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BOUNDARY ELEMENT METHODS
FOR POTENTIAL PROBLEMS

WITH NONLINEAR BOUNDARY CONDITIONS

M. GANESH AND O. STEINBACH

Dedicated to Professor Ian Sloan on the occasion of his 60th birthday

Abstract. Galerkin boundary element methods for the solution of novel first
kind Steklov–Poincaré and hypersingular operator boundary integral equations
with nonlinear perturbations are investigated to solve potential type problems
in two- and three-dimensional Lipschitz domains with nonlinear boundary con-
ditions. For the numerical solution of the resulting Newton iterate linear
boundary integral equations, we propose practical variants of the Galerkin
scheme and give corresponding error estimates. We also discuss the actual
implementation process with suitable preconditioners and propose an optimal
hybrid solution strategy.

1. Introduction

In this work, we are interested in the application of Galerkin boundary element
methods for the numerical solution of the nonlinear boundary integral equations

(Su)(x) + (Nu)(x) = f(x) for x ∈ Γ,(1.1)

(Dv)(x) + [N(
1
2
I −K)v](x) = f(x) for x ∈ Γ,(1.2)

where S is the Steklov–Poincaré operator

(Su)(x) =
[
D + (

1
2
I +K ′)V −1(

1
2
I +K)

]
u(x).(1.3)

In (1.1)–(1.3), V, K, K ′ and D are, respectively, boundary integral operators on
a Lipschitz boundary Γ of the single, double, adjoint of the double, and the hy-
persingular layer potentials [6, 12], and N is the Nemytskii operator (Nu)(x) =
g(x, u(x)), x ∈ Γ.

The nonlinear boundary integral equations (1.1) and (1.2) are equivalent to a
boundary value problem in a bounded domain Ω ⊂ Rn (n = 2, 3) with Lipschitz
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boundary Γ, and a nonlinear boundary condition

Eu(x) = 0 for x ∈ Ω, (Tu)(x) + g(x, u(x)) = f(x) for x ∈ Γ.(1.4)

Here, E is a second order linear partial differential operator and T is the correspond-
ing conormal derivative operator. We assume that there is given a fundamental so-
lution of E implying all the boundary integral operators V , K, K ′ and D. In general
we require only that the resulting single layer potential V is H−1/2(Γ)-elliptic, the
hypersingular integral operator D is H1/2(Γ)-semi-elliptic and the double layer po-
tential K satisfies the properties as in [12]. Our results in [12] demonstrating the
equivalence between the boundary value problem (1.4) and the nonlinear boundary
integral equations (1.1) and (1.2) for the Laplace operator case then remains true
for the above general situation as well. The first equivalent formulation is obtained
through the Dirichlet–Neumann map and (1.2) follows from an indirect double layer
potential ansatz. The properties we need on boundary integral operators are valid
for many general situations and throughout the paper; we use the results in [12].

The model (1.4) includes the classical Robin problem and nonlinear boundary
conditions occur for example in steady-state heat diffusion equations where the
heat flux across a blackbody surface Γ based on the Stefan–Boltzman law is given
by a nonlinear function of the temperature u, typically O(u4), [14, p. 10, 57] (see
also [3, p. 219], [15, p. 419], [16, p. 248]). Other examples of such a model
are for contact problems in linear elasticity, with and without friction (see, for
example, [8] and references therein), and in fracture mechanics based on minimising
certain energy functional on a domain of harmonic functions satisfying a nonlinear
boundary condition [11]. Note that in these and other applications, u, g and f
may be vector valued, and may involve an additional simple Dirichlet boundary
condition. These additional features can be incorporated in our analysis, depending
on the problem, by introducing appropriate product spaces and suitable matrix
version of the above equations. Our aim in this paper, however, is to describe in
detail numerical solvability of (1.1) and (1.2), and we hope it will have a good
spin–off for many applications in future work, including BEM-FEM coupling [4].
As in [12] we further assume

(A1) f ∈ L2(Γ) and (1.4) has an isolated solution u ∈ H1+s(Ω) for some s ≥ 1
2 .

(A2) For all x ∈ Γ, g(x, ·) : R → R is twice differentiable and the derivatives are
locally bounded, i.e., for every finite interval [a, b], there exists a constant
M[a,b] such that

∣∣∣∂ig(x,α)
∂iα

∣∣∣ ≤ M[a,b] for x ∈ Γ, a ≤ α ≤ b, i = 1, 2.

Since we require f in (1.4) to be in L2(Γ), it is natural to assume s ≥ 1
2

in (A1). However, our error analysis goes through for all s > 0 yielding corre-
sponding lower convergence rates. In [12], using (A1)–(A2), we proved that (1.1)
and (1.2) have isolated solutions in H1(Γ), denoted by u∗ and v∗, respectively.
The regularity of the solutions u∗, v∗ is restricted to H1(Γ) only in the Lips-
chitz boundary case. However, if Γ ⊂ R2 is a piecewise C∞ boundary, given
as a union of locally smooth parts Γj , we have u∗ ∈ H1/2+s(Γ) with s ≥ 1

2

as in (A1), but v∗ ∈ H1/2+σ(Γ) only for σ ∈ (−σ0, σ0) with σ0 determined by
the interior angles [12]. If ωj is the interior angle at the jth corner point, then

σ0 := minj=1,...,J{σj}, with σj := min
{
π
ωj
, π

2π−ωj

}
. Due to this regularity re-

striction and since (1.2) is computationally more efficient than (1.1), we will propose
a hybrid solution strategy by suitably combining both the formulations.
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Earlier work in solving (1.4) was based on a direct boundary integral formulation
initiated in [18] and further studied in [1, 7, 9, 10, 17]. In the direct formulation
the nonlinear operator appears as density of the double layer potential, adding
additional difficulty in dealing with the nonlinearity. In our formulations (1.1) and
(1.2) the nonlinearity does not appear as a density of boundary integral operators.
We give complete error analysis of some practically computable approximations to
the solution of (1.1) and (1.2). The convergence rates obtained in this work are
similar to those obtained in [18] and in the sequel work. But, earlier results cover
only the two-dimensional case while results in our work are for two- and three-space
problems with Lipschitz boundaries.

Further, all the earlier research involves discretizing the nonlinear problem first,
leading to solving the resulting nonlinear algebraic systems based on some black-
box routine. So no error analysis in solving these systems was given; the matrix
structure and conditioning of the associated linearised system was not investigated.
In contrast, our methods and analysis in this work give a clear picture of the entire
approximation process in computing approximate solutions of (1.1) and (1.2) and
show exact representations of the matrix structures involved. Hence, based on the
boundary integral operators in our formulations, we find suitable preconditioners
needed for efficiently solving the linear systems. All these naturally involve some
preliminary work, so that the entire computational procedure is somewhat within
our control rather than based on a complicated general-purpose black-box nonlinear
algebraic solver.

In this paper, compared to all earlier work discussed above, we follow an entirely
different approach. We first apply the standard Newton scheme to the continuous
problems and show quadratic convergence of the Newton iterates. Following [12],
the Newton iterates for (1.1) and (1.2), respectively, for k = 0, 1, . . . are[

S +N ′(uk)
]
uk+1 = f +N ′(uk)uk −Nuk(1.5)

and [
D +N ′(uk)(

1
2
I −K)

]
vk+1 = f +N ′(uk)uk −Nuk,(1.6)

where in (1.6), uk = (1
2I − K)vk. We start with u0, v0 with u0 ∈ Uρ(u∗), where

u∗ is the trace of the isolated solution of (1.4), and Uρ(u∗) is a ball in H1/2(Γ)
with centre u∗ and radius ρ. We use the standard notation N ′(uk) for the Fréchet
derivative of N at uk. If ρ is sufficiently small, then in [12] we proved that for
all k ≥ 0, (1.5) and (1.6) have unique solutions uk+1 and vk+1 in H1(Γ) (with
uk+1 ∈ Uρ(u∗)) and converge quadratically to u∗ and v∗, respectively. Henceforth,
we assume that ρ is small enough so that uk+1 ∈ Uρ(u∗). The stopping criteria
for the Newton algorithm involves calculating the residuum rk+1 using a modified
formula, not involving boundary integral operators [12]:

rk+1 = N ′(uk)(uk − uk+1) +Nuk+1 −Nuk .(1.7)

Due to the above algorithm and the corresponding convergence result, to solve (1.1)
and (1.2) it is enough to concentrate on computing solutions of (1.5) and (1.6).

We organise the rest of the paper as follows. Practical variants of the Galerkin
method are proposed and analysed for the resulting sequence of linear problems in
Section 2. In Section 3 a preconditioning strategy for solving the linear systems is
given, and we conclude the paper in Section 4 with numerical examples.
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Throughout the paper, c will denote a general constant which may have dif-
ferent values at different occurrences and is independent of the boundary element
discretization parameter h and the Newton iteration index k.

2. Galerkin approximation schemes

In this section we study practical variants of the Galerkin method to compute
solutions of (1.5) and (1.6) at each step of the Newton iteration.

For this purpose we define a family of trial spaces Wh = span{ϕµj }Mj=1 ⊂ H1/2(Γ)
of B-splines of (piecewise polynomial) degree µ satisfying the approximation prop-
erty

inf
wh∈Wh

||w − wh||Hτ (Γ) ≤ c · hσ−τ · ||w||Hσ(Γ)(2.1)

for all w ∈ Hσ(Γ) with τ ≤ σ ≤ µ + 1 and τ < µ + 1
2 (n = 2); τ ≤ µ (n = 3).

(For example we can use piecewise linear continuous hat functions, i.e., µ = 1,
defined over a boundary element mesh on Γ with mesh size h.) Note that the
approximation property (2.1) requires only a regular triangulation, i.e., we allow
adaptive refinements and appropriate nonuniform meshes. In this work we do not
include approximation of the boundary. The definition of Wh may depend on the
Newton iteration index k to solve the linearised system. This means that we can
adapt Wh during the Newton iteration process and hence we denote hk to be the
mesh size of the triangulation at the kth Newton step.

The Steklov–Poincaré operator formulation. First consider the Galerkin vari-
ational formulation of (1.5). Find uk+1

h ∈Wh such that

〈[S +N ′(uk)]uk+1
h , vh〉 = 〈f̃(uk), vh〉(2.2)

is satisfied for all test functions vh ∈Wh where

f̃(ϕ) := f +N ′(ϕ)ϕ −Nϕ, ϕ ∈ H1/2(Γ).(2.3)

Since in practical computations we have to replace in (2.2) the Steklov–Poincaré
operator S as given in (1.3) by some suitable approximation S̃, and uk by the pre-
vious approximation, we solve instead the modified Galerkin variational problem:
find ûk+1

h ∈ Wh such that

〈[S̃ +N ′(ûkh)]ûk+1
h , vh〉 = 〈f̃(ûkh), vh〉 for all vh ∈Wh.(2.4)

To introduce a computable approximation S̃ we proceed as follows. For an arbitrary
but fixed v ∈ H1/2(Γ), from (1.3) we have Sv = Dv+ (1

2I +K ′)w, where w is the
unique solution of the variational problem

〈V w, τ〉 = 〈(1
2
I +K)v, τ〉 for all τ ∈ H−1/2(Γ) .(2.5)

Let

Zh = span{ϕνj }Nj=1 ⊂ H−1/2(Γ)(2.6)

be some trial space satisfying the approximation property in H−1/2(Γ). For ex-
ample, we can take Zh to be the space of piecewise constant trial functions (i.e.,



NONLINEAR BOUNDARY ELEMENT METHODS 1035

ν = 0). Now we consider the Galerkin variational problem of (2.5): find wh ∈ Zh
satisfying

〈V wh, τh〉 = 〈(1
2
I +K)v, τh〉 for all τh ∈ Zh.(2.7)

Hence, we may define an approximation of the Steklov–Poincaré operator by

S̃v := Dv + (
1
2
I +K ′)wh.(2.8)

It is easy to see that

||(S − S̃)v||−1/2 ≤ c · ||w − w̃h||−1/2 ≤ c · inf
τh∈Zh

||w − τh||−1/2.(2.9)

Using the Aubin–Nitsche trick [13] we get

||(S − S̃)v||−1 ≤ c · h1/2 · ||w − wh||−1/2 .(2.10)

The variational problem (2.4) is equivalent to the system of linear equations[
Dh + (

1
2
I>h +K>h )V −1

h (
1
2
Ih +Kh) +N ′h(ûkh)

]
uk+1 = f,(2.11)

where for i, j = 1, . . . ,M ; p, q = 1, . . . , N ,

Dh[j, i] = 〈Dϕµi , ϕ
µ
j 〉, Ih[q, i] = 〈ϕµi , ϕνq 〉,

Vh[q, p] = 〈V ϕνp, ϕνq 〉, N ′h(ϕh)[j, i] = 〈N ′(ϕh)ϕµi , ϕ
µ
j 〉,

Kh[q, i] = 〈Kϕµi , ϕνq 〉, fj = 〈f̃(ûkh), ϕµj 〉.
To solve (2.11), we need the inverse matrix of the discrete single-layer potential
Vh. This corresponds to a solution of a linear system Vhw = r per iteration step.
For this one may perform an LU decomposition of Vh in advance only once, which
will be asymptotically of order O(N3), or use again a preconditioned inner iterative
scheme [2], say cg, with some preconditioner as proposed in [21] of order O(N2)
only, with an appropriate stopping criteria as given in Section 4.

Our immediate task is to establish the stability and convergence of the solutions
ûk+1
h of the variational problem (2.4) to the solutions uk+1 of (1.5) at each Newton

iteration step. For this reason, it is theoretically useful to consider the additional
problem: find ûk+1 ∈ H1/2(Γ) satisfying

[S̃ +N ′(ûkh)]ûk+1 = f̃(ûkh).(2.12)

Note that (2.12) corresponds to (1.5) with an approximated operator and an ap-
proximated right-hand side, while (2.4) is the Galerkin variational formulation of
(2.12). Error estimates based on the Strang lemma are already known in the case
of linear perturbations [5], but in (2.12) both the approximation of the operator
and the right-hand side are nonlinear.

Due to the positive definiteness of the single layer potential Vh, we have

〈Dvh, vh〉 ≤ 〈S̃vh, vh〉 for all vh ∈Wh.(2.13)

Using this, the positive definiteness of D + L where

(Lu)(x) =
∫
Γ

u(y)dsy for u ∈ H1/2(Γ), x ∈ Γ,(2.14)

and (A1)–(A2), we get the following properties (with ϕ ∈ {uk, ûkh} ⊂ Uρ(u∗)):
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(P1) S̃ +L : H1/2(Γ)→ H−1/2(Γ) is a linear bounded and positive definite opera-
tor.

(P2) N ′(ϕ)−L : L2(Γ)→ Hα(Γ) is bounded for α = 0, and compact for α = −1/2.
(P3) The linear form 〈f̃(ϕ), ·〉 is bounded in H1/2(Γ).
(P4) S̃+N ′(ϕ) : H1/2(Γ)→ H−1/2(Γ) is a linear and bounded operator satisfying

a G̊ardings inequality, i.e., there exist positive constants c2, c3, c4, such that

Re
(
〈(S̃ +N ′(ϕ))u, u〉

)
≥ c2 · ||u||21/2 − c3 · ||u||20 for all u ∈ H1/2(Γ)(2.15)

|〈(S̃ +N ′(ϕ))u, v〉| ≤ c4 · ||u||1/2||v||1/2 for all u, v ∈ H1/2(Γ).

We first prove the convergence of the modified Galerkin solutions ûk+1
h of (2.4) to

uk+1.

Theorem 2.1. Let (A0)–(A2) be satisfied. Let û0
h = u0 ∈ Wh ∩ Uρ(u∗) with ρ

sufficiently small. Then there exists an h0 > 0 such that for all k ≥ 0 and all
h ∈ (0, h0), (2.4) has a unique solution ûk+1

h ∈Wh with error estimate

(2.16) ||uk+1 − ûk+1
h ||1/2 ≤ c ·

{
inf

wh∈Wh

||uk+1 − wh||1/2

+ ||uk − ûkh||0 + ||(S − S̃)uk+1||−1/2

}
.

Further, for all k ≥ 0,

||uk+1 − ûk+1
h ||1/2 ≤ c

{
h

1/2
k+1||u

k+1||1 + ||uk − ûkh||0 + ||(S − S̃)uk+1||−1/2

}(2.17)

and, if ν = µ− 1,

||uk+1 − ûk+1
h ||1/2 ≤ c ·

k∑
`=0

{
h

1/2
`+1 · ||u`+1||1

}
→ 0 as h` → 0 ∀`.(2.18)

Proof. We will prove the result in five steps. Let k = 0.
1. Since ûk, ûkh ∈ Uρ(u∗), by [12, Theorem 3.2] both equations (1.5) and (2.12)

are uniquely solvable. The injectivity of S̃ + N ′(ûkh), G̊ardings inequality (2.15)
and (P1)–(P4) yield (see [20]) that there exists an hk0 > 0 such that for all
h ∈ (0, hk0) (2.4) has a unique solution ûk+1

h ∈ Wh and ||ûk+1 − ûk+1
h ||1/2 ≤

c infwh∈Wh
||ûk+1 − wh||1/2. Using this inequality, we get

||uk+1 − ûk+1
h ||1/2 ≤ (1 + c)||uk+1 − ûk+1||1/2 + c inf

wh∈Wh

||uk+1 − wh||1/2.(2.19)

Hence to show (2.16) it is sufficient to bound ||uk+1 − ûk+1||1/2.
2. From (2.12) and (1.5) we have

[S̃ +N ′(ûkh)]ûk+1 = f̃(ûkh),

[S̃ +N ′(ûkh)]uk+1 = f̃(uk) + [N ′(ûkh)−N ′(uk)]uk+1 + [S̃ − S]uk+1.
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The bounded inverse of S̃ +N ′(ûkh) : H1/2(Γ)→ H−1/2(Γ) and (2.3) yield

||uk+1 − ûk+1||1/2 ≤ c||f̃(uk)− f̃(ûkh) + [N ′(ûkh)−N ′(uk)]uk+1||0
+ ||(S̃ − S)uk+1||−1/2

≤ c{||N ′(uk)uk −N ′(ûkh)ûkh||0 + ||Nuk −Nûkh||0
+||[N ′(uk)−N ′(ûkh)]uk+1||0 + ||(S̃ − S)uk+1||−1/2}.(2.20)

We can bound the first term by

||N ′(uk)uk −N ′(ûkh)ûkh||0 ≤ ||[N ′(uk)−N ′(ûkh)]uk||0 + ||N ′(ûkh)[uk − ûkh]||0
≤ c · ||uk − ûkh||0,

where we have used the boundedness of N ′(ûkh) on L2(Γ), and the following bound
obtained by the mean value theorem, (A2) and uk ∈ Uρ(u∗):
|[N ′(uk)−N ′(ûkh)]uk(x)| = |gα(x, uk(x)) − gα(x, ûkh(x))| · |uk(x)|

= |uk(x)− ûkh(x)| · |gαα(x, η(x))| · |uk(x)| ≤ c · |uk(x)− ûkh(x)|
with η(x) between uk(x) and ûkh(x). Using (A2) and the above arguments,

||Nuk −Nûkh||0 ≤ c · ||uk − ûkh||0, ||[N ′(uk)−N ′(ûkh)]uk+1||0 ≤ c · ||uk − ûkh||0.
Hence we have from (2.20),

||uk+1 − ûk+1||1/2 ≤ c ·
{
||uk − ûkh||0 + ||(S̃ − S)uk+1||−1/2

}
.(2.21)

3. Using (2.21) in (2.19) gives (2.16). From [12, Theorem 3.2], uk+1 ∈ H1(Γ).
Using the approximation property (2.1) (with τ = 1

2 , σ = 1) in (2.16) we get the
inequality (2.17). Using û0

h = u0 and the approximation property of Zh (with
ν = µ− 1), we get (2.18) from (2.17).

4. Since ρ is sufficiently small, from [12, Theorem 3.2] uk+1 ∈ Uρ(u∗). So using

||u∗ − ûk+1
h ||1/2 ≤ ||u∗ − uk+1||1/2 + ||uk+1 − ûk+1

h ||1/2,(2.22)

for sufficiently small h, uk+1, ûk+1
h ∈ Uρ(u∗).

5. If we replace k by k + 1 and repeat steps 1 to 4 above, we get the result for
all k ≥ 0, with h0 = min`=0,...,k h

`
0.

As in Theorem 2.1, henceforth we take ν = µ−1 in (2.6). For a general Lipschitz
boundary Γ, uk+1 ∈ H1(Γ) only and hence we have a maximal order of convergence
1
2 . However, in case of a (piecewise) C∞ boundary Γ we have u∗ ∈ H1/2+s for some
s ≥ 1/2 given by (A1). Hence, for a polygonal boundary Γ and a sufficiently regular
solution u∗ we can formulate the following convergence result.

Corollary 2.1. Under the assumptions and details as in Theorem 2.1,

||u∗ − ûk+1
h ||1/2 ≤ c

{
inf

wh∈Wh

||u∗ − wh||1/2 + ||u∗ − uk+1||1/2(2.23)

+ ||uk − ûkh||0 + ||(S − S̃)uk+1||−1/2

}
.

If u∗ ∈ Hσ(Γ), then for all s with 1
2 ≤ s ≤ min{σ, µ+ 1},

||u∗ − ûk+1
h ||1/2 ≤ c ·

{
h
s− 1

2
k+1 · ||u

∗||s + ||uk − ûkh||0 + ρk
}
.(2.24)
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In (2.24), the term ρk is obtained using the quadratic convergence of the Newton
iterates [12, Theorem and Remark 3.2] and the fact that uk+1 ∈ Uρ(u∗) for all k.
Applying the Aubin–Nitsche trick, we get the following error estimates in L2(Γ).

Corollary 2.2. Under the same assumptions and details as in Theorem 2.1,

||uk+1 − ûk+1
h ||0 ≤ c ·

{
h

1/2
k+1 · ||uk+1 − ûk+1

h ||1/2 + ||ûkh − uk||0
}
.(2.25)

If u∗ ∈ Hσ(Γ), then for all s with 1
2 ≤ s ≤ min{σ, µ+ 1},

||u∗ − ûk+1
h ||0 ≤ c ·

{
hsk+1 · ||u∗||s + ||uk − ûkh||0 + ρk

}
.(2.26)

The indirect hypersingular integral formulation. The modified Galerkin
method we propose to solve the linearised equation (1.6) for the indirect hyper-
singular integral formulation is to find v̂k+1

h ∈ Wh such that

〈[D +N ′(ûkh)]v̂k+1
h , wh〉 = 〈f̃(ûkh), wh〉(2.27)

is satisfied for all wh ∈Wh, where ûkh ∈Wh is the solution of the variational problem

〈ûkh, wh〉 = 〈(1
2
I −K)v̂kh, wh〉 for all wh ∈Wh .(2.28)

This is equivalent to the linear system[
Dh +N ′h(Ī−1

h (
1
2
Īh − K̄h)vk)

]
vk+1 = f,(2.29)

where, in addition to the definitions of Dh, N
′
h(ϕh), f introduced earlier, we let

Īh[j, i] = 〈ϕµi , ϕ
µ
j 〉, K̄h[j, i] = 〈Kϕµi , ϕ

µ
j 〉 i, j = 1, . . . ,M.(2.30)

Using the same arguments as in the Steklov–Poincaré operator formulation, we can
prove all the above results with u and ûk+1

h replaced by v and v̂k+1
h , respectively

(without the occurence of the last term in (2.16), (2.17), and (2.23)), and σ in
Corollary 2.1 replaced by the restricted quantity σ0 defined in the Introduction.
This is due to the fact that for a polygonal bounded boundary Γ, using the restricted
mapping properties of the double layer potential operator, we get v∗ ∈ H1/2+σ0(Γ)
only.

So, the Steklov–Poincaré operator formulation will give the best a priori error
estimates as outlined in Corollary 2.1, while the hypersingular integral formulation
has some restrictions. On the other hand, compared to the hypersingular integral
formulation, the solution of the linearised problem in the Steklov–Poincaré operator
formulation is expensive due to inversion of the single layer potential. This leads
to

A hybrid solution strategy. To find an almost optimal algorithm, we want to
combine the optimal error estimates of the Steklov–Poincaré operator formulation
and the fast solution process of the indirect hypersingular integral formulation.

Our hybrid strategy is to first use the indirect hypersingular formulation to
compute the solution to a good accuracy and then use the resulting solution as the
initial guess of the Steklov–Poincaré operator formulation to compute an improved
solution by solving (2.11). Due to the accuracy of the initial guess, only a few iter-
ations of the Steklov–Poincaré operator formulation will be needed. For instance,
in our numerical examples we need only one extra post-processing step. Therefore
we are able to compute an approximate solution of (1.1) significantly faster.
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Error analysis of this hybrid solution strategy is nothing but the combination
of the error analysis for the two formulations discussed above. Since we use an
approximate solution of the indirect hypersingular integral formulation only as an
initial guess for the Newton scheme, the final computed hybrid strategy solution has
same the optimal convergence rates proved for the Steklov–Poincaré formulation.

3. Iterative solution strategies and preconditioners

For the numerical solution of the nonlinear boundary integral equations (1.1)
and (1.2) we have to solve a sequence of linear problems of the form Ahv = f given
by (2.11) and (2.29), respectively, at each step of the Newton iteration. Since the
stiffness matrices depend on the previous Newton iterates, iterative methods are
the most favourable choice to solve such linear systems, in particular we use the
GMRES method [19]. Due to the order of both the Steklov–Poincaré operator and
the hypersingular integral operator being one, the condition number of the stiffness
matrices behave like h−1. Hence we need to find an efficient preconditioning matrix
Ch that is spectrally equivalent to Ah [2, 4, 19].

To this end, we first consider the matrix of the approximated Steklov–Poincaré
operator. Using (2.13) and Theorem 4 in [4], it is easy to show the spectral equiv-
alence property

((Dh +N ′h(ûkh))u, u) ≤ ((S̃h +N ′h(ûkh))u, u) ≤ c · ((Dh +N ′h(ûkh))u, u)(3.1)

for all u ∈ RM ↔ uh ∈ H1/2(Γ). Hence, in both formulations of interest it is
sufficient to find a preconditioner Ch of the matrix Ah := Dh +Bh, where we use

(Bhu, v) = 〈Buh, vh〉 for some bounded operator B : L2(Γ)→ L2(Γ).

In our formulations the operator D + B : H1/2(Γ) → H−1/2(Γ) is injective and
satisfies a G̊ardings inequality. Hence it is sufficient to find a preconditioning matrix
Ch which is spectrally equivalent to Dh +Lh, where Lh[j, i] = 〈Lϕµi , ϕ

µ
j 〉 with L as

defined in (2.14). In fact, following [21] such a preconditioner is Ch = ĪhV̄
−1
h Īh,

where V̄h[j, i] = 〈V ϕµi , ϕ
µ
j 〉 for i, j = 1, . . . ,M and Īh is as defined in (2.30)

Since results in [21] hold under minor assumptions on the triangulation of Γ, we
can apply our preconditioning strategy described in this section even in the case
of an adaptive refinement and appropriate nonuniform meshes. The application of
the preconditioner for solving Ahv = f is given by C−1

h = Ī−1
h V̄hĪ

−1
h . For this, we

need two inversions of the sparse and diagonal dominant mass matrix Īh and one
matrix times vector multiplication with Vh, which can be carried out with the same
order as a multiplication with Dh itself.

4. Numerical results

In our test numerical experiment, we considered the Laplace equation and we
computed solutions for both formulations described in this paper. Some important
observations from the numerical experiment are that the hybrid strategy is the
best to use from both computing time and accuracy points of view and that our
numerical scheme is capable of allowing (in the sense of getting optimal order
convergence rates) nonlinearities of the type u4 (occuring in heat-transfer problems)
that do not satisfy monotonicity assumption needed for an existence theory result
in [12] (see Remark 3.1 in [12]).
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Table 1. Steklov–Poincaré operator formulation

N ||u− uh||L2(Γ) order ||u− uh||H1/2(Γ) order Iter sec
32 1.35 –3 7.42 –3 5 0.37
64 2.87 –4 2.23 2.40 –3 1.63 5 1.08
128 6.43 –5 2.16 8.08 –4 1.57 5 3.43
256 1.50 –5 2.10 2.78 –4 1.54 5 11.89
512 3.61 –6 2.05 9.67 –5 1.52 5 48.91
1024 8.86 –7 2.03 3.39 –5 1.51 5 198.66

Table 2. Indirect hypersingular integral formulation

N ||u− uh||L2(Γ) order ||u− uh||H1/2(Γ) order Iter sec
32 2.10 –3 7.79 –3 5 0.02
64 8.15 –4 1.37 3.09 –3 1.33 5 0.08
128 3.56 –4 1.19 1.50 –3 1.04 5 0.15
256 1.60 –4 1.15 8.49 –4 0.82 5 0.45
512 7.23 –5 1.15 5.18 –4 0.71 6 1.84
1024 3.24 –5 1.16 3.24 –4 0.68 6 7.62

For computation, we chose a family of trial spaces Wh spanned by piecewise
linear continuous trial functions (µ = 1) with respect to uniform triangulations of
Γ with N boundary elements independent of the Newton iteration. As stopping
criteria of the Newton scheme, we used a relative residual reduction of εN = 10−8.
We used the previous Newton iterate approximate solution ûkh as an initial guess
for the iterative solution of the linear system in the (k + 1)-th step.

We considered the Laplace equation in the L shaped domain described by the
nodes (0, 0), (0.25, 0), (0.25, 0.25), (−0.25, 0.25), (−0.25,−0.25) and (0,−0.25) with
the nonlinear boundary condition

∂

∂n
u(x) + u4(x) = f(x)

and f was chosen in such a way that the exact solution is

u(x) = − log |x− x∗|, x∗ = (0.3,−0.3) .

We chose the initial guess of the Newton iteration to be u0(x) = 1.

The Steklov–Poincaré operator formulation. The trial space Zh to approx-
imate the Steklov–Poincaré operator S̃ as described in (2.8) was chosen to be
spanned by piecewise constant trial functions, i.e., ν = 0 (see (2.6)). For inverting
the discrete single layer potential matrix Vh we used an inner conjugate gradient
scheme with a preconditioner proposed in [21] where the stopping criteria was a
relative error reduction of εCG = 10−8. Since the solution is regular, we expected
the convergence rate 2 when measuring the error in L2(Γ) due to (2.26) and 1.5 in
H1/2(Γ) due to (2.24), and they are substantiated in Table 1.

The indirect hypersingular integral formulation. Since Ω is a polygonal
bounded domain, we get v ∈ H1/2+s(Γ), s < σ0 (see Remark 2.2 in [12]) with
σ0 = 2/3. Therefore the rate of convergence of the indirect hypersingular integral
formulation is about 2/3 in H1/2(Γ) and about 7/6 in L2(Γ). This is reflected in
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Table 3. Hybrid solution strategy

N ||u− uh||L2(Γ) order ||u− uh||H1/2(Γ) order Iter sec
32 1.35 –3 7.42 –3 6 0.11
64 2.87 –4 2.23 2.40 –3 1.63 6 0.31
128 6.43 –5 2.16 8.08 –4 1.57 6 0.85
256 1.50 –5 2.10 2.78 –4 1.54 6 2.98
512 3.61 –6 2.05 9.67 –5 1.52 7 12.44
1024 8.86 –7 2.03 3.39 –5 1.51 7 49.34

Table 2. Compared with the Steklov–Poincaré operator formulation, the computing
times in Table 2 are significantly less, but we get less order of convergence.

The hybrid solution strategy. After computing the solution by the indirect
hypersingular integral formulation, we used the resulting solution as an initial guess
for the Steklov–Poincaré operator formulation. Just one such post-processing step
yields a much faster solution with the order of convergence of the Steklov–Poincaré
operator formulation, as seen in Table 3.
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