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TENSOR PRODUCT GAUSS-LOBATTO POINTS
ARE FEKETE POINTS FOR THE CUBE

L. BOS, M. A. TAYLOR, AND B. A. WINGATE

Abstract. Tensor products of Gauss-Lobatto quadrature points are frequent-
ly used as collocation points in spectral element methods. Unfortunately, it is
not known if Gauss-Lobatto points exist in non-tensor-product domains like
the simplex. In this work, we show that the n-dimensional tensor-product
of Gauss-Lobatto quadrature points are also Fekete points. This suggests a
way to generalize spectral methods based on Gauss-Lobatto points to non-
tensor-product domains, since Fekete points are known to exist and have been
computed in the triangle and tetrahedron. In one dimension this result was
proved by Fejér in 1932, but the extension to higher dimensions in non-trivial.

1. Introduction

The spectral finite element method [9] is a spectrally accurate algorithm for
solving differential equations on unstructured grids. Typically the computational
domain is broken into quadrilateral elements. Within each of these elements all
variables are approximated by high degree polynomial expansions. The discrete
equations are then derived using an integral form of the equations to be solved.
When used with conforming elements and a clever choice of test functions and
collocation points, the resulting mass matrix is diagonal [8].

The diagonal-mass-matrix spectral element method is only available with con-
forming quadrilateral grids. This is because the method relies on the existence of
high order quadrature formulas which use the same number of collocation points as
the number of basis functions. For the square, a tensor-product of Gauss-Lobatto
quadrature points is used. One drawback of this method is that conforming quadri-
lateral grids can be quite complicated to generate, and the grids are rarely as
uniform as triangulations. Thus there has been much work on on extending the
spectral element method to triangular elements. The obvious approach would be
to use Gauss-Lobatto quadrature points in the triangle. However, it is not known if
such points exist for the triangle and so many other techniques have been developed
[3, 10, 13, 2, 5, 12, 7].

The intent of this paper is to present a mathematical result related to the Fekete
point generalization of the spectral element method proposed in [12, 7]. Fekete
points are suggested as a way to generalize the Gauss-Lobatto quadrature points
to non-tensor-product domains based on the following reasons:
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1. On the [−1, 1] interval in the 1-D case, Fekete points are the Gauss-Lobatto
points [4].

2. On the square, Fekete points have been conjectured to be the tensor-product
of the Gauss-Lobatto points. Thus the conventional spectral element method
can also be considered a Fekete point method.

3. Under suitable assumptions, one can show that the Fekete points along each
edge of the triangle are the Gauss-Lobatto points [1]. This has been verified
numerically up to degree N = 19 [11]. Thus the Fekete points provide a
natural coupling between triangular and quadrilateral elements.

4. Fekete points have near-optimal interpolation properties, and for degree N >
10 they are the best interpolation points known for the triangle [11].

In this paper we present a proof of the conjecture in (2) above. In particular, we
show that the d-dimensional tensor-product Gauss-Lobatto points are the unique
Fekete points for the d-dimensional cube.

2. Fekete-Gauss-Lobatto points for the interval

On the interval [−1, 1] the Gauss quadrature points, −1 < b0 < b1 < · · · < bn <
1, are such that the quadrature rule∫ 1

−1

f(x)dx ≈
n∑
i=0

wif(bi)

is exact for all polynomials of degree at most 2n+ 1. Here, the weights wi are given
by

wi =
∫ 1

−1

`i(x)dx,(2.1)

where `i(x) is the associated fundamental (or cardinal) Lagrange interpolating
polynomial. As is well known, the end-points ±1 are not included in the Gauss
quadrature points, and the Gauss-Lobatto points may be described as the “best”
quadrature points that do include the end-points ±1. Specifically, they are points
−1 = a0 < a1 < · · · < an = +1 such that the quadrature rule∫ 1

−1

f(x)dx ≈
n∑
i=0

wif(ai)

is exact for all polynomials of degree at most 2n − 1. (The weights wi are again
given by the formula (2.1).)

In fact, they may be shown to be the zeros of the polynomial (x2 − 1)p′n−1(x),
where pk is the kth Legendre polynomial. Remarkably, as shown by Fejér in [4],
these points are also the so-called Fekete points for the interval [−1, 1] defined to
be those points in [−1, 1] for which the Vandermonde determinant

V (x0, · · · , xn) := det


1 x0 x2

0 · · · xn0
1 x1 x2

1 · · · xn1
· · · · ·
· · · · ·
1 xn x2

n · · · xnn


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is as large as possible. Since the fundamental Lagrange polynomials may be ex-
pressed in the form

`i(x) =
V (a0, . . . , ai−1, x, ai, . . . , an)

V (a0, . . . , an)
,

we have for these Fekete-Gauss-Lobatto points the desirable property that

max
−1≤x≤1

|`i(x)| = 1, 0 ≤ i ≤ n.

But Fejér showed that even the stronger inequality

max
−1≤x≤1

n∑
i=0

`2i (x) = 1(2.2)

holds for these points. Later in this paper we will make use of the following simple
remark.

Lemma 2.1. For the Fekete-Gauss-Lobatto points, the polynomial
∑n

i=0 `
2
i (x) at-

tains its maximum value of 1 at and only at the points ai themselves.

Proof. Let F (x) :=
∑n

i=0 `
2
i (x). Note that F (x) is a polynomial of degree 2n. Now,

by construction, `i(aj) = δij and so it follows that

F (aj) =
n∑
i=0

δ2
ij = 1, 0 ≤ j ≤ n,

i.e., F (x) does indeed attain its maximum value at the points ai. But, at the interior
points −1 < a1 < · · · < an−1 < 1, F ′(x) must then be zero, and so F (x)− 1 has a
double zero at each of the interior ai. This implies that F attains the value 1 twice
at each of the n − 1 interior points, for a total of 2(n− 1) times and once at each
of the end-points for a grand total of 2(n− 1) + 2 = 2n times. Since the degree of
F is 2n it can attain the maximum value of 1 nowhere else in [−1, 1].

3. Fekete-Gauss-Lobatto points for the cube

Now consider tensor-product polynomial interpolation on the d-dimensional cube
[−1, 1]d. A basis of tensor-product monomials may be described as follows. For
x = (x1, . . . , xd) ∈ Rd and the multi-index i = (i1, . . . , id), let

xi := xi11 x
i2
2 · · ·x

id
d .

The tensor-product “degree” of xi is defined to be

n = deg(xi) = |i|∞ := max
i≤k≤d

ik.

Then the (n+1)d monomials mi(x) := xi, |i|∞ ≤ n form a basis for the polynomials
of tensor-product degree at most n.

Then, given a set of (n+ 1)d points

{Ai : |i|∞ ≤ n} ⊂ [−1, 1]d

and values yi, |i|∞ ≤ n, the interpolation problem is to find a linear combination
p(x) =

∑
|i|∞≤n cix

i such that p(Ai) = yi, |i|∞ ≤ n. The associated Vandermonde
matrix is the (n+ 1)d × (n+ 1)d matrix

[mi(Aj)]0≤|i|∞,|j|∞≤n,
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and the tensor-product Fekete points are those for which the determinant of this
matrix is as large as possible.

Theorem 3.1. Suppose that Ai, |i|∞ ≤ n, are the tensor products of the univariate
Fekete-Gauss-Lobatto points ai, i.e.,

Ai := (ai1 , ai2 , . . . , aid).

Then these are the unique tensor product Fekete points for the cube.

Proof. It is easy to see that the tensor-product Lagrange polynomials based on the
Ai are given by

Li(x) = `1(x1)`2(x2) · · · `d(xd),
where the `i are the univariate Lagrange polynomials based on the ai. Further we
may compute ∑

|i|∞≤n
L2
i (x) =

d∏
k=1

n∑
j=0

`2j(xj)(3.1)

from which it follows that, for x ∈ [−1, 1]d,∑
|i|∞≤n

L2
i (x) ≤ 1.(3.2)

Now suppose that Bi, |i|∞ ≤ n, is any other set of (n + 1)d points in [−1, 1]d.
Then, since the basis monomials are their own interpolants,

mi(x) =
∑
|k|∞≤n

mi(Ak)Lk(x)

and, in particular,

mi(Bj) =
∑
|k|∞≤n

mi(Ak)Lk(Bj), |j|∞ ≤ n.

From this follows the Vandermonde matrix identity

[mi(Bj)] = [mi(Aj)][Li(Bj)].(3.3)

But now, Hadamard’s inequality (see e.g., [6]) informs us that

|det([Li(Bj)])| ≤
∏
j

√∑
i

L2
i (Bj),

and hence, by (3.2), that

|det([Li(Bj)])| ≤ 1.

Applied to (3.3), this implies,

|det([mi(Bj)])| ≤ |det([mi(Aj)])|,(3.4)

or in words, that the Vandermonde determinant at any competing set of points Bi is
smaller in absolute value than the Vandermonde determinant for the tensor-product
Fekete-Gauss-Lobatto points, i.e., these latter are indeed the tensor-product Fekete
points!

As regards uniqueness, from Lemma 2.1 it follows that we have strict inequality in
(3.2) for any x not one of the tensor-product Fekete-Gauss-Lobatto points. Hence if
even one of the competing points Bi is not a tensor-product Fekete-Gauss-Lobatto



FEKETE POINTS FOR THE CUBE 1547

point, we have strict inequality in (3.4), and so the Bi could not also be Fekete
points.
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