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CENTERED L2-DISCREPANCY OF RANDOM SAMPLING
AND LATIN HYPERCUBE DESIGN,

AND CONSTRUCTION OF UNIFORM DESIGNS

KAI-TAI FANG, CHANG-XING MA, AND PETER WINKER

Abstract. In this paper properties and construction of designs under a cen-
tered version of the L2-discrepancy are analyzed. The theoretic expectation
and variance of this discrepancy are derived for random designs and Latin
hypercube designs. The expectation and variance of Latin hypercube designs
are significantly lower than that of random designs. While in dimension one
the unique uniform design is also a set of equidistant points, low-discrepancy
designs in higher dimension have to be generated by explicit optimization. Op-
timization is performed using the threshold accepting heuristic which produces
low discrepancy designs compared to theoretic expectation and variance.

1. Introduction

Many problems arising in industry, statistics, physics, and finance require mul-
tivariate integration, the canonical form of which can be expressed as

I(f) =
∫
Cs
f(x)dx,(1.1)

where Cs = [0, 1)s and f(x) = f(x1, · · · , xs). The sample mean method has been
recommended to give an approximation to I(f) by

Î(f,P) =
1
n

n∑
i=1

f(xi),(1.2)

where P = {x1, · · · ,xn} is a set of points on Cs. If x1, · · · ,xn are i.i.d. uniformly
distributed on Cs, the set is called simple random sampling or simple random
design (SRD) and is denoted by Rn,s. It is known that Î(f,Rn,s) is unbiased
and has an asymptotic variance O(n−1). This rate of convergence is too slow for
the applications. Therefore, McKay, Beckman and Conover [MBC79] proposed the
so-called Latin hypercube design (LHD), which also provides an unbiased estimate
Î(f,P) with smaller asymptotic variance than that of SRD. LHD has been widely
used in conducting computer experiments. A systematic study on LHD and various
modified versions of LHD that can significantly reduce the asymptotic variance of
LHD is given by [Owen92], [Owen94], [Owen95], [KO96], and [Tang93]. In this
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article, we only consider a special case of LHD, where x1, · · · ,xn are i.i.d. uniformly
distributed on the lattice set

T =
{
x = (x1, . . . , xn)

∣∣∣∣ xi = 2ai−1
2n , i = 1, . . . , n,

(a1, . . . , an) is a permutation of {1, . . . , n}

}
.

We denote this LHD by Ln,s.
There exist different measures to assess the performance of various designs on

Cs. The Koksma-Hlawka inequality gives an upper bound for the approximation
error

|I(f)− Î(f,P)| ≤ D(P)V (f),(1.3)

where D(P) is the discrepancy of P that will be defined in (1.4), and V (f) is a
measure of the variation of f [Nie92]. In fact, we can find a number of other pairs
{D(P), V (f)} satisfying the Koksma-Hlawka inequality, where D(P) is a measure
of nonuniformity of P and V (f) is a measure of variation of f . An excellent study
on this topic is given by [Hic98]. For SRD, D(Rn,s) = O(n−1/2) as n → ∞. The
determination of the order of convergence of D(P) for LHD P is still an open
problem. It will be answered for the centered L2-discrepancy in this paper.

Let P = {x1, · · · ,xn} be a set of n points on Cs = [0, 1)s. The star Lp-
discrepancy (Lp-discrepancy for simplicity) has been widely used in quasi-Monte
Carlo methods (or number-theoretic methods) as well as in uniform design theory
(cf. [Nie92] and [FWa94]). It is defined as

Dp(P) =
{∫

Cs

∣∣∣∣N(P , [0,x))
n

−Vol([0,x))
∣∣∣∣p dx}1/p

,(1.4)

where [0,x) denotes the interval [0, x1) × · · · × [0, xs), N(P , [0,x)) the number
of points of P falling in [0,x), and Vol(A) the volume of A. Among the Lp-
discrepancies, the D2(P) and D(P) = D∞(P) (called discrepancy for short) are
used most frequently.

Hickernell [Hic98] pointed out some weakness of the Lp-discrepancy and pro-
posed several modified Lp-discrepancies, among which the centered L2-discrepancy
(CL2) seems most interesting. Ma and Fang [MF98] and Fang and Mukerjee [FM00]
found some connections between CL2 and orthogonality, minimum aberration, and
confounding for a certain class of designs. The centered Lp-discrepancy is a modi-
fication of the Lp-discrepancy by the requirement that it becomes invariant under
reflections of P about any plane xj = 0.5. It is defined by

(Dp(P))p =
∑
u6=∅

∫
Cu

∣∣∣∣N(Pu, Jxu)
n

−Vol(Jxu)
∣∣∣∣p du,(1.5)

where u is a nonempty subset of the set of coordinate indices S = {1, · · · , s},
|u| denotes the cardinality of u, Cu is the |u|-dimensional unit cube involving the
coordinates in u, Jx is an s-dimensional interval uniquely determined by x, Pu is
the projection of P to Cu, and Jxu is the projection of Jx on Cu. Let As denote
the set of 2s vertices of the cube Cs and α = (a1, . . . , as) ∈ As be the closest one
to x. Define

Jx = {y ∈ Cs | min(aj , xj) ≤ yj < max(aj , xj), for 1 ≤ j ≤ s}.
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For CL2 Hickernell [Hic98] derived an analytical expression

CL2(P)2 =
(

13
12

)s
− 2
n

n∑
k=1

s∏
j=1

(1 +
1
2
|xkj − 0.5| − 1

2
|xkj − 0.5|2)

+
1
n2

n∑
k=1

n∑
j=1

s∏
i=1

[
1 +

1
2
|xki − 0.5|+ 1

2
|xji − 0.5| − 1

2
|xki − xji|

]
,(1.6)

where xk = (xk1, · · · , xks) ∈ P . From the definition (1.5) the centered Lp-
discrepancy takes into account not only the uniformity of P over Cs, but also
uniformity of all the projections of P over Cu.

In Sections 2 and 3 we shall derive the expectation and variance for square
CL2 of simple random designs Rn,s and Latin hypercube designs Ln,s, and give
comparisons of these statistics. It will be shown that the LHD has much lower
expected CL2-value and variance than SRD. Our results are consistent with the
results of comparing variance of Î(f,P) between SRD and LHD [Owen92]. Note
that the LHD Ln,s can be defined in terms of U-type designs.

Definition 1.1. A U-type design Un,qs is an n× s matrix U = (uij) of which each
column has q entries 1, . . . , q appearing equally often. The induced matrix of U ,
denoted by XU = (xij), is defined by xij = (uij − 0.5)/q. When q = n, we use the
notation Un,s instead of Un,ns . Let Un,qs and Un,s be the set of all Un,qs and the
set of all Un,s, respectively.

Any induced matrix XU defined in Definition 1.1 corresponds to a set of n
points on Cs, denoted by PU . Each row of XU corresponds to a point of PU on
Cs. The CL2(U) is defined as CL2(PU ). The LHD Ln,s is a design XU , where
U ∈ Un,s. The design XU , where U ∈ Un,qs , can be considered as an extension of
LHD and is denoted by Ln,qs . In Sections 2 and 3 we also derive the expectation
and variance of CL2(Ln,qs)2.

The U-type design is the basis of the uniform design. The latter is one of
“space filling” designs (Cheng and Li (1995) [CL95], and Koehler and Owen (1996)
[KO96]). The uniform design allocates experimental points uniformly scattered on
the domain in the sense of low-discrepancy [FWa94]. Any discrepancy mentioned
before can be used as a measure of nonuniformity. In the past, most uniform designs
are obtained in terms of the discrepancy and the L2-discrepancy. Fang and Winker
[FW98] found that both discrepancy and L2-discrepancy are not suitable mea-
sures of nonuniformity for searching the UD, since the discrepancy is not sensitive
enough for identifying different designs while the L2-discrepancy ignores differences
|N(P,[0,x))

n −Vol([0,x))|2 on any low-dimensional subspace. Therefore, they recom-
mend the use of the three modified L2-discrepancies proposed by [Hic98]. In this
paper we concentrate on the centered L2-discrepancy for construction of uniform
designs.

Let Pn be the class of sets of n points on Cs. A set P∗ ∈ Pn is called a uniform
design if it has the smallest CL2-value over Pn, i.e.,

CL2(P∗) = min
P∈Pn

CL2(P).(1.7)

In Section 4 we propose a heuristic optimization algorithm for the construction
of uniform designs based on U-type designs under CL2. The results obtained in
Sections 2 and 3 provide information which can be used to reduce the computing
time of searching uniform designs and low-discrepancy designs.
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The paper is organized as follows. The expectation and variance of CL2(Rn,s)
and CL2(Ln,qs) are derived in Sections 2 and 3. Part of the proofs are put into
an appendix. Some numerical comparisons of these expectations and variances are
also given. In Section 4 we discuss how to construct uniform designs. An algorithm
based on threshold accepting is proposed and some modifications are suggested.
The performance of this algorithm will be discussed in Section 5, which also provides
numerical results for low-discrepancy designs. The last section contains concluding
remarks.

2. The expectation of square CL2 of Rn,s and Ln,s
In this section we derive the expectation of square centered L2-discrepancy for

simple random designs Rn,s and Latin hypercube designs Ln,qs . Their difference is
also given.

Theorem 2.1. The average square centered L2-discrepancy of the random design
Rn,s is given by

E(CL2(Rn,s)2) =
[(

5
4

)s
−
(

13
12

)s]
/n.(2.1)

The average square centered L2-discrepancy of Latin hypercube design Ln,qs is given
by

E(CL2(Ln,qs)2) = (13
12 )s−2(13

12−
1

12q2 )s + 1
n (5

4−
1

4q2 )s +(1− 1
n )(13

12 + n−q2

6q2(n−1)−
1

4q2 )s, q odd,

(13
12 )s − 2(13

12 + 1
24q2 )s + 1

n (5
4 )s + (1 − 1

n )(13
12 + n−q2

6q2(n−1) )s, q even.

(2.2)

Proof. From formula (1.6) and the fact that x1, · · · ,xn are i.i.d. uniformly dis-
tributed on Cs, we have

E(CL2(Rn,s)2) = (
13
12

)s − 2
n

n∑
k=1

s∏
j=1

E(1 +
1
2
|xkj − 0.5| − 1

2
|xkj − 0.5|2)

+
1
n2

n∑
k=1

s∏
i=1

E(1 + |xki − 0.5|)

+
2
n2

n∑
k=1

k−1∑
j=1

s∏
i=1

E

[
1 +

1
2
|xki − 0.5|+ 1

2
|xji − 0.5| − 1

2
|xki − xji|

]

= (
13
12

)s − 2
(

1 +
∫ 1

0

(1 +
1
2
|x− 0.5| − 1

2
|x− 0.5|2)dx

)s
+

1
n

(∫ 1

0

(1 + |x− 0.5|)dx
)s

+
2
n2

˙n(n− 1)
2

(∫ 1

0

∫ 1

0

(1 +
1
2
|x− 0.5|+ 1

2
|y − 0.5| − 1

2
|x− y|)dxdy

)s
=

[(
5
4

)s
−
(

13
12

)s]
/n.
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Thus, equation (2.1) is proved. For giving a proof of formula (2.2) we need the
following lemma. Its proof is straightforward and is omitted.

Lemma 2.2.

1
q

q∑
i=1

|2i− 1− q
2q

| =
{ 1

4 −
1

4q2 , q is odd,
1
4 , q is even;

1
q

q∑
i=1

(
2i− 1− q

2q
)2 =

1
12
− 1

12q2
;

1
q

q∑
j=1

q∑
k=1

|j − k|
q

=
q2 − 1

3q
.

Now, we come back to prove formula (2.2).

E(CL2(Ln,qs2) = (
13
12

)s − 2
n

n∑
k=1

s∏
j=1

E(1 +
1
2
|xkj − 0.5| − 1

2
|xkj − 0.5|2)

+
1
n2

n∑
k=1

s∏
i=1

E(1 + |xki − 0.5|)

+
2
n2

n∑
k=1

k−1∑
j=1

s∏
i=1

E

[
1 +

1
2
|xki − 0.5|+ 1

2
|xji − 0.5| − 1

2
|xki − xji|

]

= (
13
12

)s − 2

(
1
n

q∑
k=1

(1 +
1
2
|2k − 1

2q
− 0.5| − 1

2
|2k − 1

2q
− 0.5|2)

)s

+
1
n

(
1
q

q∑
k=1

(1 + |2k − 1
2q

− 0.5|)
)s

+
2
n2

n(n− 1)
2

(
E(1 +

1
2
|xki − 0.5|+ 1

2
|xji − 0.5| − 1

2
|xki − xji|)

)s
.

Note that

E(1 +
1
2
|xki − 0.5|+ 1

2
|xji − 0.5| − 1

2
|xki − xji|)

=
q∑

k=1

q∑
j=1

(1 +
1
2
|2k − 1

2q
− 0.5|+ 1

2
|2j − 1

2q
− 0.5| − 1

2
|k − j
q
|)P (k, j),

where P (k, j) is the probability that the first two elements of a specific column
of U , where U is uniformly distributed on Un,qs , are k and j, respectively. Let
r = n/q be the duplicate number of each level in each column of U . Obviously, we
have P (k, j) = r2

n(n−1) for k 6= j, and P (k, k) = r(r−1)
n(n−1) . Put these results into the

above formula and (2.2) is proved.
From this theorem we immediately have the following corollaries.

Corollary 1. We have

E(CL2(Ln,qs)2) = O(n−1) +O(q−2)

as q →∞ and n = qs →∞.
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Corollary 2. The average square discrepancy of Ln,s is

E(CL2(Ln,s)2) = (13
12 )s−2(13

12−
1

12n2 )s + 1
n (5

4−
1

4n2 )s +(1− 1
n )(13

12−
1

6n−
1

4n2 )s, n odd,

(13
12 )s − 2(13

12 + 1
24n2 )s + 1

n (5
4 )s + (1− 1

n )(13
12 −

1
6n )s, n even.

(2.3)

From (2.1) and (2.3) we can find the difference of average square CL2-value
between simple random designs Rn,s and Latin hypercube designs Ln,s.
Corollary 3.

E(CL2(Rn,s))2 − E(CL2(Ln,s))2

=
(

13
12

)s−1
s

6n
−
(

13
12

)s−1 2s2 + 11s
156n2

+O(n−3),
(2.4)

in particular, when s = 1,

E(CL2(Rn,1))2 − E(CL2(Ln,1))2 =
1

6n
− 1

12n2
.

This corollary shows that LHDs have a lower expectation of square CL2-value
than that of simple random designs. This result is consistent with the result that
the Latin hypercube designs beat random designs in the sense of small-variance
[Owen92]. It is not easy to find a sharp upper bound for CL2(PU )2 over U ∈ Un,qs .
The following example gives a bad U-type design in the sense of uniformity. There-
fore, its CL2 can be considered as an upper bound of CL2(PU ), U ∈ Un,qs .

Example 2.3. The CL2 of the U-type design P∗ = {(2i−1
2n , . . . , 2i−1

2n ), i = 1, . . . , n}
in [0, 1]s, where the n points are on a line, is

(CL2(P∗))2 =
13
12
− 2
n

n∑
k=1

(1 + |2k − 1− n
4n

| − |2k − 1− n
2n

|2/2)s

+
1
n2

n∑
k=1

n∑
j=1

(1 + |2k − 1
4n

|+ |2j − 1
4n

| − |k − j|
2

)s = O(1).(2.5)

For s = 2, 3 and 4, formula (2.5) can be simplified:

(CL2(P∗))2 =


1
90 + 1

240 ( 50
n2 − 11

n4 ), s = 2,

2321n6+2390n4−10206n2+360
60480n6 , s = 3,

64427n8+491400n6−322056n4+37080n2+3024
725760n8 , s = 4.

(2.6)

3. The variance of square CL2 of Rn,s and Ln,s
We have calculated the expectation of CL2(R)2 and CL2(Ln,qs)2 in the previous

section. In this section, by a similar, but more complicated procedure, we derive
the variance of square CL2 for the random design and Latin hypercube design. As
the related proof is too long, we put it into an appendix (found at the end of this
article).
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Theorem 3.1. For the random design Rn,s we obtain

Var(CL2(Rn,s)2) =
2
n2

[(
19
16

)s
− 2

(
47
40

)s
+
(

169
144

)s]
+

1
n3

[(
19
12

)s
−
(

25
16

)s
− 2

(
19
16

)s
+4
(

65
48

)s
− 4

(
87
64

)s
+ 8

(
47
40

)s
− 6

(
169
144

)s]
.(3.1)

For the Latin hypercube design Ln,qs we find

Var(CL2(Ln,qs)2) = −
[
E(CL2(Ln,qs))2 −

(
13
12

)s]2

+
4
n

(As1 + (n− 1)As2),

− 4
n2

(Bs1 + 2(n− 1)Bs2 + (n− 1)Bs3 + (n− 1)(n− 2)Bs4)

+
1
n3

(Cs1 + 4(n− 1)Cs2 + (n− 1)Cs3 + 2(n− 1)Cs4 + 2(n− 1)(n− 2)Cs5

+4(n− 1)(n− 2)Cs6 + (n− 1)(n− 2)(n− 3)Cs7),(3.2)

where δq = 1 for odd q and 0 for even q, and

A1 =
47
40

+
7 + 80q2

960q4
− δq

1 + 16q2

64q4
,

A2 =
169
144
− 21 + 240q2 + 4q4 − 5n(1 + 52q2)

2880(−1 + n)q4
+ δq

3 + n+ 48q2 − 52nq2

192(−1 + n)q4
,

B1 =
87
64

+
1

32q2
− δq

1 + 24q2

64q4
,

B2 =
47
40

+
4n− 10q2 + 70nq2 − 59q4

320(−1 + n)q4
+ δq

3 + 72q2 − 2n(2 + 37q2)
192(−1 + n)q4

,

B3 =
65
48
− 6− 10n+ q2

192(−1 + n)q2
+ δq

3 + 72q2 + n(4− 82q2)
192(−1 + n)q4

,

B4 =
169
144

+
5n2(2 + 65q2) + 5q2(18 + 107q2)− 3n(12 + 235q2 + 88q4)

1440(−2 + n)(−1 + n)q4

+ δq
−3 + 2n− 72q2 + 115nq2 − 39n2q2

96(−2 + n)(−1 + n)q4
,

C1 =
19
12
− 1

12q2
− δq

1
2q2

,

C2 =
87
64

+
16 + 36n− 43q2

192(−1 + n)q2
+ δq

32q2 − n(1 + 34q2)
64(−1 + n)q4

,

C3 =
25
16
− −4 + q2

48(−1 + n)q2
+ δq

n+ 8q2 − 10nq2

16(−1 + n)q4
,

C4 =
19
16

+
4 + 18n− 19q2

48(−1 + n)q2
+ δq

8q2 − n(1 + 8q2)
16(−1 + n)q4

,
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C5 =
65
48

+
−16 + 20n2 + 44q2 − 3n(12 + 7q2)

96(−2 + n)(−1 + n)q2

+ δq
−96q2 + n2(2 − 56q2) + 3n(−1 + 54q2)

96(−2 + n)(−1 + n)q4
,

C6 =
47
40

+
8q2(−10 + 49q2)− 3nq2(120 + 61q2) + n2(16 + 170q2)

480(−2 + n)(−1 + n)q4

+ δq
−96q2 − 2n2(2 + 25q2) + 3n(3 + 50q2)

96(−2 + n)(−1 + n)q4
,

C7 =
15q2(12−59q2)+10n3(1+13q2)+5nq2(162+137q2)−12n2(4+55q2+11q4)

360(−3 + n)(−2 + n)(−1 + n)q4

− δq
48q2 − 3n(1 + 26q2) + n2(1 + 26q2)

48(−2 + n)(−1 + n)q4
+

169
144

.

Corollary 4. The variance of square CL2(Ln,s) is given by (3.2) with the following
Ai’s, Bj’s and Ck’s.

A1 =
47
40

+
7 + 80n2

960n4
− δn

1 + 16n2

64n4
,

A2 =
169
144

+
21 + 16n+ 256n2 − 4n3

2880n4
− δn

3 + 4n+ 52n2

192n4
,

B1 =
87
64

+
1

32n2
− δn

1 + 24n2

64n4
,

B2 =
47
40

+
4− 10n+ 70n2 − 59n3

320(−1 + n)n3
+ δn

3− 4n+ 72n2 − 74n3

192(−1 + n)n4
,

B3 =
65
48
− 6− 10n+ n2

192(−1 + n)n2
+ δn

3 + 4n+ 72n2 − 82n3

192(−1 + n)n4
,

B4 =
169
144

+
18− 41n+ 332n2 − 264n3

1440(−1 + n)n3
+ δn

−3 + 2n− 72n2 + 115n3 − 39n4

96(−2 + n)(−1 + n)n4
,

C1 =
19
12
− 1

12n2
− δn

1
2n2

,

C2 =
87
64

+
16 + 36n− 43n2

192(−1 + n)n2
+ δn

−1 + 32n− 34n2

64(−1 + n)n3
,

C3 =
25
16
− −4 + n2

48(−1 + n)n2
+ δn

1 + 8n− 10n2

16(−1 + n)n3
,

C4 =
19
16

+
4 + 18n− 19n2

48(−1 + n)n2
+ δn

−1 + 8n− 8n2

16(−1 + n)n3
,

C5 =
65
48

+
8 + 22n− 21n2

96(−1 + n)n2
− δn

3 + 94n− 162n2 + 56n3

96(−2 + n)(−1 + n)n3
,

C6 =
47
40

+
32 + 196n− 183n2

480(−1 + n)n2
+ δn

9− 100n+ 150n2 − 50n3

96(−2 + n)(−1 + n)n3
,

C7 =
169
144

+
22 + 155n− 132n2

360(−1 + n)n2
+ δn

3− 49n+ 78n2 − 26n3

48(−2 + n)(−1 + n)n3
.
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Figure 1. Comparison of variance

Formulas (3.1) and (3.2) are too complicated for an intuitive understanding.
Therefore, Figure 1 gives numerical comparisons of variance between SRD and
LHD Ln,s for s = 2, . . . , 13, where “points” is for SRD and “stars” for LHD. The
plots show the variance against the number of runs n on a double logarithmic scale.
It becomes obvious that LHD Ln,s has much smaller variance of square CL2 than
SRD.

The cases of s = 2 and 3 are particularly interesting in practice. For these cases
again much simpler formulas can be obtained.

Example 3.2. (a) s = 2
E(CL2(Ln,q2)2) and Var(CL2(Ln,q2)2) for q even are

5− 34q2+4q4+n(−1+26q2)

144(−1+n)q4
and

(−1+q2)2(−225q4+2n3(7+2q2)2+6n(−4+62q2+41q4)− n2(124+328q2 +79q4))

32400(−3+n)(−2+n)(−1+n)2nq8
,

respectively. E(CL2(Ln,q2)2) and Var(CL2(Ln,q2)2) for q odd are

1− 68q2 + 8q4 + n(7 + 52q2)

288(−1 + n)q4
and

(−1 + q2)2(−225q4 + 2n3(7 + 2q2)2 + 6n(−4 + 62q2 + 41q4)− n2(124 + 328q2 + 79q4))

32400(−3 + n)(−2 + n)(−1 + n)2nq8
,

respectively.
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(b) s = 2 and q = n
E(CL2(Ln,2)2) and Var(CL2(Ln,2)2) for n even are

−5− 4n+ 30n2 + 4n3

144n4
and

(−1 + n)(1 + 8n)(2 + n− n2)2

32400n8
,

respectively. E(CL2(Ln,2)2) and Var(CL2(Ln,2)2) for n odd are

−1− 8n+ 60n2 + 8n3

288n4
and

(−2 + n)2(1 + n)2(−1− 7n+ 8n2)
32400n8

,

respectively.
(c) s = 3 and q = n
E(CL2(Ln,3)2) and Var(CL2(Ln,3)2) for n even are

29 + 36n− 223n2 − 200n3 + 663n4 + 164n5

1728n6
and

1
2985984000(−1 + n)2n12

(−6016 + 3968n− 67904n2 + 607296n3− 1337752n4

−17983064n5 + 28836416n6 + 19647736n7− 48223786n8

+10671771n9 + 18977848n10− 13190707n11 + 2610944n12),

respectively. E(CL2(Ln,3)2) and Var(CL2(Ln,3)2) for n odd are

−1− 46n2 − 656n3 + 2652n4 + 656n5

6912n6
and

(1 + n)2

2985984000(−2 + n)2n12
(229241 + 1266861n− 3213532n2

+19720300n3− 48811906n4− 423698n5 + 119671988n6

−153693140n7 + 86277425n8− 23634483n9 + 2610944n10),

respectively.

4. Searching uniform designs under CL2

In this section we discuss the construction of uniform designs and low-discrepancy
designs for the centered L2-discrepancy. When s = 1, the following theorem shows
that the set of equidistant points is a unique uniform design on [0, 1]. This result
is consistent with the findings for the star discrepancy [FWa94, Example 1.2].

Theorem 4.1. When s = 1, the unique uniform design on [0, 1] under CL2 is{
2i− 1

2n
, i = 1, . . . , n

}
,

and its CL2
2 is 1

12n2 .



THE CL2 OF RANDOM SAMPLING AND LATIN HYPERCUBE DESIGN 285

Proof. Let P = {x1, x2, . . . , xn} be a set in [0, 1]. Without loss of generality, we
suppose x1 ≤ x2 ≤ · · · ≤ xn and let yk = xk − 1/2, k = 1, 2, . . . , n.

(CL2(P))2 =
13
12
− 2
n

n∑
k=1

(1 +
|yk|
2
− |yk|

2

2
)

+
1
n2

n∑
k=1

n∑
j=1

(1 +
|yk|
2

+
|yj |
2
− |yk − yj |

2
)

=
13
12

+
1
n2

n∑
k=1

n∑
j=1

(1 +
|yk|
2

+
|yj |
2
− |yk − yj |

2

−(1 +
|yk|
2
− |yk|

2

2
)− (1 +

|yj |
2
− |yj|

2

2
))

=
1
12

+
1
n

(
n∑
k=1

y2
k −

1
n

∑
j>k

(yk − yj))

=
1
12

+
1
n

n∑
k=1

(yk −
2k − 1− n

2n
)2 − 1

n

n∑
k=1

(
2k − 1− n

2n
)2

=
1

12n2
+

1
n

n∑
k=1

(yk −
2k − 1− n

2n
)2.

(CL2(P))2 achieves its minimum if and only if yk = 2k−1−n
2n , i.e., if and only if

xk = 2k−1
2n , k = 1, . . . , n. The proof is completed.

Clearly, the solution of (1.7) is not unique when s > 1. To search uniform designs
for given n and s(s > 1) is probably an NP hard problem when n and s increase.
Furthermore, even for moderate values of n and s, it is an almost intractable prob-
lem to find a uniform design, because the domain is too large. Therefore, Fang
and Hickernell [FH95] suggested considering only a subset of designs, the so-called
U-type designs, as the domain for searching uniform designs. U-type designs were
defined in Section 1. If one chooses CL2 as measure of nonuniformity, a design
U∗ ∈ Un,qs is called U-uniform design, denoted by Un(qs), if it has the smallest
CL2-value over Un,qs .

Figure 2 gives plots of uniform designs and U-uniform designs for s = 2 and
n = 2, . . . , 9. These uniform designs are obtained by the Nelder-Mead simplex
method, which in dimension two can be directly applied for n ≤ 6. For n = 7, 8, 9,

0.062283 0.029578 0.016262 0.011051 0.0076276 0.0058239 0.0044751 0.0035828

0.059886 0.028844 0.016185 0.010937 0.007612 0.0057821 0.0044558 0.0035755

Figure 2. Plots of uniform designs and U-uniform designs
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the U-uniform designs have to be used as initial values in order to obtain conver-
gence to a low-discrepancy design. Thus, this method is not generally applicable,
i.e., for dimension s > 2 or large n. The upper plots on Figure 2 are of U-uniform
designs and the lower plots are of uniform designs. The CL2-value of each design is
put on the top of its plot. Obviously, U-uniform designs are very close to their corre-
sponding uniform designs. However, when n and s increase, designs obtained by the
application of the simplex method often exhibit poor uniformity, while U-uniform
designs or U-type designs with low discrepancy can still be obtained. Therefore, we
shall construct only U-uniform designs in this paper and call them uniform designs
for simplicity throughout the rest of the paper.

Winker and Fang [WF98] applied an implementation of the threshold accept-
ing heuristic to search uniform designs under the discrepancy D defined in (1.4).
They found a number of uniform designs and very low-discrepancy designs. In this
section, we use a similar implementation for searching uniform designs under CL2.
We also discuss some modifications of the algorithm for improving the results.

As the application of the threshold accepting heuristic to uniform design prob-
lems is described in some more detail in [WF97], [FW98], and [WF98], we restrict
ourselves to a sketch of the main ideas. Threshold accepting tackles the optimiza-
tion problem given in (1.7) restricted to U-uniform designs by a refined local search
technique. It starts with some arbitrarily chosen U-type design P ∈ Un,qs . Then,
in each iteration step the CL2

2 of the current design is compared with that of some
neighbouring design. If the new design is better than the current one, it becomes
the new candidate solution. The same holds true if it is not much worse. The
threshold up to which a worsening is accepted is defined by the threshold sequence
which decreases to zero as the algorithm proceeds (a data driven method for the
generation of this threshold sequence is described in [WF97]). If the new design
is not accepted based on this criterion, a new trial design is selected in the neigh-
bourhood of the current design.

The final crucial step of the implementation of threshold accepting consists in
the definition of neighbourhoods on the set Un,qs . The approach followed in [WF98]
consisted in selecting one or several columns of the induced matrix and exchanging
randomly two elements in each of the selected columns. Thus, it is guaranteed
that the new candidate design is also a U-type design. A first modification of
this neighbourhood concept restricts the exchange within a column to the k next
neighbours, i.e., i can be exchanged only with i−k, . . . , i+k mod q. This restriction
was already used in [WF98].

For the purposes of this paper we tested yet another modification, which uses
much larger neighbourhoods and is introduced as a ruin-and-recreate approach by
[SSSD99]. Instead of exchanging a small number of elements, a complete submatrix
of the current design is first eliminated and then reconstructed. The reconstruc-
tion step consists in testing all possible permutations of the deleted elements in
one column and selecting the permutation which results in the smallest discrep-
ancy together with the unchanged part of the design and the already reconstructed
columns. There are still some open questions of how to integrate ruin-and-recreate
steps in the most efficient way in the refined local search strategy of threshold
accepting. Hence, it is not too surprising that at the current stage this modifica-
tion rarely outperforms our standard threshold accepting method for the instances
analyzed in this section. However, for larger instances, it may exhibit significant
improvements which will be assessed in further research.
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Given the high complexity of finding uniform designs, in general, it cannot be
guaranteed that some threshold accepting implementation will find a uniform de-
sign using a reasonable amount of computing resources, although an asymptotic
convergence property was proven by [AK91]. Thus, our standard proceeding is to
use a limited number of iterations of the algorithm and to assume that the result-
ing design is a low-discrepancy, if not uniform design. In fact, for the case s = 2,
where uniform designs under the discrepancy have been obtained by [LF95], our
implementation could reproduce these results.

The results on the theoretic expectation and variance of CL2 for LHD provided
in the previous sections allow for an alternative approach. Instead of searching
low-discrepancy designs on an absolute scale, we can do so relative to the theoretic
expectation and variance. Then, the threshold accepting implementation is run
until a design is obtained which has CL2 lower than the expected value for LHD
or lower than the expected value for LHD minus some multiple c of its standard
deviation, i.e., E(CL2(Ln,qs)2) − c

√
Var(CL2(Ln,qs)2). The results presented in

the next section indicate that c can be chosen from 1 to about 8 as s increases.
Finally, we can contrast the designs optimized with regard to CL2 with those

obtained by [WF98] for the discrepancy.

5. Remarks on new uniform designs

Using the methods described in the previous section, we have obtained a number
of low-discrepancy U-type designs under CL2. Although the modified threshold
accepting algorithm is powerful, there can be no guarantee that these designs have
minimum CL2 in the class Un,qs or Un,s. Therefore, we have to check whether these
designs have low CL2-value from several angles.
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Figure 3. The comparisons among uniform designs by optimiza-
tion (denoted by point), random designs (by star) and random
U-type designs (by x-mark).
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Figure 4. Centered L2 for designs obtained by optimization
(circles) and designs from [WF98] (stars)
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Figure 5. The plots of c against n for s = 2–13

Firstly, Figure 3 gives plots of CL2(P)2 against the number of runs n on a double
logarithmic scale. The values for the designs obtained by explicit optimization us-
ing threshold accepting are marked by a “point”; a “star” denotes the expectation
for simple random designs, and an “x-mark” the expectation for Latin hypercube
designs. The plots of each design for given s are close to linear lines. The slope
of the lines, denoted by −β, stands for the convergence rate n−β of E(CL2(P)).
From Theorem 2.1, the slope of the lines for simple random designs and for Latin
hypercube designs should be close to −0.5. The slope of the lines for the optimized
U-type designs, which serve as upper bound for the uniform designs, can be esti-
mated by least squares. They vary between −0.9563 and −0.6436 for 2 ≤ s ≤ 13.
The slope increases as the dimension s increases.

Secondly, when s = 2, [LF95] proposed an algorithm by which one can find
uniform designs with minimum discrepancy. These designs should also be good
designs in the sense of low-CL2. Figure 4 plots the square CL2 against n for
these designs (stars) and the designs obtained in this paper (circles). It shows that
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Figure 6. Uniform design

the new designs have lower CL2 than the designs obtained by [LF95]. The same
comparison can be performed with regard to the low-discrepancy designs obtained
by [WF98], which coincide with the designs of [LF95] in dimension s = 2 for n ≤ 23.
The results of the comparison are also shown in Figure 4.

How can we assess the new uniform designs for s ≥ 2 to have a low CL2? Let

c =
E(CL2(Ln,s))2 − (CL2(P∗n,s))2√

Var((CL2(Ln,s))2)
,

where P∗n,s is the new design for given n and s. Figure 5 provides plots of c against
n for s = 2 to s = 13 and n = s + 1 to 30. It shows that c increases from 1.25
to 8.75 when n or/and s increase. We find that the distribution of square CL2 of
Ln,s can be approximated by a rescaled beta distribution for given n and s. Then,
the results on c in Figure 5 show that the new designs have, in fact, a significantly
lower CL2 than the expectation for LHD.
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Figure 7. Random design

Thirdly, let us look at the projection properties of our new designs. For a uni-
form design Un(qs), we wish that it has good uniformity in all subdimensions, in
particular, in all marginal two-dimensional subspaces. For illustration purposes,
we choose a new design U30(3010) obtained by threshold accepting. Figure 6 gives
plots for all marginal two-dimensional subspaces. For each marginal case we list its
correlation coefficient and CL2

2 ∗1000. The former has been paid much attention by
many authors including, e.g., [Owen94]. Similar plots for a simple random design
and a Latin hypercube design are given in Figures 7 and 8, respectively. From
these plots, the CL2 values and the correlation coefficients, it becomes clear that
the new uniform or low-discrepancy design also has better properties in projection
uniformity.
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Figure 8. A Latin hypercube design randomly chosen

6. Conclusions

In this paper we derived some theoretical results on the expectation and variance
of random designs and Latin hypercube designs under the centered L2-discrepancy
(CL2). It turned out that Latin hypercube designs have a lower expected discrep-
ancy and variance compared to simple random designs. Using these theoretical
findings, we proposed an algorithm for the explicit construction of low-discrepancy
designs based on a modified version of the global search heuristic threshold accept-
ing. The results indicate that this approach has the potential to generate designs
with significantly lower discrepancy than the expectation for Latin hypercube de-
signs.

Further research will aim at extending the numerical results for designs with the
number of levels q being smaller than the number of runs n. Also a more detailed
analysis of the threshold accepting implementation, in particular with regard to
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the recent ruin-and-recreate feature may allow for the extension of the approach to
larger problem instances.

Appendix

Proof of Theorem 3.1. We prove two cases by the same procedure, but different
arguments. For any set P of n points on Cs the three terms of its CL2 in (1.6) are
denoted by a, b, and c, respectively. Then,

E(CL2(P)2)2 = 2aE(CL2(P))2 − a2 + Eb2 + 2Ebc+ Ec2

and

Var(CL2(P)2) = E(CL2(P)2)2 − (E(CL2(P)2))2.

Let x, y, z, u be i.i.d. uniformly distributed on [0, 1), and let

f1(x) = 1 +
1
2
|x− 0.5| − 1

2
|x− 0.5|2,

g1(i) = 1 +
1
2
|2i− 1− q

2q
| − 1

2
|2i− 1− q

2q
|2,

f2(x) = 1 + |x− 0.5|,

g2(i) = 1 + |2i− 1− q
2q

|,

f3(x, y) = 1 +
1
2
|x− 0.5|+ 1

2
|y − 0.5| − 1

2
|x− y|,

g3(i, j) = 1 +
1
2
|2i− 1− q

2q
|+ 1

2
|2j − 1− q

2q
| − | i− j

q
|,

i, j = 1, . . . , q.

In the following statement, we use SRD= for random designs and LHD= for Latin
hypecube designs Ln,qs .

n2

4
E(b2) = E(

n∑
k=1

n∑
l=1

s∏
j=1

f1(xkj)f1(xlj))

=
n∑
k=1

s∏
j=1

Ef1(xkj)2 + 2
n∑
k=1

i−1∑
l=1

s∏
j=1

Ef1(xkj)f1(xlj)

SRD=
n∑
k=1

(Ef1(x)2)s + 2
n∑
k=1

i−1∑
l=1

(Ef1(x)f1(y))s

LHD= n(
1
q

q∑
k=1

g1(k)2)s + n(n− 1)(
q∑
i=1

q∑
j=1

g1(i)g1(j)P (i, j))s,
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and

−n
3

2
E(bc) = E

 n∑
k=1

n∑
l=1

n∑
i=1

s∏
j=1

f1(xkj)f3(xlj , xij)


=

n∑
k=1

s∏
j=1

E(f1(xkj)f3(xkj , xkj))

+2
n∑
k 6=i

s∏
j=1

E(f1(xkj)f3(xkj , xij))

+
n∑
k 6=i

s∏
j=1

E(f1(xkj)f3(xij , xij))

+
n∑

k 6=i6=l 6=k

s∏
j=1

E(f1(xkj)f3(xlj , xij))

SRD=
n∑
k=1

(E(f1(x)f3(x, x)))s + 2
n∑
k 6=i

(E(f1(x)f3(x, y)))s

+
n∑
k 6=i

(E(f1(x)f3(y, y)))s +
n∑

k 6=i6=l 6=k
(E(f1(x)f3(y, z)))s

LHD= n

(
1
q

q∑
k=1

g1(k)g2(k)

)s

+2n(n− 1)

 q∑
i=1

q∑
j=1

g1(i)g3(i, j)P (i, j)

s

+n(n− 1)

 q∑
i=1

q∑
j=1

g1(i)g2(j)P (i, j)

s

+n(n− 1)(n− 2)

 q∑
i=1

q∑
j=1

q∑
l=1

g1(i)g3(j, l)P (i, j, l)

s

.

Similarly, we have

n4Ec2
SRD= n(Ef2(x)2)s + 4n(n− 1)(Ef3(x, y)f2(x))s

+n(n− 1)(Ef2(x)f2(y))s + 2n(n− 1)(Ef3(x, y)2)s

+2n(n− 1)(n− 2)(Ef2(x)f3(y, z))s

+4n(n− 1)(n− 2)(Ef3(x, z)f3(y, z))s

+n(n− 1)(n− 2)(n− 3)(Ef3(x, y)f3(z, u))s
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LHD= n

(
1
q

q∑
k=1

g2(k)2

)s

+4n(n− 1)

 q∑
k=1

q∑
j=1

g3(k, j)g2(k)P (k, j)

s

+n(n− 1)

 q∑
k=1

q∑
j=1

g2(k)g2(j)P (k, j)

s

+2n(n− 1)

 q∑
k=1

q∑
j=1

g3(k, j)2P (k, j)

s

+2n(n− 1)(n− 2)

 q∑
k=1

q∑
j=1

q∑
l=1

g2(k)g3(j, l)P (k, j, l)

s

+4n(n− 1)(n− 2)

 q∑
k=1

q∑
j=1

q∑
l=1

g3(k, l)g3(j, l)P (k, j, l)

s

+n(n− 1)(n− 2)(n− 3)

×

 q∑
k=1

q∑
j=1

q∑
l=1

q∑
m=1

g3(k, j)g3(l,m)P (k, j, l,m)

s

,

where P (k, j) is defined in the proof of Theorem 2.1 and P (k, j, l) is the probability
that the first three elements of a specific column of the design matrix are k, j, and
l, respectively. The notation P (k, j, l,m) can be similarly defined. It is easy to find
that

P (i, j, k) =


r3

n(n−1)(n−2) if i, j, andk are not equal to each other,

r2(r−1)
n(n−1)(n−2) if i = j 6= k, or i = k 6= j, or j = k 6= i,

r(r−1)(r−2)
n(n−1)(n−2) if i = j = k

and

P (i, j, k, l)

=



r4

n(n−1)(n−2)(n−3) if i, j, k, and l are not equal to each other,

r3(r−1)
n(n−1)(n−2)(n−3) if only two of i, j, k, and l are equal to each other,

r2(r−1)2

n(n−1)(n−2)(n−3) if i = j 6= k = l; or i = k 6= j = l; or i = l 6= j = k,

r2(r−1)(n−2)
n(n−1)(n−2)(n−3) if only three of i, j, k, and l are equal to each other,

r(r−1)(r−2)(r−3)
n(n−1)(n−2) if i = j = k = l.

The theorem is proved by some straightforward but complicated calculations.
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