn1), . . . , en(tnm))> and εn = (εn(tn1), . . . , εn(tnm))>, n = 0, . . . ,
N − 1. Then the previous two equations can be rewritten in matrix notation

(
I − hK(n,n)

11 −hK(n,n)
12

K
(n,n)
21 K22(tn, tn)A+O(h)

)(
En
εn

)

= h
n−1∑
i=0

(
K

(n,i)
11 K

(n,i)
12

K̃
(n,i)
21 K̃

(n,i)
22

)(
Ei
εi

)
+O(hm),

where the meaning of the matrices K(n,i)
k` and K̃

(n,i)
k` is clear. Since |K22(t, t)| ≥

k0 > 0 for all t ∈ I, the inverse of the matrix on the left hand side exists and is
bounded if h is sufficiently small. It then follows from Gronwall’s inequality that

‖En‖ = max
j=1,... ,m

{|en(tnj)|} = O(hm), ‖εn‖ = max
j=1,... ,m

{|εn(tnj)|} = O(hm),

and the result follows from (3.2) and (3.3).
Case II: cm < 1. Using (3.8) and (3.10) we arrive at

∫ cj

0

(K21(tnj , tn + τh)en(tn + τh) +K22(tnj , tn + τh)εn(tn + τh)) dτ

=
∫ cm

0

(K21(tn−1m, tn−1 + τh)en−1(tn−1 + τh)

+K22(tn−1m, tn−1 + τh)εn−1(tn−1 + τh)) dτ

−
∫ 1

0

(K21(tnj , tn−1 + τh)en−1(tn−1 + τh)

+K22(tnj , tn−1 + τh)εn−1(tn−1 + τh)) dτ

+ h

n−2∑
i=0

∫ 1

0

(∂1K21(·, ti + τh)ei(ti + τh) + ∂1K22(·, ti + τh)εi(ti + τh)) dτ.

We now proceed as in the previous case. We insert (3.2) and (3.3), use (3.11),

∫ 1

0

K22(tnj , tn−1 + τh)Lk(τ) dτ = K22(tn−1, tn−1) bk +O(h), j, k = 1, . . . ,m,

(3.13)

and similar expressions for K21, divide by K22(tn, tn) and use

K22(tn−1, tn−1)
K22(tn, tn)

= 1 +O(h).
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We thus obtain
m∑
k=1

(∫ cj

0

K21(tnj , tn + τh)
K22(tn, tn)

Lk(τ) dτ
)
en(tnk)

+
m∑
k=1

(ajk +O(h)) εn(tnk)

=
m∑
k=1

(
K21(tn−1, tn−1)
K22(tn, tn)

amk +O(h)
)
en−1(tn−1k)

+
m∑
k=1

(amk +O(h)) εn−1(tn−1k)

−
m∑
k=1

(
K21(tn−1, tn−1)
K22(tn, tn)

bk +O(h)
)
en−1(tn−1k)

−
m∑
k=1

(bk +O(h)) εn−1(tn−1k)

+ h
n−2∑
i=0

m∑
k=1

(∫ 1

0

∂1K21(·, ti + τh)
K22(tn, tn)

Lk(τ) dτ
)
ei(tik)

+ h
n−2∑
i=0

m∑
k=1

(∫ 1

0

∂1K22(·, ti + τh)
K22(tn, tn)

Lk(τ) dτ
)
εi(tik) +O(hm).

Together with (3.12) this gives in matrix notation(
I − hK(n,n)

11 −hK(n,n)
12

K̂
(n,n)
21 A+O(h)

)(
En
εn

)

=

(
hK

(n,n−1)
11 hK

(n,n−1)
12

K21(tn−1,tn−1)
K22(tn,tn) M1 +O(h) M1 +O(h)

)(
En−1

εn−1

)

+ h
n−2∑
i=0

(
K

(n,i)
11 K

(n,i)
12

K
(n,i)

21 K
(n,i)

22

)(
Ei
εi

)
+O(hm),

(3.14)

where M1 = 1me>mA − 1mb> and 1m = (1, . . . , 1)>, em = (0, . . . , 0, 1)> ∈ Rm. It
holds that the inverse of the matrix on the left hand side has the form(

I − hK(n,n)
11 −hK(n,n)

12

K̂
(n,n)
21 A+O(h)

)−1

=

(
I +O(h) O(h)̂̂
K

(n,n)

21 A−1 +O(h)

)

if h is sufficiently small and we have(
I − hK(n,n)

11 −hK(n,n)
12

K̂
(n,n)
21 A+O(h)

)−1(
hK

(n,n−1)
11 hK

(n,n−1)
12

K21(tn−1,tn−1)
K22(tn,tn) M1 +O(h) M1 + O(h)

)

=

(
O(h) O(h)

K21(tn−1,tn−1)
K22(tn,tn) M0 +O(h) M0 +O(h)

)
,
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where M0 = A−1M1 = A−11m(e>mA− b>). Thus (3.14) becomes(
En
εn

)
=

(
0 0

K21(tn−1,tn−1)
K22(tn,tn) M0 M0

)(
En−1

εn−1

)
+ h

n−1∑
i=0

(
M2 M3

M4 M5

)(
Ei
εi

)
+O(hm),

where Mi, i = 2, . . . , 5, denote bounded matrices. Since the matrix multiplying
(En−1, εn−1)> is diagonalizable, we can conclude as in [9] with the help of the
following lemma and Lemma 6 of [3].

Lemma 3.1. Let M0 be defined as above. Then M0 has rank one and its only
nonzero eigenvalue is

R(∞) = (−1)m
m∏
i=1

1− ci
ci

,

where R(z) = 1+zb>(I−zA)−11m denotes the stability function of the Runge-Kutta
method (c, A, b).

Proof of Lemma 3.1. M0 has rank one because 1m(e>mA−b>) has rank one. There-
fore the only nonzero eigenvalue of M0 is equal to its trace. Let A−1 = (ωij)mi,j=1.
Then

tr(M0) =
m∑
i=1

(ami − bi)
m∑
j=1

ωij = 1− b>A−11m = R(∞).

The result of the lemma now follows from Theorem IV.3.10 of [4].

Remark 3.1. Using standard techniques it can be shown that the results of Theorem
3.1 also hold for the discretized collocation approximations û and v̂.

4. Superconvergence results

In this section we will show that for an adequate choice of the collocation pa-
rameters cj , the order of convergence for u is higher than m in the gridpoints tn
(superconvergence). Since for Volterra equations of the first kind superconvergence
does in general not occur (see [1]), we cannot expect a higher order of convergence
for v in the gridpoints.

Let the residuals δi, i = 1, 2, be defined by

u(t) = f(t)− δ1(t) +
∫ t

0

(K11(t, s)u(s) +K12(t, s)v(s)) ds,(4.1)

0 = g(t)− δ2(t) +
∫ t

0

(K21(t, s)u(s) +K22(t, s)v(s)) ds,(4.2)

for all t ∈ I. It follows from (2.1), (2.2) that δi(t) = 0, i = 1, 2, if t = tnj , i.e., the
residuals vanish in the collocation points. Moreover the residuals δi are smooth on
each subinterval σn and δ2 is continuous on I.

The collocation errors now verify for t ∈ I,

e(t) = δ1(t) +
∫ t

0

(K11(t, s)e(s) +K12(t, s)ε(s)) ds,(4.3)

0 = δ2(t) +
∫ t

0

(K21(t, s)e(s) +K22(t, s)ε(s)) ds.(4.4)
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Our aim is to write e in terms of the residuals δ1 and δ2. Differentiating (4.4)
and using resolvent representations for ε and e, one easily shows that there exist
sufficiently smooth functions L(t, s) and M(t, s) such that

e(t) = δ1(t) +
∫ t

0

L(t, s)δ1(s) ds+
∫ t

0

M(t, s)δ′2(s) ds, t ∈ I.(4.5)

Here δ′2 denotes the right derivative of δ2. Hence for t = tn, we have with integration
by parts

e(tn) = δ1(tn) +
n−1∑
i=0

∫ ti+1

ti

(L(tn, s)δ1(s) +M(tn, s)δ′2(s)) ds(4.6)

= δ1(tn) +
n−1∑
i=0

(
M(tn, ti+1)δ2(ti+1)−M(tn, ti)δ2(ti)

+
∫ ti+1

ti

(L(tn, s)δ1(s)− ∂2M(tn, s)δ2(s)) ds
)
.(4.7)

We proceed as for Volterra equations of the second kind (see [1]). The integrals in
(4.7) are approximated by quadrature formulas based on (2.9). Since the residuals
vanish in the collocation points, these integrals are equal to the quadrature errors
E

(1)
ni and E

(2)
ni . It holds that

e(tn) = δ1(tn) +M(tn, tn)δ2(tn) + h
n−1∑
i=0

(E(1)
ni + E

(2)
ni ).(4.8)

If cm = 1, we have δi(tn) = 0, i = 1, 2, and the error e(tn) is equal to the quadrature
error induced by the formula (2.9). Therefore superconvergence can be obtained for
a suitable choice of the collocation parameters cj . For cm < 1, we have in general
that δi(tn) 6= 0, i = 1, 2, (compare [1]) and we do not have superconvergence. We
have thus showed the following theorem.

Theorem 4.1. If the collocation parameters cj are the Radau II points for (0, 1]
(i.e., the zeros of Pm−1(2s− 1)− Pm(2s− 1) where Pm denotes the Legendre poly-
nomial of degree m), then

max{|y(tn)− u(tn)| : n = 0, . . . , N} = O(h2m−1),

as h→ 0 with Nh ≤ const.

Remark 4.1. It is known that superconvergence does not occur for the collocation
approximation to the solution of a Volterra equation of the second kind if the
cj are the Gauss points (cf. Theorem 5.3.3(c) of [1]). However the full order of
superconvergence can be recovered for the iterated collocation approximation. For
the system of integral-algebraic equations (1.1), (1.2) considered in this paper,
we do not obtain the full order of superconvergence for the iterated collocation
approximation. More precisely let u, v ∈ S

(−1)
m−1(ZN ) be the polynomial spline

approximations to y, z as defined in Section 2. We define the iterated collocation
approximation uI by

uI(t) = f(t) +
∫ t

0

(K11(t, s)u(s) +K22(t, s)v(s)) ds, t ∈ I.(4.9)
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Together with (4.1) it follows that

uI(t)− u(t) = δ1(t), t ∈ I,(4.10)

i.e., the iterated collocation approximation uI and the collocation approximation u
coincide in the collocation points tnj . Iterated collocation is therefore only inter-
esting for methods with cm < 1. Let eI = y − uI be the iterated error. In view of
(4.10) and (4.5) we have that

eI(t) = e(t)− δ1(t) =
∫ t

0

L(t, s)δ1(s) ds+
∫ t

0

M(t, s)δ′2(s) ds, t ∈ I.

We continue as we did before for e. However due to the presence of δ2(tn) (cf. (4.8)),
we cannot expect high order superconvergence in the case where cm < 1. Neverthe-
less it is interesting to note that numerical evidence shows that for Gauss methods
|y(tn)− uI(tn)| is O(hm+1) if m is odd and O(hm) if m is even.

Remark 4.2. Using standard techniques, one shows that all previous convergence
results also hold for the nonlinear system (1.3), (1.4).

Remark 4.3. In case of a pure equation of the second kind, (i.e., (1.1) without the
z-component and without (1.2)), the result of Theorem 3.1 reduces to the result of
Theorem 5.3.2 of [1]: one observes global convergence of order m for y. Theorem 4.1
reduces to the result of Theorem 5.3.3(a) of [1]: for Radau II collocation parameters
one has superconvergence of order 2m − 1 for y at the gridpoints. Moreover one
has local superconvergence for the iterated collocation approximation to y (Radau
II and Gauss parameters).

In case of a pure equation of the first kind (i.e., (1.2) without the y-component
and without (1.1)), the result of Theorem 3.1 can be compared to the result of
Theorem 5.5.1a of [1]. Moreover, no local superconvergence for z can be achieved
(cf. Theorem 5.5.2(b) of [1]).

The convergence estimates of Theorems 3.1 and 4.1 are similar to those for the
convergence of Runge-Kutta methods for semi-explicit differential-algebraic equa-
tions of index 1: except for stiffly accurate methods, one generally observes an order
reduction for the z-component (for details see, e.g., Theorem VI.1.1 of [4]).

5. Numerical illustration

We solved (1.3), (1.4) on [0, 1] with k(t, s, y, z) = exp(t − s)y2z, `(t, s, y, z) =
(1 + t− s)yz and f , g such that the exact solution is y(t) = exp(−t), z(t) = cos(t).
We collocated at the Radau II points with m = 1, . . . , 4 and N = 4, 8, 16, 32, 64.
We computed the observed orders of convergence from the maximum errors e and
ε at the gridpoints. The results are listed in Tables 1 and 2 and they nicely confirm
Theorems 3.1 and 4.1.

Table 1. Orders of convergence for u

N 8 16 32 64
m = 1 1.13 1.06 1.03 1.01
m = 2 2.99 3.00 3.00 3.00
m = 3 4.96 4.99 5.00 5.00
m = 4 6.99 7.00 7.00 7.00
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Table 2. Orders of convergence for v

N 8 16 32 64
m = 1 1.94 1.31 1.13 1.06
m = 2 2.10 2.04 2.02 2.01
m = 3 3.11 3.05 3.03 3.01
m = 4 4.11 4.00 3.98 3.99

Remark 5.1. A comparison of spline collocation and pseudospectral methods for
integral-algebraic equations (1.3), (1.4) can be found in [8].
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