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PARALLEL INTEGER RELATION DETECTION:
TECHNIQUES AND APPLICATIONS

DAVID H. BAILEY AND DAVID J. BROADHURST

Abstract. Let {x1, x2, · · · , xn} be a vector of real numbers. An integer re-
lation algorithm is a computational scheme to find the n integers ak , if they
exist, such that a1x1 + a2x2 + · · ·+ anxn = 0. In the past few years, integer
relation algorithms have been utilized to discover new results in mathematics
and physics. Existing programs for this purpose require very large amounts of
computer time, due in part to the requirement for multiprecision arithmetic,
yet are poorly suited for parallel processing.

This paper presents a new integer relation algorithm designed for parallel
computer systems, but as a bonus it also gives superior results on single pro-
cessor systems. Single- and multi-level implementations of this algorithm are
described, together with performance results on a parallel computer system.
Several applications of these programs are discussed, including some new re-
sults in mathematical number theory, quantum field theory and chaos theory.

1. Introduction

Let x = (x1, x2, · · · , xn) be a vector of real numbers. x is said to possess an inte-
ger relation if there exist integers ai, not all zero, such that a1x1+a2x2+· · ·+anxn =
0. By an integer relation algorithm, we mean a practical computational scheme that
can recover (provided the computer implementation has sufficient numeric preci-
sion) the vector of integers ai, if it exists, or can produce bounds within which no
integer relation exists.

The problem of finding integer relations among a set of real numbers was first
studied by Euclid, who gave an iterative scheme which, when applied to two real
numbers, either terminates, yielding an exact relation, or produces an infinite se-
quence of approximate relations. The generalization of this problem for n > 2 was
attempted by Euler, Jacobi, Poincaré, Minkowski, Perron, Brun, Bernstein, among
others. The first integer relation algorithm with the required properties mentioned
above was discovered in 1977 by Ferguson and Forcade [19]. Since then, a number
of other integer relation algorithms have been discovered, including the “HJLS”
algorithm [21] (which is based on the LLL algorithm) and the “PSLQ” algorithm.
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2. The PSLQ algorithm

The PSLQ integer relation algorithm features excellent numerical stability, and it
is effective in recovering a relation when the input is known to only limited precision.
It has been generalized to complex and even quaternion number systems. A detailed
discussion of the PSLQ algorithm, together with a proof that the algorithm is
guaranteed to recover a relation in a polynomially bounded number of iterations, is
given in [18]. The name “PSLQ” derives from its usage of a partial sum of squares
vector and a LQ (lower-diagonal-orthogonal) matrix factorization.

A simple statement of the PSLQ algorithm, which is entirely equivalent to the
original formulation, is as follows: Let x be the n-long input real vector, and let
nint denote the nearest integer function (for exact half-integer values, define nint
to be the integer with greater absolute value). Select γ >

√
4/3. Then perform the

following operations.
Initialize:

1. For j := 1 to n: for i := 1 to n: if i = j then set Aij := 1 and Bij := 1 else
set Aij := 0 and Bij := 0; endfor; endfor.

2. For k := 1 to n: set sk :=
√∑n

j=k x
2
j ; endfor. Set t = 1/s1. For k := 1 to n:

set yk := txk; sk := tsk; endfor.
3. Initial H : For j := 1 to n − 1: for i := 1 to j − 1: set Hij := 0; endfor; set
Hjj := sj+1/sj; for i := j+1 to n: set Hij := −yiyj/(sjsj+1); endfor; endfor.

4. Reduce H : For i := 2 to n: for j := i−1 to 1 step −1: set t := nint(Hij/Hjj);
and yj := yj + tyi; for k := 1 to j: set Hik := Hik − tHjk; endfor; for k := 1
to n: set Aik := Aik − tAjk and Bkj := Bkj + tBki; endfor; endfor; endfor.

Iteration: Repeat the following steps until precision has been exhausted or a relation
has been detected.

1. Select m such that γi|Hii| is maximal when i = m.
2. Exchange the entries of y indexed m and m+ 1, the corresponding rows of A

and H , and the corresponding columns of B.
3. Remove corner on H diagonal: If m ≤ n−2 then set t0 :=

√
H2
mm +H2

m,m+1,
t1 := Hmm/t0 and t2 := Hm,m+1/t0; for i := m to n: set t3 := Him, t4 :=
Hi,m+1, Him := t1t3 + t2t4 and Hi,m+1 := −t2t3 + t1t4; endfor; endif.

4. Reduce H : For i := m+ 1 to n: for j := min(i− 1,m+ 1) to 1 step −1: set
t := nint(Hij/Hjj) and yj := yj + tyi; for k := 1 to j: set Hik := Hik − tHjk;
endfor; for k := 1 to n: set Aik := Aik − tAjk and Bkj := Bkj + tBki; endfor;
endfor; endfor.

5. Norm bound: Compute M := 1/maxj |Hjj |. Then there can exist no relation
vector whose Euclidean norm is less than M .

6. Termination test: If the largest entry of A exceeds the level of numeric pre-
cision used, then precision is exhausted. If the smallest entry of the y vector
is less than the detection threshold (see below), a relation has been detected
and is given in the corresponding column of B.

We will now review a key result regarding the PSLQ algorithm. Let x be the
n-long input real vector, and let Hx the original H matrix constructed in the
initialization step above. Let | · | denote the Euclidean norm of a vector. Then
Theorem 1 of [18] implies that after any number of iterations (presuming no relation
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has yet been found), any integer relation r of the vector x must satisfy

|r| ≤ 1
max1≤j≤n−1 |Hj,j |

.

This result is the basis for step 5 in the algorithm above.
The PSLQ algorithm, in effect, constructs a series of invertible integer matrices

whose product is A (B is the inverse of A), and a series of orthogonal real matrices
whose product is Q (Q is not explicitly computed above), such that H = AHxQ
is lower trapezoidal. Theorem 1 of [18] actually states more than the bound result
above. If A is any invertible integer matrix, and Q is the orthogonal matrix such
that AHxQ is lower triangular (such a Q can always be produced by an LQ matrix
factorization of AHx), then this result on the norm of r still holds. We will take
advantage of this fact in Section 6.

It should be emphasized that for almost all applications of an integer relation
algorithm such as PSLQ, very high precision arithmetic must be used. Only a very
small class of relations can be recovered reliably with the 64-bit IEEE floating-point
arithmetic that is available on current computer systems. In general, if one wishes
to recover a relation of length n with coefficients of maximum size d digits, then it
follows by an information theory argument that the input vector x must be specified
to at least nd digits, and one must employ floating-point arithmetic accurate to at
least nd digits. Practical integer relation programs always require greater precision
than this bound. In fact, the difference between the level of precision required for a
given problem and the information theory bound is a key figure of merit for integer
relation algorithms. PSLQ is very efficient in this regard — for most problems,
PSLQ programs can reliably recover relations with only a few percent more digits
of precision than the information theory bound.

The software products Maple and Mathematica include multiple precision arith-
metic facilities. One may also use any of several freeware multiprecision software
packages, such as the MPFUN package (Fortran-77 and Fortran-90 versions are
available), which was developed by the first author [1, 2], and the C/C++ version
of MPFUN, which was recently developed by Sid Chatterjee and Hermann Harjono
of the University of North Carolina [16]. The two MPFUN packages permit one to
write a program in conventional Fortran-77/90 or C/C++, respectively, identify-
ing some or all of the variables to be multiple precision (integer, real or complex).
Then, in expressions where these variables appear, the appropriate multiple preci-
sion routines are automatically referenced, thus saving considerable programming
effort.

In the course of the operation of the PSLQ algorithm on a real computer system,
the entries of the y vector gradually decrease in size, with the largest and smallest
entries usually differing by no more than two or three orders of magnitude. When
a relation is detected by the algorithm, the smallest entry of the y vector abruptly
decreases to roughly the multiprecision “epsilon” (i.e., 10−p, where p > nd is the
precision level in digits). The detection threshold in the termination test above
(iteration step 6) is typically set to be a few orders of magnitude greater than the
epsilon value in order to allow for reliable relation detection in the presence of some
numerical round-off error. The ratio between the smallest and the largest y entry
when a relation is detected can be taken as a “confidence level” that the relation
is a true relation and not an artifact of insufficient numeric precision. Very small
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ratios at detection, such as 10−100, almost certainly denote a true relation, although
of course such results do not constitute a rigorous proof.

As shown in [18], the PSLQ algorithm is guaranteed to find relations in a bounded
number of iterations. However, this result is based on the assumption of perfect,
infinite-precision arithmetic. In an implementation on a real computer system,
one can never rule out hardware, software and programming errors, although the
chances of these errors can be minimized by independent computations. Also, PSLQ
programs utilize multiprecision software with finite working precision, and they
make decisions based on numerical tolerances. Thus it is possible that numerical
anomalies can result, although these anomalies can generally be remedied by using
higher precision.

3. Some applications of the PSLQ algorithm

One application of PSLQ in the field of mathematical number theory is to de-
termine whether or not a given constant α, whose value can be computed to high
precision, is algebraic of some degree n or less. This can be done by first computing
the vector x = (1, α, α2, · · · , αn) to high precision and then applying an integer
relation algorithm. If a relation is found for x, then this relation vector is precisely
the set of integer coefficients of a polynomial satisfied by α. If a relation is not
found, the maximum bound determined by PSLQ means that α cannot be the root
of a polynomial of degree less than or equal to n, with integer coefficients whose
size (Euclidean norm) is less than the established bound. For example, it is well
known [8] that

ζ(2) = 3
∞∑
k=1

1
k2
(

2k
k

) ,
ζ(3) =

5
2

∞∑
k=1

(−1)k−1

k3
(

2k
k

) ,
ζ(4) =

36
17

∞∑
k=1

1
k4
(

2k
k

) .
These results have led some to suggest that

Z5 = ζ(5)/
∞∑
k=1

(−1)k−1

k5
(

2k
k

)
might also be a simple rational or algebraic number. Computations using the PSLQ
algorithm [1] have established that if Z5 satisfies a polynomial of degree 25 or less,
then the Euclidean norm of the coefficients must exceed 2 × 1037. Results such as
this strongly suggest that the constants ζ(n) for n > 4 are not given by simple
one-term formulas as above. Indeed, this “negative” result was fruitful in that it
led to the discovery of multi-term identities for such sums [11]. An example will be
given in Section 8.

One of the first “positive” results of this sort was the identification of the con-
stant B3 = 3.54409035955 · · · [1]. B3 is the third bifurcation point of the logistic
map xk+1 = rxk(1−xk), which exhibits period doubling shortly before the onset of
chaos. To be precise, B3 is the smallest value of the parameter r such that successive
iterates xk exhibit eight-way periodicity instead of four-way periodicity. Computa-
tions using a predecessor algorithm to PSLQ found that B3 is a root the polynomial
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Table 1. Specimen evaluations, found with PSLQ and now proven

∑∞
k=1

(
1 + 1

2 + · · ·+ 1
k

)2 (k + 1)−4 = 37
22680π

6 − ζ2(3)∑∞
k=1

(
1 + 1

2 + · · ·+ 1
k

)3 (k + 1)−6 = ζ3(3) + 197
24 ζ(9) + 1

2π
2ζ(7)

− 11
120π

4ζ(5)− 37
7560π

6ζ(3)∑∞
k=1

(
1− 1

2 + · · ·+ (−1)k+1 1
k

)2 (k + 1)−3 = 4 Li5(1
2 )− 1

30 ln5(2)− 17
32ζ(5)

− 11
720π

4 ln(2) + 7
4ζ(3) ln2(2) + 1

18π
2 ln3(2)− 1

8π
2ζ(3)

4913+2108t2−604t3−977t4 +8t5 +44t6 +392t7−193t8−40t9 +48t10−12t11 + t12.
A result for B4 will be given in Section 8.

A large number of results were recently found using PSLQ in the course of
research on multiple sums, such as those evaluated in Table 1. After computing
the numerical values of many of these constants, a PSLQ program was used to
determine if a given constant satisfied an identity of a conjectured form. These
efforts produced numerous empirical evaluations and suggested general results [3].
Eventually, elegant proofs were found for many of these specific and general results
([6] and [7]). Three examples of identities that are now proven are given in Table
1. In the table, ζ(t) =

∑∞
j=1 j

−t is the Riemann zeta function and Lin(x) =∑∞
j=1 x

jj−n denotes the polylogarithm function.
It has been found that there is an intimate connection between such multiple

sums and the constants resulting from evaluation of Feynman diagrams in quantum
field theory [12, 13]. In particular, the renormalization procedure (which removes
infinities from the perturbation expansion) entails multiple zeta values defined by
[9]

ζ(s1, s2, · · · , sr) =
∑

k1>k2>···>kr>0

1
ks11 ks22 · · ·k

sr
r
.

The ζ notation is used in analogy with Riemann’s zeta function. The PSLQ algo-
rithm was used to find formulas and identities involving these constants. Again,
a fruitful theory emerged, including a large number of both specific and general
results [9, 10].

Some recent quantum field theory results using PSLQ are even more remarkable.
For example, it has now been shown [14] that in each of ten cases with unit or
zero mass, the finite part the scalar 3-loop tetrahedral vacuum Feynman diagram
reduces to 4-letter “words” that represent iterated integrals in an alphabet of 7
“letters” comprising the one-forms Ω := dx/x and ωk := dx/(λ−k − x), where
λ := (1 +

√
−3)/2 is the primitive sixth root of unity, and k runs from 0 to 5. A

4-letter word is a 4-dimensional iterated integral, such as

U := ζ(Ω2ω3ω0)

=
∫ 1

0

dx1

x1

∫ x1

0

dx2

x2

∫ x2

0

dx3

(−1− x3)

∫ x3

0

dx4

(1− x4)
=
∑
j>k>0

(−1)j+k

j3k
.
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Figure 1. The ten tetrahedral cases

Table 2. Evaluations of the ten constants corresponding to the
ten cases in Figure 1

V1 = 6ζ(3) + 3ζ(4)
V2A = 6ζ(3)− 5ζ(4)
V2N = 6ζ(3)− 13

2 ζ(4)− 8U
V3T = 6ζ(3)− 9ζ(4)
V3S = 6ζ(3)− 11

2 ζ(4)− 4C2

V3L = 6ζ(3)− 15
4 ζ(4)− 6C2

V4A = 6ζ(3)− 77
12ζ(4)− 6C2

V4N = 6ζ(3)− 14ζ(4)− 16U
V5 = 6ζ(3)− 469

27 ζ(4) + 8
3C

2 − 16V
V6 = 6ζ(3)− 13ζ(4)− 8U − 4C2

There are 74 four-letter words. Only two of these are primitive terms occurring in
the 3-loop Feynman diagrams: U , above, and

V := Real[ζ(Ω2ω3ω1)] =
∑
j>k>0

(−1)j cos(2πk/3)
j3k

.

The remaining terms in the diagrams reduce to products of constants found in
Feynman diagrams with fewer loops. These ten cases as shown in Figure 1. In
these diagrams, dots indicate particles with nonzero rest mass. The formulas that
have been found for the corresponding constants are given in Table 2. The constant
C =

∑
k>0 sin(πk/3)/k2.

4. A new formula for pi

Through the centuries mathematicians have assumed that there is no shortcut
to computing just the n-th digit of π. Thus, it came as no small surprise when such
an algorithm was recently discovered [4]. In particular, this simple scheme allows
one to compute the n-th hexadecimal (or binary) digit of π without computing any
of the first n − 1 digits, without using multiple-precision arithmetic software, and
at the expense of very little computer memory. The one millionth hex digit of π
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can be computed in this manner on a current-generation personal computer in only
about 60 seconds run time.

This scheme is based on the following new formula, which was discovered using
PSLQ:

π =
∞∑
k=0

1
16k

[
4

8k + 1
− 2

8k + 4
− 1

8k + 5
− 1

8k + 6

]
.

It is likely the first instance in history of a significant new formula for π discovered
by computer. Further base-2 results are given in [4, 15]. In [14] base-3 results were
obtained, including

π2 =
2
27

∞∑
k=0

1
729k

[
243

(12k + 1)2
− 405

(12k + 2)2
− 81

(12k + 4)2
− 27

(12k + 5)2

− 72
(12k + 6)2

− 9
(12k + 7)2

− 9
(12k + 8)2

− 5
(12k + 10)2

+
1

(12k + 11)2

]
.

5. Multi-level implementations of PSLQ

In spite of the relative efficiency of PSLQ compared to the other algorithms in the
literature, computer run times of programs that straightforwardly implement the
PSLQ algorithm are typically quite long. Even modest-sized problems can require
many hours for solution on a current personal computer or workstation. This is
mainly due to the cost of using high precision arithmetic software for nearly every
operation in the algorithm.

As it turns out, it is possible to perform most, if not all, of the PSLQ iterations
using ordinary 64-bit computer arithmetic, with only occasional recourse to multi-
precision arithmetic. In this way, run times can be dramatically reduced. Here is a
sketch of this scheme, which will be referred to as a “two-level” implementation of
the PSLQ algorithm. In the following, “double precision” means the 64-bit IEEE
hardware arithmetic available on most current computer systems, and ȳ, Ā, B̄ and
H̄ denotes double precision counterparts to the arrays y, A, B and H in the PSLQ
algorithm.

First, perform the multiprecision initialization steps of PSLQ as given in Section
2 above. Then perform a double precision “re-initialization” step: set Ā and B̄
to the n × n identity matrix; set ȳ to the best double precision approximation of
the current y vector, multiplied by a scale factor so that its largest entry is unity;
and set H̄ to the best double precision approximation of the current H matrix.
For some extremely large problems it may be necessary to scale the H̄ matrix to
avoid numeric overflow. Then perform an LQ (lower-diagonal-orthogonal) matrix
factorization on H̄ , and replace H̄ by the lower diagonal portion of the result (the
upper right portion is zeroed). The subroutine DQRDC of the Linpack library
[17] may be employed for this factorization, provided both the input and output
matrices are transposed.

Next, perform PSLQ iterations using the double precision arrays. In the course
of these iterations, the entries of Ā and B̄ (which contain integer values, although
stored as IEEE double precision data) steadily increase in size. Monitor the en-
tries of these matrices as they are updated, and when any entry reaches a certain
threshold (the authors use 1013) or when the smallest ȳ entry becomes smaller than
a certain threshold (the authors use 10−14), then update the multiprecision arrays
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by means of matrix multiplication operations, as follows:

y := y · B̄,
B := B · B̄,
A := Ā ·A,
H := Ā ·H.

After these updates are performed, the entries of the A matrix and the y vector are
checked, as in the termination test (iteration step 6) of PSLQ, and a norm bound is
computed. If neither of the termination conditions holds, then the double precision
arrays are re-initialized again as mentioned above, another set of double precision
iterations are performed, and the process continues.

This general scheme works well for many problems, but there are several difficul-
ties that must be dealt with in a fully robust implementation. One difficulty is that
at some point in the computation (typically at the very beginning), the y vector
may have a dynamic range that exceeds the range (11 or 12 orders of magnitude)
that can be safely handled using double precision iterations. Another difficulty
is that occasionally an entry is produced in the Ā or B̄ matrix that exceeds the
largest whole number (253 = 9.007 · · · × 1015) that can be exactly represented as
64-bit IEEE data. A straightforward solution when such a condition occurs is to
abandon the current iteration, restore a previous iteration’s values of ȳ, Ā, B̄ and
H̄, update the multiprecision arrays as above, perform an LQ matrix factorization
on the H matrix, and then perform iterations using full multiprecision arithmetic
until these special conditions no longer hold.

A more efficient solution for large problems that require very high precision
is to employ “intermediate precision”, in other words a fixed level of precision
(the authors use 125 digits) that is intermediate between double precision and
full multiprecision. Updating the full multiprecision arrays from the intermediate
precision arrays is done with matrix multiplication operations in a manner precisely
analogous to that described above. Incorporating intermediate precision in this
manner gives rise to what we will refer to as a “three-level” implementation of
PSLQ.

One additional improvement that can be made to each of these schemes is to
omit multiprecision computation of the A matrix (although the double precision
and intermediate precision equivalents of A must be computed). The multiprecision
A matrix (which is the inverse of the B matrix) is used in the PSLQ algorithm
only to determine when execution must be halted due to the exhaustion of numeric
precision. However, exhaustion of numeric precision can alternatively be handled by
halting iterations when the smallest y entry is sufficiently close to the multiprecision
epsilon level (the authors use a factor of 1025).

These three PSLQ schemes (one-level, two-level and three-level) have been im-
plemented by the first author using the Fortran-90 MPFUN software [2]. Some
performance results are shown in Table 3 for a class of problems. Here r, s define
the constant α = 31/r − 21/s, which is algebraic of degree rs, and n = rs+ 1. The
n-long vector of coefficients of the polynomial satisfied by α can thus be obtained by
using a PSLQ program, as explained in Section 3. The column headed “Iterations”
gives the number of PSLQ iterations required for solution, while “Digits” gives the
working precision level used, in decimal digits. “Time” gives CPU time in seconds
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Table 3. Run times for the three PSLQ programs

One-level Two-level Three-level
r, s n Iterations Digits Time Digits Time Digits Time
5,5 26 5143 180 32.37 190 1.29
5,6 31 9357 240 105.48 250 3.16
6,6 37 15217 310 298.85 320 7.19
6,7 43 25361 420 942.66 420 17.22
7,7 50 36947 500 2363.71 510 36.29
7,8 57 60817 680 90.08
8,8 65 86684 850 195.19 910 233.48
8,9 73 124521 1050 425.67 1120 460.34
9,9 82 174140 1310 934.96 1370 922.90
9,10 91 245443 1620 2032.69 1680 1780.65
10,10 101 342931 2000 4968.64 2060 3366.92

for runs on a single processor of an SGI Origin-2000 system with 195 MHz R10000
CPUs.

It can be seen from these results that the two-level PSLQ program is up to 65
times faster than the one-level program, yet it finds relations just as well, usually
in exactly the same course of iterations as the one-level program. The three-level
program is faster than the two-level program for large problems, even though the
special conditions mentioned above rarely arise in the particular problems men-
tioned in the table. The reason for this fortunate circumstance appears to be
improved data locality in the three-level scheme, which is advantageous on mod-
ern cache-based computer systems. Fully detailed computer programs are available
from the authors at the web site http://www.nersc.gov/~dhbailey.

6. The multi-pair algorithm

Even with the substantial accelerations described in the previous section, run
times are painfully long for some very large problems of current interest in math-
ematics and physics. Thus one is led to consider employing highly parallel super-
computers, which have the potential of performance hundreds of times faster than
for single-processor scientific workstations and personal computers.

Unfortunately, the standard PSLQ algorithm appears singularly unsuited for
modern parallel computer systems, which require high levels of coarse-grained con-
currency. The main difficulty is that large integer relation problems may require
millions of PSLQ iterations, each of which must be completed before the next be-
gins. Further, within an individual iteration, the key reduction operation (iteration
step 4) has a recursion that inhibits any possibility for parallel execution, except at
the innermost loop level. These considerations have led some researchers in the field
to conclude that there is no hope for significant parallel acceleration of PSLQ-type
computations.

But it turns out that a variant of the PSLQ algorithm can be formulated that
dramatically reduces the number of sequential iterations that must be performed,
while at the same time exhibiting moderately high concurrency in the major steps
of individual iterations. To that end, consider the following algorithm, which will
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be referred to as the “multi-pair” variant of PSLQ. Here γ >
√

4/3 as before, and
β = 0.4.
Initialize:

1. For j := 1 to n: for i := 1 to n: if i = j then set Aij := 1 and Bij := 1 else
set Aij := 0 and Bij := 0; endfor; endfor.

2. For k := 1 to n: set sk :=
√∑n

j=k x
2
j ; endfor; set t = 1/s1; for k := 1 to n:

set yk := txk; sk := tsk; endfor.
3. Initial H : For j := 1 to n − 1: for i := 1 to j − 1: set Hij := 0; endfor; set
Hjj := sj+1/sj; for i := j+1 to n: set Hij := −yiyj/(sjsj+1); endfor; endfor.

Iteration: Repeat the following steps until precision has been exhausted or a relation
has been detected.

1. Sort the entries of the (n− 1)-long vector {γi|Hii|} in decreasing order, pro-
ducing the sort indices.

2. Beginning at the sort index m1 corresponding to the largest γi|Hii|, select
pairs of indices (mi,mi + 1), where mi is the sort index. If at any step either
mi or mi + 1 has already been selected, pass to the next index in the list.
Continue until either βn pairs have been selected, or the list is exhausted.
Let p denote the number of pairs actually selected in this manner.

3. For i := 1 to p, exchange the entries of y indexed mi and mi + 1, and the
corresponding rows of A, B and H ; endfor.

4. Remove corners on H diagonal: For i := 1 to p: if mi ≤ n − 2 then set
t0 :=

√
H2
mi,mi +H2

mi,mi+1, t1 := Hmi,mi/t0 and t2 := Hmi,mi+1/t0; for
i := mi to n: set t3 := Hi,mi ; t4 := Hi,mi+1; Hi,mi := t1t3 + t2t4; and
Hi,mi+1 := −t2t3 + t1t4; endfor; endif; endfor.

5. Reduce H : For i := 2 to n: for j := 1 to n − i + 1: set l := i + j − 1; for
k := j + 1 to l− 1: set Hlj := Hlj − TlkHkj ; endfor; set Tlj := nint(Hlj/Hjj)
and Hlj := Hlj − TljHjj ; endfor; endfor.

6. Update y: For j := 1 to n− 1: for i := j+ 1 to n: set yj := yj +Tijyi; endfor;
endfor.

7. Update A and B: For k := 1 to n: for j := 1 to n− 1: for i := j + 1 to n: set
Aik := Aik − TijAjk and Bjk := Bjk + TijBik; endfor; endfor; endfor.

8. Norm bound: Compute M := 1/maxj |Hjj |. Then there can exist no relation
vector whose Euclidean norm is less than M .

9. Termination test: If the largest entry of A exceeds the level of numeric preci-
sion used, then precision is exhausted. If the smallest entry of the y vector is
less than the detection threshold (see Section 2), a relation has been detected
and is given in the corresponding row of B.

There are several differences between this algorithm and the standard one-level
PSLQ algorithm: (1) there is no reduction step in the initialization; (2) the B
matrix is transposed from the standard PSLQ algorithm; (3) up to βn disjoint
pairs (not just a single pair) of adjacent indices are selected in each iteration; (4)
the H reduction loop proceeds along successive lower diagonals of the H matrix;
(5) a T matrix is employed which contains the t multipliers of the standard PSLQ;
and (6) the y, A and B arrays are not updated with H , but in separate loops.
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Since the multi-pair algorithm maintains the H matrix in lower triangular form,
and the A and B matrices are maintained as invertible integer matrices, one can
conclude from Theorem 1 of [18] that the norm bound stated in iteration step 8
above is valid, by an argument similar to that used for the original PSLQ algorithm.

Unfortunately, we cannot offer a proof that the multi-pair algorithm is guaran-
teed to recover a relation in a bounded number of iterations, as can be done with
PSLQ. In fact, it has been found that for certain special problems, the multi-pair
algorithm, as stated above, falls into a repeating cycle, with a period of (usually)
two iterations. Our implementation deals with this difficulty by comparing the y
vector at the end of each iteration with saved copies from eight previous iterations,
and if a duplication is found, then only one pair of indices is selected in step 2 of
the next iteration (so that the next iteration is equivalent to a standard PSLQ iter-
ation). It should be added, however, that these repeating situations are extremely
rare in nontrivial problems. We have not seen any instances of such repeats when
n ≥ 20.

On the positive side, we have found, based on our experience with a wide variety
of sample problems, that the norm bound increases much more rapidly than in the
standard PSLQ. Indeed, it appears that the selection of up to βn disjoint pairs
of indices in step 2 above has the effect of reducing the iteration count by nearly
the factor βn. This results in a significant saving in the number of expensive
H reduction and array update steps. More importantly, without this dramatic
reduction in the sequential iteration count, an efficient parallel implementation
would not be possible. Parallel issues will be discussed in greater detail in the next
section.

Given that the multi-level implementations of PSLQ are so much faster than
the standard one-level PSLQ, one might also wonder whether there exist analogous
multi-level implementations of the multi-pair algorithm. Happily, the multi-level
scheme sketched in Section 5 can be adopted almost without change. One change
that is required is that the multiprecision arrays are updated as follows:

y := B̄ · y,
B := B̄ ·B,
A := Ā ·A,
H := Ā ·H.

Note that y and B are updated here in the same manner as the A and H arrays.
This change stems from the fact that the B matrix in the multi-pair scheme is
transposed from the B matrix in the standard PSLQ algorithm.

The multi-pair algorithm and the multi-level implementations described here
were all devised to permit parallel processing. But it turns out that these programs
also run faster on a single processor system, compared with the standard PSLQ
equivalents. Some one-processor timings are shown in Table 4 for the suite of test
problems used in Table 3. Note for example that the one-level multi-pair program
is up to twice as fast as the one-level PSLQ program, and the three-level multi-pair
program is up to 22% faster than the three-level PSLQ program. Note also that
the iteration counts are reduced by a factor of up to 34. Finally, note that the
multi-pair schemes require slightly less numeric precision for solution than their
PSLQ counterparts. The reason for this unanticipated benefit is not known.
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Table 4. Run times for the three multi-pair programs

One-level Two-level Three-level
r, s n Iterations Digits Time Digits Time Digits Time
5,5 26 558 180 26.08 180 1.48
5,6 31 840 230 70.71 240 3.43
6,6 37 1136 310 189.27 310 7.84
6,7 43 1625 400 479.07 410 17.22
7,7 50 2071 500 1130.85 500 35.64
7,8 57 2410 660 69.39
8,8 65 3723 800 169.62 880 214.66
8,9 73 4943 1010 358.07 1100 427.29
9,9 82 6169 1260 744.20 1320 804.51
9,10 91 7850 1560 1556.37 1600 1450.29
10,10 101 10017 1890 3283.08 1950 2747.12

7. Parallel implementations of the multi-pair algorithm

The key steps of the multi-pair iterations are all suitable for parallel execution.
First note that the p row exchanges in iteration step 3, as well as the p corner
removal operations in step 4, can be performed concurrently, since the p pairs of
indices (mi,mi + 1) are all disjoint. Secondly, the reorganized H matrix reduction
step (step 5), which is equivalent to the H matrix reduction scheme in the standard
PSLQ, may be performed concurrently at the second loop level, instead of only at
the innermost loop level as in standard PSLQ. The update of the A and B arrays
(step 7) is even more favorable to parallel processing: this loop may be performed
concurrently at the outermost loop level. The change in the B matrix, which is
transposed from the standard PSLQ algorithm, is favorable for an implementation
on a distributed memory parallel computer.

The two- and three-level multi-pair schemes are also well suited for parallel
computation. This is because the dominant cost of these programs is the matrix
multiplication operations involved in the multiprecision array updates, and these
matrix multiplications can be performed concurrently at the outermost loop level.
The parallel techniques mentioned in the previous paragraph can still be applied
to the double precision and intermediate precision iterations. It turns out, though,
that the double precision iterations run so rapidly that parallel processing of these
iterations is often not worth the overhead. Nonetheless, we have achieved modest
acceleration on very large problems by using parallel processing on some steps of
double precision iterations. Some parallel performance results will be given in the
next section.

8. Large applications and parallel performance

Four recent applications will be described here, each of which involves very large
integer relation problems. Thus they are excellent test cases for the new multi-pair
programs.

Reduction of Euler sums. In Section 3, we mentioned recent research on multi-
ple zeta values, which play a key role in quantum field theory [13]. More generally,
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one may define Euler sums by [9]

ζ

(
s1, s2 · · · sr
σ1, σ2 · · · σr

)
:=

∑
k1>k2>···>kr>0

σk1
1

ks11

σk2
2

ks22

· · · σ
kr
r

ksrr
,

where σj = ±1 are signs and sj > 0 are integers. When all the signs are positive,
one has a multiple zeta value. Constants with alternating signs appear in problems
such as computation of the magnetic moment of the electron.

It was conjectured by the second author that the dimension of the space of Euler
sums with weight w :=

∑
j sj is the Fibonacci number Fw+1 = Fw + Fw−1, with

F1 = F2 = 1. Complete reductions of all Euler sums to a basis of size Fw+1 have
been obtained with PSLQ at weights w ≤ 9. At weights w = 10 and w = 11,
the conjecture has been stringently tested by application of PSLQ in more than
600 cases. At weight w = 11 such tests involve solving integer relations of size
n = F12 + 1 = 145. In a typical case, each of the 145 constants was computed to
more than 5,000 digit accuracy, and a working precision level of 5,000 digits was
employed in the three-level multi-pair program. A relation was detected at iteration
31,784. The minimum and maximum y vector entries at the point of detection were
9.515 × 10−4970 and 4.841 × 10−4615, respectively. The ratio of these two values
(i.e., the “confidence level”) is a tiny 1.965×10−355. Moreover, the ratio of the last
two recovered integer coefficients is precisely −11! = −39916800. These facts argue
strongly against the possibility that the recovered relation is a spurious numerical
artifact.

Bifurcation to a 16-cycle. A second large application that we shall mention here
is the problem of determining the polynomial satisfied by the constant
B4 = 3.564407268705 · · · , the fourth bifurcation point of the logistic map xk+1 =
rxk(1 − xk). In section 3 we noted that an 8-cycle begins at r = B3, where B3

satisfies a polynomial equation of degree 12. At r = B4, this gives way to 16-cycle.
It has been recognized that all Bk are algebraic, but nothing has been known
about the degrees or the coefficients of the polynomials satisfied by these constants
for k > 3. Some conjectural reasoning had suggested that B4 might satisfy a
240-degree polynomial, and some further analysis had suggested that the constant
α = −B4(B4 − 2) might satisfy a 120-degree polynomial. In order to test this
hypothesis, the three-level multi-pair program was applied to the 121-long vector
(1, α, α2, · · · , α120).

In this case the input data was computed to over 10,000 digit accuracy, and a
working precision of 9,500 digits was employed in the three-level multi-pair program.
A relation was detected at iteration 56,666. The minimum and maximum y vector
entries at the point of detection were 1.086 × 10−9428 and 3.931 × 10−8889, which
form the ratio 2.763 × 10−540. Further, the recovered integer coefficients descend
monotonically from 25730 ≈ 1.986 × 1072 to one. Again, these facts argue very
strongly against the solution being a spurious numerical artifact.

Reductions to multiple Clausen values. As a third application, consider sums
of the form

S(k) :=
∑
n>0

1
nk
(

2n
n

)
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Table 5. Solution for S(20) found with the three-level program

525990827847624469523748125835264000 S(20) =

−15024402006639545347476341466358480896000 πM(17, 2) + 614357286926025380403737810975588352000 πM(15, 4) − 33663412982247966049519880053456896000 πM(13, 6)

+204785762308675126801245936991862784000 πM(15, 2) ζ(2)− 11221137660749322016506626684485632000 πM(13, 4) ζ(2)− 7792456708853695844796268530892800000 πM(13, 2) ζ(4)

+65832426829545801661197345390290033253800417 ζ(20) − 1655150248639886171642409815524246277640960 ζ(17, 3) − 87407857867972646063318792204545819545600 ζ(17) ζ(3)

+239001490518032437117759318070284363571904 ζ(15, 5) + 6475497072134876357497140759587182503936 ζ(15, 3) ζ(2) − 11343388910891633971745524946475581811513600 ζ(15) ζ(5)

+76505310594054968968541596301477435326464 ζ(15) ζ(3) ζ(2) − 5427506872793330621343984298741119861120 ζ(14) ζ2(3) − 33725186900885181072542216636542494977280 ζ(13, 7)

−1079236594149043072329862323338197518336 ζ(13, 5) ζ(2) − 50485931801186079342010895425290633062400 ζ(13, 3) ζ(4)− 24430610879956273104022963748303711510447040 ζ(13) ζ(7)

+796530831594947602965411064203762718396416 ζ(13) ζ(5) ζ(2) − 48476322702940293939397763722185147340800 ζ(13) ζ(4) ζ(3)− 2459446142542578280833853163647795200 ζ(12) ζ(5, 3)

−7183917419981873615355846546110107008000 ζ(12) ζ(5) ζ(3) + 6554036738326690659991123688262156748800 ζ(11, 5) ζ(4) − 674581129238392279111385274785342054400 ζ(11, 3, 3, 3)

+155743130140661296228413518954716262400 ζ(11, 3, 3) ζ(3) + 13856996845301527891423305382301558784000 ζ(11, 3) ζ(6) + 339959536740516778440799419126460108800 ζ(11, 3) ζ2(3)

−35543027806069609369237745997797431835122560 ζ(11) ζ(9) + 1912599458053045671374932296869893271531520 ζ(11) ζ(7) ζ(2) − 8624509220693012537969847600322793702400 ζ(11) ζ(6) ζ(3)

−159424648200337153322748394462255349760000 ζ(11) ζ(5) ζ(4) − 386372041666595966843560058208603955200 ζ(11) ζ3(3) − 4526144521471219675886040639917260800 ζ(10) ζ(7, 3)

−4235684121072319605030836248657970626560 ζ(10) ζ(7) ζ(3) − 4274427562442524135198151261132645652480 ζ(10) ζ2(5) + 174910231480430088343102177690512998400 ζ(9, 5, 3, 3)

+23201851844071266080584141499247820800 ζ(9, 5, 3) ζ(3) − 5388965272775430297200443154254448394240 ζ(9, 5) ζ(6)− 96144480802344282256962346694615654400 ζ(9, 5) ζ2(3)

−564799665543005814719751486159037931520 ζ(9, 3, 5, 3) + 192405432086205157974414874044727296000 ζ(9, 3, 3, 3) ζ(2)− 437636171132005416578131168531552665600 ζ(9, 3, 3) ζ(5)

+82410232260928579141238186701396377600 ζ(9, 3, 3) ζ(3) ζ(2)− 56820309831551194167334052913378508800 ζ(9, 3) ζ(8) − 78290750182007491017999587160883200 ζ(9, 3) ζ(5, 3)

+173223299338939829293781467642177536000 ζ(9, 3) ζ(5) ζ(3)− 5389461879726322601463723747508224000 ζ(9, 3) ζ2(3) ζ(2) + 1395360857314382550903663041050280719202304 ζ2(9) ζ(2)

−1543454230261900138881951172107169382400 ζ(9) ζ(8) ζ(3)− 511939532590839950285975762448130830336000 ζ(9) ζ(7) ζ(4) + 89785104680812821069278191239404195328000 ζ(9) ζ(6) ζ(5)

−1309132727087420901925773113189990400 ζ(9) ζ(5, 3) ζ(3) + 1731994708600523066371520212640192716800 ζ(9) ζ(5) ζ2(3) − 1309132727087420901925773113189990400 ζ(9) ζ(3, 5, 3)

+49863866344508636305947249931911168000 ζ(9) ζ3(3) ζ(2) − 13797482183512283560940162429818580121600 ζ(8) ζ(7) ζ(5) + 20525248296522064841059215485763379200 ζ(8) ζ4(3)

+533245759266957435712480647773027635200 ζ(7, 7, 3, 3) + 39157503832984121716572521716488652800 ζ(7, 7, 3) ζ(3) + 223377519430349618539918571265503416320 ζ(7, 5, 5, 3)

−23700768289019448234404348103552000000 ζ(7, 5, 5) ζ(3)− 184392479550115407127835175133101465600 ζ(7, 5, 3, 5)− 192646077208687087875906081369587712000 ζ(7, 5, 3, 3) ζ(2)

+609805989326475901096307023020578611200 ζ(7, 5, 3) ζ(5)− 92883012339775157113672910718900633600 ζ(7, 5, 3) ζ(3) ζ(2) − 1083004232781819170351004903486259200 ζ(7, 3, 5, 3) ζ(2)

+642228810086780199757027863429120000 ζ(7, 3, 3) ζ(7) + 1715165074541342577478967041720320000 ζ(7, 3, 3) ζ(5) ζ(2) − 256615593289239779065106729533440000 ζ2(7, 3)

−117611319397120633884272025717964800 ζ(7, 3) ζ(5, 3) ζ(2) + 266618082812610684431891803668480000 ζ(7, 3) ζ2(5) + 68054784737327925282389654900302533120000 ζ2(7) ζ(6)

+1571090732393362601235892759430587238400 ζ2(7) ζ2(3) − 1016434130097344129482122765187153920 ζ(7) ζ(5, 5, 3)− 293590313182528091317498451853312000 ζ(7) ζ(5, 3) ζ(5)

+1133345755060987206065174842254330470400 ζ(7) ζ2(5) ζ(3) + 62419983317149231400720825830146048000 ζ(7) ζ(5) ζ2(3) ζ(2) + 101029201230288166627783621503025152000 ζ(7) ζ(4) ζ3(3)

−3927398181262262705777319339569971200 ζ(6) ζ(5, 3, 3, 3) + 88122944806249232884839801748733952000 ζ(6) ζ(5) ζ3(3) − 1963699090631131352888659669784985600 ζ(6) ζ(3, 5, 3) ζ(3)

+1239443914180202003982888789718597632 ζ(5, 5, 5, 3) ζ(2)− 2714534591307431519290045171362693120 ζ(5, 5, 3) ζ(5) ζ(2) − 7854796362524525411554638679139942400 ζ(5, 3, 3, 3, 3, 3)

+7854796362524525411554638679139942400 ζ(5, 3, 3, 3, 3) ζ(3) − 3927398181262262705777319339569971200 ζ(5, 3, 3, 3) ζ2(3) − 117611319397120633884272025717964800 ζ(5, 3) ζ2(5) ζ(2)

+327283181771855225481443278297497600 ζ(5, 3) ζ4(3) − 310534753804603441554226729609432166400 ζ4(5) + 46595661441120443976355182952120320000 ζ3(5) ζ(3) ζ(2)

+151543801845432249941675432254537728000 ζ2(5) ζ(4) ζ2(3) − 888340064809321326306774612521779200 ζ(5) ζ5(3) − 654566363543710450962886556594995200 ζ(3, 5, 3) ζ3(3)

+15584913417707391689592537061785600 ζ6(3) ζ(2) + 31338860750207444579474396657221632000 ζ(8) ζ(9, 3) + 18542546095738616293736744327577600000 ζ(5) ζ(3) ζ(9, 3)

+8537710593272460830117524829896704000 ζ2(3) ζ(2) ζ(9, 3) + 675871149225360968655980361248931840000 ζ(4) ζ(13, 3) + 254015007537749154775389871602030084096 ζ(2) ζ(15, 3)

−1692980876937872291412185599949615923200 ζ(17, 3)− 12361697397159077529157829551718400000 ζ(5) ζA(9, 3, 3) − 11383614124363281106823366439862272000 ζ(3) ζ(2) ζA(9, 3, 3)

+212786017863098254535236772683579392000 ζ(3) ζA(11, 3, 3) + 174238991699437976124847445508096000 ζ(2) ζ(6, 5, 4, 3) + 65242291818339575848332989300736000 ζ(8, 5, 4, 3)

+103014144976325646076315246264320000 ζ(6, 5, 6, 3)
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with, for example, S(4) = 17π4/3240. Researchers have sought analytic evaluations
of these constants for k > 4. As a result of PSLQ computations, the constants
{S(k) | k = 5 . . . 20} have been evaluated in terms of multiple zeta values and
multiple Clausen values of the form [11]

M(a, b) :=
∑

n1>n2>...>nb>0

sin(n1π/3)
na1

b∏
j=1

1
nj

with, for example,

S(9) = π

[
2M(7, 1) +

8
3
M(5, 3) +

8
9
ζ(2)M(5, 1)

]
− 13921

216
ζ(9)

+
6211
486

ζ(7)ζ(2) +
8101
648

ζ(6)ζ(3) +
331
18

ζ(5)ζ(4) − 8
9
ζ3(3).

The evaluation of the constant S(20) is a 118-dimensional integer relation problem,
which required 4800 digit arithmetic. In this case a relation was detected at iteration
27,531. The minimum and maximum y vector entry at detection were 7.170 ×
10−4755 and 3.513× 10−4375, which gives a confidence ratio of 2.040× 10−380. The
actual solution for this problem is shown in Table 5. In this table, irreducible
multiple zeta values such ζ(5, 3) :=

∑
j>k>0 j

−5k−3 occur. Moreover, there are
alternating Euler sums, such as ζ(9, 3) :=

∑
j>k>0(−1)jj−9 (−1)kk−3, where an

alternating sign is indicated by a bar. The presence of the latter results from
another discovery obtained with PSLQ [12], namely that some multiple zeta values
may be reduced to alternating Euler sums with fewer summations. Finally, the
combinations [11]

ζA(a, b, c) := ζ(a, b, c) + ζ(a, b, c) + ζ(a, b, c)

serve to reduce 5-fold multiple zeta values to 3-fold alternating Euler sums.
These three problems were first solved by the second author running a three-level

implementation of PSLQ on a DecAlpha machine at the Open University, with a
single 433 MHz processor, and 1 Gbyte of main memory. They were then used as
benchmarks for a multiprocessor version of the new three-level multi-pair program,
using the OpenMP programming model, on a 64-CPU SGI Origin-2000 system at
the Lawrence Berkeley Laboratory. Run times are given in Table 6. Timings on
48 processors show a speedup of 19.40 times on the Fibonacci conjecture problem,
22.44 times on the B4 problem, and 17.81 times on the S(20) problem. Given the
challenge of very limited concurrency inherent in this type of calculation, we are
encouraged by these figures.

A polylogarithm ladder calculation. The fourth calculation arose from the
discovery by the second author that

α630 − 1 =
(α315 − 1)(α210 − 1)(α126 − 1)2(α90 − 1)(α3 − 1)3(α2 − 1)5(α− 1)3

(α35 − 1)(α15 − 1)2(α14 − 1)2(α5 − 1)6α68
,

where

α1 = 1.176280818259917506544070338474035050693415806564 . . .
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Table 6. Timings for three large problems using the parallel
three-level multi-pair program

Fibonacci B4 S(20)
Processors Time Speedup Time Speedup Time Speedup
1 47788 1.00 90855 1.00 23208 1.00
2 24665 1.94 46134 1.97 11973 1.94
4 12945 3.69 23966 3.79 6305 3.68
8 7076 6.75 12924 7.03 3470 6.69
16 4180 11.43 7424 12.24 2126 10.92
32 2994 15.96 4865 18.68 1548 14.99
48 2463 19.40 4049 22.44 1303 17.81

is the largest real root of Lehmer’s remarkable polynomial [22]

0 = 1 + α− α3 − α4 − α5 − α6 − α7 + α9 + α10.

The above cyclotomic relation was first discovered by a PSLQ computation,
although subsequently proven by repeated substitution for α10. This result then
suggested that an integer relation may exist between a certain set of 125 related
polylogarithmic constants. In particular, it was conjectured that there may be
integers a, bj, ck such that

a ζ(17) =
8∑
j=0

bj π
2j(logα)17−2j +

∑
k∈D(S)

ck Li17(α−k),

where the 115 indices k in Lin(α−k) :=
∑
r>0 α

−kr/rn are drawn from the set,
D(S), of positive integers that divide at least one element of

S = {29, 47, 50, 52, 56, 57, 64, 74, 75, 76, 78, 84, 86, 92, 96,
98, 108, 110, 118, 124, 130, 132, 138, 144, 154, 160, 165,

175, 182, 186, 195, 204, 212, 240, 246, 270, 286, 360, 630}.
This relation was found using an implementation of the three-level multi-pair

algorithm, programmed in the Message Passing Interface (MPI) [20] programming
model, and run on the SGI/Cray T3E computer system at Lawrence Berkeley
Laboratory. In spite of the higher latency on this distributed memory system,
which presents a greater challenge for an efficient multiprocessor implementation,
we were able to achieve reasonable scaling efficiency with 64 CPUs. The actual run
employed 50,000 decimal digit arithmetic, and required approximately 44 hours
on 32 CPUs, completing after 236,713 iterations. The minimum and maximum
y entries at detection were 1.649 × 10−49718 and 1.363 × 10−36364, respectively,
which gives a confidence ratio less than 10−13354. The largest of the resulting
integer coefficients had 292 digits. We believe this to be the largest integer relation
computation ever performed.

9. Conclusion

We have accelerated the conventional implementation of the PSLQ algorithm in
three ways. First, we utilized a two-level and a three-level scheme, which permit
most if not all iterations to be performed using ordinary 64-bit double precision
arithmetic, and updating the multiprecision arrays only as needed. This resulted
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in a speedup of up to 65 times over the straightforward one-level program. Sec-
ondly, we developed a new integer relation algorithm, a variant of PSLQ that
we have termed the “multi-pair” algorithm. We also demonstrated two-level and
three-level implementations of this new algorithm. These techniques resulted in an
additional speedup of up to 22%, comparing the three-level multi-pair program to
the three-level PSLQ program. Finally, we showed how this new algorithm, unlike
PSLQ, is reasonably well suited for parallel processing. We demonstrated a parallel
three-level implementation of the multi-pair algorithm that achieved an additional
speedup of up to 22 times.

We have also applied these programs to four large integer relation problems,
obtaining results that were not previously known in the literature and which would
have required years of computation using more conventional means. We believe that
these demonstrations open up a novel way of doing pure and applied mathematics.
We are confident that many more discoveries can be made in this manner.

Added after posting

We were informed of an error in the posted version of this paper by Steven Finch.
In the subsection titled “Bifurcation to a 16-cycle” located in Section 8, the constant
B4 = 3.564407268705 · · · , should be replaced by B4 = 3.564407266095 · · · .
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