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WEAKENED ACUTE TYPE CONDITION
FOR TETRAHEDRAL TRIANGULATIONS

AND THE DISCRETE MAXIMUM PRINCIPLE

SERGEY KOROTOV, MICHAL KŘÍŽEK, AND PEKKA NEITTAANMÄKI

Abstract. We prove that a discrete maximum principle holds for continuous
piecewise linear finite element approximations for the Poisson equation with
the Dirichlet boundary condition also under a condition of the existence of
some obtuse internal angles between faces of terahedra of triangulations of a
given space domain. This result represents a weakened form of the acute type
condition for the three-dimensional case.

1. Introduction: Maximum principle

In this paper we prove the validity of a discrete maximum principle for continuous
piecewise linear finite element approximations for the Poisson equation with the
Dirichlet boundary condition

−∆u = f in Ω,(1)

u = g on ∂Ω,(2)

where f ∈ L2(Ω), g ∈ C(∂Ω) and Ω ⊂ R3 is a bounded domain with a Lipschitz-
continuous polyhedral boundary ∂Ω.

First we formulate the strong maximum principle for the continuous problem
(cf. [14]) as follows.

A linear partial differential operator of the second order L defined on a space
of suitably smooth functions, which are in turn defined on a bounded domain
Ω ⊂ Rd, d ∈ {1, 2, ...}, with a boundary ∂Ω, is said to satisfy the strong maximum
principle if

Lu(x) ≤ 0 ∀x ∈ Ω and u(s) ≤ 0 ∀s ∈ ∂Ω(3)

imply that

u(x) ≤ 0 ∀x ∈ Ω.
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If L satisfies the condition Lv ≡ 0 for any constant function v and if Lu(x) ≤ 0
for all x ∈ Ω, then the following maximum principle holds (cf. [6, p. 31])

max
x∈Ω

u(x) = max
s∈∂Ω

u(s).(4)

Note that this is precisely the case of our problem (1)–(2).
It is natural to ask whether the corresponding discrete problem satisfies the same

principle as the continuous problem. This question for linear elliptic equations is
considered in [4]: in the two-dimensional case the discrete maximum principle is
proved for continuous piecewise linear finite element approximations if all angles
α in the triangulation are not greater than π

2 (the so-called acute type condition).
However, it is noted that the discrete maximum principle holds for continuous
piecewise linear finite element approximations for our problem under the following
weaker condition ([17, p. 78]): for every pair (α1, α2) of angles opposite a common
edge of some given pair of adjacent triangles of the triangulation we have α1 +α2 ≤
π, (see Figure 1a). In [13], it is shown that the discrete maximum principle may
still hold in some cases if both angles in such a pair are greater than π

2 .
In the three-dimensional case this problem is studied in [10], where the authors

prove the validity of the discrete maximum principle under the condition that all
internal angles between faces of all tetrahedra in the triangulation of Ω are not
greater than π

2 (a natural generalization of the acute type condition to the three-
dimensional case, see Figure 1b). Moreover, they prove the result for a nonlinear
elliptic equation taking into account the effect of numerical integration (cf. also [5]
for the two-dimensional case).

If an edge is surrounded by four tetrahedra, then all four associated angles have
to be equal to π

2 to satisfy the acute type condition introduced in [10]. This is a
quite restrictive property, which is difficult to satisfy especially when performing
refinements by “midlines in 3d ”; see the four “internal” tetrahedra in Figure 2 and
their common edge (cf. [9]). Some special examples of acute type triangulations of
polyhedra are given in [10]. They are based on Delaunay triangulations (cf. [7]).

In this paper we consider problem (1)–(2) and show that the above-mentioned
acute type condition can be weakened and some obtuse internal angles between some
faces of tetrahedra can be allowed under certain conditions on the triangulation of
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Figure 2.

a given domain and the discrete maximum principle still holds. An example of such
a triangulation is given in Section 4.

Other papers devoted to discrete maximum principles include, e.g., [1], [8], [15],
[16].

2. The discrete problem

If we examine proofs of discrete maximum principles to hold, then we see that
they are all based on the following fact: the corresponding discrete problems are of
nonnegative type (cf. [4]). This means that the finite element approximate problem
leads to the solution of a system of linear equations of the form

Āū = b̄,(5)

where the matrix Ā = (aij)n̄i,j=1, besides being nonsingular, satisfies the following
conditions:

aii > 0, i = 1, ..., n̄;(6a)
n̄∑
j=1

aij ≥ 0, i = 1, ..., n̄;(6b)

aij ≤ 0, i, j = 1, ..., n̄, i 6= j.(6c)

Here ū = (u1, ..., un̄) and for the Dirichlet boundary problem the components
un+1, ..., un̄ are given by values of g at nodes belonging to the boundary ∂Ω.

Remark 1. If (6) holds, then the matrix Ā is known to have a nonnegative inverse
(see [18]), which implies the validity of the discrete maximum principle (cf. [10]).

The conditions on Ā can be still reduced:

Theorem 1. Let the finite element matrix Ā of the problem (1)–(2) be monotone
(i.e., nonsingular with a nonnegative inverse) and let (6b) hold. Then whenever
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f ≤ 0, the following discrete maximum principle is valid:

max
1≤i≤n̄

ui = max
n+1≤j≤n̄

uj .(7)

The proof can be found in [3, p. 342].

Remark 2. In our paper we will allow some obtuse angles in the triangulation (which
may cause condition (6c) to not hold), such that the matrix Ā remains monotone,
and, therefore, in view of Theorem 1, the discrete maximum principle holds under
weaker conditions than in [10].

Further we give some notation and conditions on the triangulations used. By
K (possibly with a subscript) we always mean a closed tetrahedron. The symbol
Th denotes a triangulation of Ω into tetrahedra, whose nodes are B1, ..., Bn̄.
We denote by φ1, ..., φn̄ continuous and piecewise linear basis functions defined in a
standard way, i.e., φi(Bj) = δij for i, j = 1, ..., n̄, where δij is the Kronecker symbol.
We also assume that {Th}h→0 is a strongly regular family of triangulations, i.e.,
there exists a positive constant C

′

3 independent of h such that

C
′

3h
3 ≤ meas3K ∀h ∈ (0, h0) ∀K ∈ Th,(8)

where measd stands for the d-dimensional measure.
Let B1, ..., Bn be nodes that do not lie on ∂Ω and let m be the number of nodes

lying on ∂Ω, i.e., n̄ = n+m.
Let a(·, ·) be a bilinear form associated with the problem (1)–(2), i.e.,

a(u, v) =
∫

Ω

∇u · ∇v dx.(9)

We define the basic finite element matrix A to be the n × n matrix whose entries
are

aij = a(φi, φj), i, j = 1, ..., n,(10)

and the n×m boundary matrix Z with entries zij given as

zij = a(φi, φn+j), i = 1, ..., n, j = 1, ...,m.

We also set

bi =
∫

Ω

fφidx, i = 1, ..., n.

What we actually need is to solve the problem

Au = b− Zg,
where g = (g(Bn+1), ..., g(Bn̄))T = (g1, ..., gm)T . However, to simplify the proof
of the main result of Section 3, it is more convenient to consider an extended
form of this system, namely, the n̄× n̄ linear system of equations (like (5)), where
b̄ = (b1, ..., bn, g1, ..., gm)T and Ā is the n̄× n̄ matrix having the form

Ā =
[
A Z
0 I

]
,(11)

where I is the identity matrix.
Further we analyze of the structure of entries of Ā. First note that if two different

vertices Bi and Bj have no common edge, then

meas3 (suppφi ∩ suppφj) = 0, i.e., aij = 0.
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Let us now consider an edge denoted by B1B2 for simplicity, and let B3, B4, ...,
BM+2 be another set of vertices in an appropriate order, which are connected with
edges to both B1 and B2. Then we observe that

suppφ1 ∩ suppφ2 =
M⋃
r=1

Kr,

where the symbol Kr denotes a tetrahedron B1B2Br+2Br+3 (see Figure 3 with
M = 6) and we define BM+3 ≡ B3. We see that the tetrahedra K1, ...,KM are
“surrounding” the edge B1B2.

From (9)–(10) we particularly have that

a12 =
M∑
r=1

∫
Kr

∇φ1|Kr∇φ2|Krdx,(12)

where φj |Kr ∈ P1(Kr), j = 1, 2, r = 1, ...,M, and P1(Kr) denotes the space of
linear polynomials over Kr.

In what follows we always use the notation αKst for the internal angle in K
(between faces), which is opposite to the edge BsBt, and the notation Sijk for face
of K with vertices Bi, Bj , Bk.

Lemma 1. Let K be an arbitrary tetrahedron with vertices B1, B2, B3, B4 and let
p, q ∈ P1(K) be such that

p(B1) = 1, p(Bi) = 0 for i 6= 1,

q(B2) = 1, q(Bj) = 0 for j 6= 2,

then

||∇p|| = meas2 S234

3 meas3K
,(13)

∇p · ∇q = −meas2 S234 ·meas2 S134

9(meas3K)2
cosαK12.(14)

For the proof see [10, Lemma 3.1].
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Remark 3. From (14) it follows that the most undesirable case (in the notation of
Figure 3) is when all angles between faces S1,r+2,r+3 and S2,r+2,r+3, r = 1, ...,M,
are not less than π

2 and at least one is greater than π
2 . Then in view of (12) and (14)

we observe that a12 > 0, i.e., the condition (6c) does not hold for the corresponding
matrix Ā.

Note also that if not all such angles are obtuse and there are some acute ones we
can still get a negative value (as well as a positive one) of a12, since it is (cf. (12))
a sum of M terms over Kr, r = 1, ...,M .

In this paper we consider the situation (cf. Remark 2) when some positive off-
diagonal elements in the matrix Ā may also appear. To prove that the matrix Ā is,
under certain conditions, still monotone and therefore that the discrete maximum
principle holds by Theorem 1, we use the Bramble-Hubbard decomposition theorem
from [2].

Before giving a formulation of this theorem we introduce some further notation.
We assume for the moment that A is an arbitrary n× n matrix for which (6a) and
(6b) are valid, and that there exists a nonempty set J(A) of numbers of rows of A
such that for every k ∈ J(A) we have

∑n
j=1 akj > 0. Now for i /∈ J(A) we define a

connection in A from i to J(A) to be a finite sequence of nonzero elements of the
form aij1 , aj1j2 , aj2j3 , ..., ajsk, where k ∈ J(A), cf. [18]. We assume also that there
exists at least one such a connection in A for every i /∈ J(A).

From now on we assume that the matrix B, which we will be dealing with in
the following theorem, is given by B = (diag Ā)−1Ā, where diag Ā denotes the
diagonal matrix whose diagonal coincides with that of Ā. Note that from a trivial
observation

∑n̄
j=1 φj ≡ 1 in Ω , (9) and (10) we may easily derive that both Ā

and B satisfy (6a) and (6b), and J(Ā) = J(B) = {n+ 1, ..., n̄}.

Theorem 2. Let a matrix B have a unit diagonal, satisfy (6b) and let J(B) 6= ∅.
If there exists a splitting B = I − C −D, where

diagC = 0,(15a)

I − C satisfies (6b) and (6c),(15b)

(I − C)−1D is nonnegative,(15c)

for each i /∈ J(B) there exists a connection in C from i to J(B),(15d)

then B is monotone, i.e., B−1 exists and is nonnegative.

For the proof see [2, p. 352].

Remark 4. Actually, it will be difficult to check only condition (15c). To simplify
this procedure we define the following decomposition of the matrix D (note that it
is different from that given in [13]):

D = Dpos +Dneg,

where the entries of matrices Dpos = (dpos
ij )n̄i,j=1 and Dneg = (dneg

ij )n̄i,j=1 are defined
in the following fashion. If an entry dij consists of several contributions, i.e.,

dij =
Mij∑
l=1

dlij ,
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then we set

dpos
ij =

∑
dlij≥0

dlij and dneg
ij =

∑
dlij≤0

dlij .

Further, from the trivial relation

(I − C)−1D = Dpos + (I − C)−1(Dneg + CDpos),(16)

we observe that in order to verify (15c) it is enough to prove that Dneg +CDpos is
a nonnegative matrix, since both Dpos and (I −C)−1 are obviously nonnegative in
view of (15a), (15b) and Remark 1.

Remark 5. Taking into account Theorems 1 and 2, we observe that if one finds a
suitable splitting of B = (diag Ā)−1Ā satisfying (15a)–(15d), then the discrete
maximum principle (7) still holds.

Let us define the entries of the matrices C and D as follows:

cij = −aneg
ij /2aii,(17a)

dij = −aneg
ij /2aii − (1− δij)apos

ij /aii,(17b)

where i = 1, ..., n, j = 1, ..., n̄, and the other their entries are zeros.

3. Main result

Before presenting the main result—Theorem 3—we make the following observa-
tions on the triangulations used.

Lemma 2. Let {Th} be a strongly regular family of triangulations of Ω. Then
there exist positive constants C

′

1, C
′′

1 , C
′

2, C
′′

2 , C
′

3, C
′′

3 , θ0 and h0 independent
of h such that for all h ∈ (0, h0), all K ∈ Th and all their interior angles θ,
faces S and edges e, we have

C
′

1h ≤ meas1 e ≤ C
′′

1 h,(18)

C
′

2h
2 ≤ meas2 S ≤ C

′′

2 h
2,(19)

C
′

3h
3 ≤ meas3K ≤ C

′′

3 h
3,(20)

θ0 ≤ θ ≤ π − θ0.(21)

The proof follows immediately from the property of the strong regularity (8).

Lemma 3. Let F = {Th}h→0 be a strongly regular family of triangulations of
Ω. Then there exists a positive constant θ1 independent of h such that if K is
an arbitrary tetrahedron from Th and α1, α2, α3 are internal angles between an
arbitrary face of K and three remaining faces of K adjacent to this face, then

min(α1, α2, α3) ≤ π

2
− θ1.(22)

Proof. Let Th ∈ F , K ∈ Th and a face S of K be arbitrary. Let ρ be the radius of
the inscribed circle O to S and let v be the length of the spatial altitude of K onto
the face S. If the attitude ends at the centre of O, then α1 = α2 = α3 = arctanvρ ;
otherwise at least one of these angles is less than arctanvρ .

From (18) and (19) we get v ≤ C ′′1 h and

ρ =
2 meas2S

meas1∂S
≥ 2C

′

2h
2

3C ′′1 h
.
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Hence, we find that

min(α1, α2, α3) ≤ arctan
v

ρ
≤ arctan

3(C
′′

1 )2

2C ′2
.

The last term is independent of h and less than π/2. From here the existence of
some θ1 > 0 follows.

From now on we impose the following basic assumption on the triangulations
used:

(BA) Let aij > 0 for some i, j ∈ {1, ..., n̄}, i 6= j. For simplicity assume that
i = 1 and j = 2 in order to keep the notation of Figure 3. In such a case, we
require that there exist vertices Br, r ∈ {3, ...,M + 2}, and two tetrahedra K1,r and
K2,r ∈ Th, having B1Br and B2Br as their edges, respectively, so that

α
Kk,r
k,r ≤

π

2
− θ2, k = 1, 2,(23)

where θ2 is some positive constant independent of h.

Remark 6. Observe that we always have θ1 ≤ θ2. However, the numerical example
of Section 4 shows that it can happen θ1 = θ2 (cf. (31)).

Note that Mmax ≤ [2π
θ0

], where Mmax is the maximum number of tetrahedra
around the same edge and the constant θ0 is from (21).

Theorem 3. Let {Th} be a strongly regular family of triangulations of Ω leading
to the matrix Ā given by (11) with entries satisfying (BA).

Let, in case aij > 0, one of the following two conditions (in the notation of
Figure 3 aij ≡ a12) hold:

1. None of the nodes B3, B4, ..., BM+2 belongs to ∂Ω;
2. The function g is constant and B2BiBi+1 ∩ ∂Ω = B2BiBi+1 or ∅, i =

3, 4, ...,M + 2, BM+3 ≡ B3.
Then the discrete maximum principle (7) holds for continuous piecewise linear

finite element approximations of the problem (1)–(2) if internal angles between faces
of tetrahedra from Th are not greater than π

2 + ε, where

sin ε ≤ min(
C
′

2

2C ′′2
sin θ1,

81
4Mmax

· (C
′

2)4

(C ′′2 )4
· (C

′

3)2

(C ′′3 )2
· sin2 θ2).

Proof. From now on we always assume that B1 /∈ ∂Ω, since the case B1, B2 ∈ ∂Ω
is trivial, see (11).

We check whether the assumptions of Theorem 2 are satisfied (cf. Remark 5).
First we consider the case when none of the other nodes B2, ..., BM+2 lies on ∂Ω.

Obviously, (15a) is valid in view of definition (17a) of the matrix C.
Further we prove that (15b) holds. Using again (17a) and the fact that matrix

B satisfies (6b), we observe that

1−
n̄∑
j=1

cij = 1 +
∑
j 6=i

aneg
ij /2aii

= [1 +
∑
j 6=i

aij/aii] + [
∑
j 6=i

(aneg
ij /2aii − (aneg

ij + apos
ij )/aii)](24)

≥ [
∑
j 6=i

(−aneg
ij /2aii − apos

ij /aii)] = −1/aii
∑
j 6=i

(aneg
ij /2 + apos

ij ).
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Now we give a sufficient condition for the right-hand side to be nonnegative.
Suppose that for some fixed i and j, i 6= j, there exists a nonnegative contribution
over some tetrahedron Kl ∈ Th, denoted as apos

ij |Kl , into apos
ij . Let Kl have vertices

Bi, Bj , Bs, Bt (see Figure 4) and let ε = αKlij − π
2 . Let αKlit be the smallest angle

among angles formed by the face Ssjt and the other faces adjacent to it. Then by
(24) and (14), in order to show that I −C satisfies also (6b), it is enough to prove
that

apos
ij |Kl + 1

2a
neg
it |Kl

=
meas2 Sist ·meas2 Sjst

9 meas3Kl
· sin ε− meas2 Sisj ·meas2 Stsj

9 meas3Kl
· cosαKlit

2
≤ 0.

This inequality holds, due to (19) and (22), if the value of ε is such that

sin ε ≤ C
′

2

2C ′′2
sin θ1,(25)

which implies that I−C satisfies (6b). From (17a) we see that condition (6c) holds
for all entries of the matrix I − C, i.e., (15b) is valid.

Now we check whether (15c) holds, i.e., we prove that the negative entries of
Dneg are dominated by the corresponding positive terms of CDpos (see Remark 4).

By the definition of matrixD the “worst” situation occurs if all contributions into
some entry aij , i 6= j, are positive, see (17b). Let such an entry be a12 for simplicity.
Then dneg

12 = −apos
12 /a11. If we consider the corresponding entry (CDpos)12, then

we have to check whether the following condition holds (cf. (16) and (17)):

(CDpos)12 + (Dneg)12 =
M∑
r=1

−aneg
1,r+2

2a11
·
−aneg

r+2,2

2ar+2,r+2
− apos

12

a11
≥ 0.(26)

We have from (14) and the assumption that all contributions into a12 are non-
negative that

apos
12 =

M∑
r=1

−meas2 S1,r+2,r+3 ·meas2 S2,r+2,r+3

9 meas3Kr
· cosαKr12 ,(27)
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where αKr12 stands for the internal angle in Kr between faces S1,r+2,r+3 and
S2,r+2,r+3. Thus, from (19), (20) and (27) we get that

apos
12 ≤

M(C
′′

2 )2

9C ′3
· h · sin ε,

where ε = max{αKr12 − π
2 , r = 1, ...,M}.

Consider now the sum from the left-hand side of the inequality in (26). From
the basic assumption (BA) we conclude that

M∑
r=1

−aneg
1,r+2

2a11
·
−aneg

r+2,2

2ar+2,r+2
≥ sin2 θ2 · (C

′

2)4 · h2

4a11 · ar+2,r+2 · (C ′′3 )2
.

Hence ε is to be chosen so that

sin ε ≤ 9
4M
· (C

′

2)4

(C ′′2 )2
· C

′

3

(C ′′3 )2
· sin2 θ2

ar+2,r+2
· h.

Taking into account that (cf. (13), (19) and (20))

ar+2,r+2 ≤
(C
′′

2 )2

9C ′3
h,

we observe that the value of ε has to be such that

sin ε ≤ 81
4Mmax

· (C
′

2)4

(C ′′2 )4
· (C

′

3)2

(C ′′3 )2
· sin2 θ2.(28)

The condition (15d) can be trivially proved as in [13].
Since, under the assumptions of the theorem, the value of ε satisfies (25) and

(28), then obtuse angles with values less or equal to π
2 + ε are allowed and the

discrete maximum principle holds.
Consider now the situation when B2 ∈ ∂Ω, but none of B3, B4, ..., BM+2 belongs

to ∂Ω. In this case the entry a12 6= 0 (but a21 = 0 – cf. (11)), and the same
arguments as before can be used, since inequality (26) does not involve any term
of the form a2j , j 6= 2, that vanish now.

Further, let the function g in (2) be constant and let, say, the face B2B3B4

belong to the boundary. If we consider the entries a12, a13, a14 being, in fact,
entries of Z from (11), then employing the arguments used to prove (24) and a
simple observation from [13, p. 485], we may replace the positive entry a12 with
zero and change entries a13, a14 by nonpositive entries a

′

13, a
′

14, respectively, so that
we get an equivalent system of equations with a new matrix already satisfying
(6c).

4. Numerical experiments

Consider problem (1)–(2) with g = 0, where Ω is a parallelepiped whose shape
is shown in Figure 5. Let us divide Ω into 3 × 3 × 3 = 27 smaller parallelepipeds
which are congruent and similar to Ω.

In this way we obtain eight interior nodal points B1, ..., B8 and let their order
correspond to Figure 6, i.e., B1...B8 is one the 27 parallelepipeds, which is in the
centre of Ω. Assume that

B4 = (0, 0, 0), B5 = (8, 0, 0), B3 = (−3, 8, 0), B1 = (4, 4, 7).
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Figure 5.
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Coordinates of the other vertices Bi and the vertices of Ω can now be determined
from the above by a simple calculation.

We decompose the interior parallelepiped B1...B8 into 6 tetrahedra as sketched
in Figure 6, and the other 26 parallelepipeds are decomposed in the same manner.
Then the associated triangulation Th of Ω contains 6 × 27 = 162 tetrahedral
elements having the same volume. Hence,

C′3 = C′′3(29)

in inequality (20). The triangulation Th is, in fact, equivalent to decompositions
studied in [9] and [12]. Note that each vertex Bi belongs to 24 tetrahedra and each
interior edge is surrounded by 4 or 6 tetrahedra. Therefore,

Mmax = 6.(30)

Simple computer calculations now lead to

C′2 = 31.532, C′′2 = 37.125, θ1 = θ2 = 29.74◦(31)

(cf. (19) and (22)), see Remark 6. Then we find by Theorem 3, (29), (30) and (31)
that

sin ε ≤ min(0.21070, 0.43233),

which yields the upper bound

ε ≤ 12.16◦.(32)

The tetrahedron B1B2B3B4 has two obtuse angles: 92.78◦ at the edge B1B3

and 100.30◦ at the opposite edge B2B4. These edges are surrounded only by four
tetrahedra from Th. Since the angle 100.30◦ = 90◦+ 10.30◦ is at the same time the
greatest angle in the whole triangulation, we see that (32) is valid, and thus the
discrete maximum principle holds due to Theorem 3.
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The corresponding 8× 8 stiffness matrix A is monotone

A =



39.30
−5.54 39.30 sym.

0.97 −5.79 39.30
−3.83 −0.23 −4.49 39.30
−0.74 −4.49 0 −5.79 39.30
−5.79 0.97 0 0 −3.83 39.30
−0.23 −3.83 0 0 0 −4.49 39.30
−4.49 −0.74 −3.83 0 0 0 −5.79 39.30


even though some of its nondiagonal entries are positive.

If an edge is surrounded only by four tetrahedra, then, of course, at least one
angle is greater than or equal to 90◦. For unstructured triangulations such an angle
is greater than 90◦, in general. The above example illustrates that angles which are
even slighty greater than 100◦ can still guarantee the validity of the strong discrete
maximum principle. Other numerical experiments with similar parallelepipeds show
that angles less than 100◦ usually do not destroy the discrete maximum principle
provided their faces have approximately the same area.

Finally, note that refinements of tetrahedral triangulations should be done with
special care (see [11] and [19]). The latter reference contains an interesting example,
where repeated refinement by midlines may produce a degenerate tetrahedra if the
interior octahedron in Figure 1 is divided into 4 tetrahedra incorrectly.
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