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ON THE DISTRIBUTION OF THE POWER GENERATOR

JOHN B. FRIEDLANDER AND IGOR E. SHPARLINSKI

Abstract. We present a new method to study the power generator of pseu-
dorandom numbers modulo a Blum integer m. This includes as special cases
the RSA generator and the Blum–Blum–Shub generator. We prove the uni-
form distribution of these, provided that the period t ≥ m3/4+δ with fixed
δ > 0 and, under the same condition, the uniform distribution of a positive
proportion of the leftmost and rightmost bits. This sharpens and general-
izes previous results which dealt with the RSA generator, provided the period
t ≥ m23/24+δ . We apply our results to deduce that the period of the binary
sequence of the rightmost bit has exponential length.

1. Introduction

Let e ≥ 2, m ≥ 1 and ϑ be integers such that gcd(ϑ,m) = 1. Then one can
define the sequence (un) by the recurrence relation

un ≡ uen−1 (mod m), 0 ≤ un ≤ m− 1, n = 1, 2, . . . ,(1.1)

with the initial value u0 = ϑ.
This sequence is known as the power generator of pseudorandom numbers and

has many applications to cryptography, see [1, 7, 18, 29]. In two special cases
gcd(e, ϕ(m)) = 1, where ϕ(m) is the Euler function, and e = 2 this sequence is
known as the RSA generator and as the Blum–Blum–Shub generator , respectively.

It is obvious that the sequence (1.1) eventually becomes periodic with some
period t. In this paper we assume that the sequence (un) is purely periodic. It is
easy to see that if gcd(e, ϕ(m)) = 1, then this is always the case, otherwise we can
consider a shift of the original sequence.

Although various properties have been studied in a number of works (see [1, 2,
6, 7, 8, 12, 15, 18, 20, 29]), very few unconditional results are known. One such
result is due to [6]. It is shown in that paper that the rightmost bit of the Blum–
Blum–Shub generator takes values 0 and 1 almost equally often, provided that the
period is large enough. In [10], by using a completely different method, relying on
some results of [3, 4], it has been proved that if the period of the RSA generator
is large enough, namely t ≥ m23/24+δ for some fixed δ > 0, then the elements of
this sequence are uniformly distributed modulo m and a positive proportion of the

Received by the editor April 30, 1999 and, in revised form, November 10, 1999.
2000 Mathematics Subject Classification. Primary 11L07, 11T71, 94A60; Secondary 11T23,

11K45.
Key words and phrases. Pseudorandom numbers, RSA generator, Blum–Blum–Shub, expo-

nential sums.
The first author was supported in part by NSERC grant A5123 and by an NEC grant to the

Institute for Advanced Study.
The second author was supported in part by ARC grant A69700294.

c©2000 American Mathematical Society

1575



1576 J. B. FRIEDLANDER AND I. E. SHPARLINSKI

rightmost and leftmost bits is uniformly distributed. Lower bounds on the linear
complexity of this generator have been given in [12, 28].

Here we introduce a new method which allows us to improve the results of [10],
which now are nontrivial beginning with periods t ≥ m3/4+δ, and extend them to
the general power generator. This approach is also used to study the distribution
of several consecutive terms of the Blum–Blum–Shub generator. In some sense
this approach is based on a combination of some ideas of [12, 28] with a general
approach to studying non-linear pseudorandom number generators invented in the
series of papers [13, 14, 23, 24, 25, 26].

It is useful to remark that it has been shown in [11] that provided the parameters
of the power generator (1.1) are selected at random, then the period t will be very
close to m.

In this paper we prove the result in the most important case for applications
when m = pl where p and l are distinct primes of approximately the same order.
Such numbers are called Blum integers (sometimes given with certain additional
conditions such as that p ≡ l ≡ 3 (mod 4)). However, the same results hold for m
prime, as is easy to see from our proof, and similar, but somewhat weaker, results
can be obtained for arbitrary composite moduli as well.

We remark that for small e some nontrivial results can be derived from the esti-
mates of the paper [24] which, although rather weak, apply to general polynomial
generators.

Throughout the paper the implied constants in symbols “O”, “�” and “�” may
occasionally, where obvious, depend on the small positive parameters ε and δ and
an integer parameter ν ≥ 1, and are absolute otherwise (we recall that A� B and
B � A are equivalent to A = O(B)). Moreover, any expression involving ε, for
example a bound of the form A � Bε, means that this holds for any ε > 0, not
just for some fixed value. The same convention is not used for any other variable,
for example δ.

Let ω(k) denote the number of distinct prime divisors of an integer k ≥ 1. We
use the well-known bounds

ω(k)� log k
log log(k + 2)

and ϕ(k)� k

log log(k + 2)
.(1.2)

Also, log z denotes the binary logarithm.

2. Exponential sums

We define exponential sums

Sa =
t∑

n=1

em (aun) ,

where

ed(z) = exp(2πiz/d).

We obtain a nontrivial upper bound for the sums Sa and derive (see Theorem 3.2)
the uniformity of distribution modulo m of the elements un, n = 1, . . . , t, provided
that t > m3/4+δ with a fixed positive δ.

These exponential sums enter into our problem by means of the following well-
known basic identity (see Problem 11.a to Chapter 3 of [30]).
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Lemma 2.1. For any integer u

m−1∑
λ=0

em(λu) =
{

0, if u 6≡ 0 (mod m);
m, if u ≡ 0 (mod m).

We also need the following estimate (see Problem 11.c to Chapter 3 of [30]).

Lemma 2.2. For any integer H ≥ 0,

m−1∑
a=1

∣∣∣∣∣
H∑
u=0

em(au)

∣∣∣∣∣ = O(m logm).

Our strongest tool is the Weil bound for exponential sums which we present in
the following form (see Chapter 5 of [19]).

Lemma 2.3. For any prime p and any polynomial f(X) ∈ Z[X ] of degree d ≥ 1
which is not identical to a constant modulo p, the bound∣∣∣∣∣

p∑
x=1

ep (f(x))

∣∣∣∣∣ < dp1/2

holds.

Below we use the following well-known consequence of the sieve of Eratosthenes.

Lemma 2.4. For any integers q, J ≥ 1,

J∑
j=1

gcd(j,q)=1

1 =
ϕ(q)
q

J +O(2ω(q)).

Proof. Indeed, using the Möbius function µ(d) over the divisors of q to detect the
co-primality condition and interchanging the order of summation, we obtain the
Legendre formula

J∑
j=1

gcd(j,q)=1

1 =
∑
d|q

µ(d)
⌊
J

d

⌋
= J

∑
d|q

µ(d)
d

+O

∑
d|q
|µ(d)|


from which the result follows at once (see Section 4 of Chapter 2 of [30]).

We reduce the problem of estimating sums Sa to certain sums with polynomials.
In [24] the above bound has been used to obtain a nontrivial estimate for very
general pseudorandom number generators. Nevertheless, for our purposes a direct
application of the bound would give us rather weak results, the problem being
that the dependence therein on the degree is not very good and the polynomials
to which our argument naturally leads are in some cases of very high degree. Our
next lemma, combinatorial in nature, shows that in the special case of the power
generator there exists a subset of these polynomials, which contains sufficiently
many that we may restrict our consideration to it and simultaneously consists of
polynomials of sufficiently low degree that, when applied to them, the Weil bound
will be a strong one.
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Lemma 2.5. Let τ be the multiplicative order of e modulo an integer T ≥ 1. Then
for any fixed δ > 0 and any integer h ≥ T δ there exists an integer r with

gcd(r, T ) = 1

and such that the congruence

rek ≡ y (mod T ), 1 ≤ k ≤ τ, 0 ≤ y ≤ h− 1,

has

Lr(h)� τh

T

solutions.

Proof. For each k = 1, . . . , τ and every y, 0 ≤ y ≤ h − 1 with gcd(y, T ) = 1, the
integer r, 1 ≤ r ≤ T , such that the above congruence holds is uniquely determined
and satisfies gcd(r, T ) = 1 since gcd(e, T ) = 1. Hence we have

T∑
r=1

gcd(r,T )=1

Lr(h)� τ

h−1∑
y=0

gcd(y,T )=1

1.

Since h ≥ T δ, by Lemma 2.4 and by (1.2) we have
h−1∑
y=0

gcd(y,T )=1

1� ϕ(T )h
T

,

and substituting this we get
T∑
r=1

gcd(r,T)=1

Lr(h)� τϕ(T )h
T

.

Hence for some choice of r we have the required lower bound for Lr(h).

Lemma 2.6. If the sequence (un), given by (1.1), is purely periodic with period t,
then for any integers λ ≥ 0 and µ ≥ 1 the sequence (uλ+µn) is purely periodic with
period t/ gcd(µ, t).

Proof. Let T be the multiplicative order of ϑ modulo m. Because (un) is purely
periodic with period t, then

ϑ ≡ u0 ≡ ut = ϑe
t

(mod m).

Hence et ≡ 1 (mod T ). Therefore we conclude that gcd(e, T ) = 1 and that t is the
multiplicative order of e modulo T . Put

ρ = ϑe
λ

and f = eµ.

We see that the multiplicative order of ρ modulo m is T as well and the multiplica-
tive order of f modulo T is t/ gcd(µ, t).

Now we are prepared to formulate our main estimates. However, for notational
simplicity, we first define two functions which will appear repeatedly in all of our
main estimates. For ν ≥ 1, an integer parameter, we define

α(ν) =
2ν + 1

2ν(ν + 1)
and β(ν) =

3ν + 2
4ν(ν + 1)

.(2.1)
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Theorem 2.7. Let m = pl where p and l are two distinct primes with

gcd (p− 1, l − 1) = ∆.

If the sequence (un), given by (1.1), is purely periodic with period t, then for any
integer ν ≥ 1 the bound

max
gcd(a,m)=1

|Sa| � ∆α(ν)t1−α(ν)mβ(ν)

holds with α(ν), β(ν) given by (2.1).

Proof. Denote by tp and tl the periods of (un) modulo p and l, respectively.
First of all we consider the case gcd(tp, tl) = 1; thus t = tptl. Moreover in this

case we can find integers qp and ql such that

qp ≡ 1 (mod tp), qp ≡ 0 (mod tl)

and

ql ≡ 0 (mod tp), ql ≡ 1 (mod tl).

We can also find integers Q and R such that Ql+ Rp = 1. Then we have

Sa =
tp−1∑
n=0

tl−1∑
k=0

em
(
aϑe

nqp+kql
)

=
tp−1∑
n=0

tl−1∑
k=0

em
(
a(Ql +Rp)ϑe

nqp+kql
)

=
tp−1∑
n=0

tl−1∑
k=0

ep
(
aQϑe

nqp+kql
)

el
(
aRϑe

nqp+kql
)
.

Remarking that

ϑe
nqp+kql ≡ ϑenqp (mod p) and ϑe

nqp+kql ≡ ϑekql (mod l),

we derive

Sa =
tp−1∑
n=0

ep
(
aQϑe

nqp
) tl−1∑
k=0

el
(
aRϑe

kql
)

=
tp−1∑
n=0

ep
(
Aϑe

n
) tl−1∑
k=0

el
(
Bϑe

k
)
,

where A = aQ and B = aR. We are going to apply Lemma 2.5 with modulus
T being the multiplicative order of ϑ modulo p. As explained in the proof of
Lemma 2.6 the order of e modulo T is just τ = tp. For some δ > 0 and h ≥ T δ

to be chosen later we select r as in Lemma 2.5. Let L denote the set of k which
satisfy the corresponding congruence. Put L = | L|. Then

tp−1∑
n=0

ep
(
Aϑe

n
)

=
1
L

∑
k∈L

tp−1∑
n=0

ep
(
Aϑe

n+k
)
.

By the Hölder inequality we have∣∣∣∣∣
tp−1∑
n=0

ep
(
Aϑe

n
)∣∣∣∣∣

2ν

≤ L−2νt2ν−1
p

tp−1∑
n=0

∣∣∣∣∣∑
k∈L

ep
(
Aϑe

n+k
)∣∣∣∣∣

2ν

= L−2νt2ν−1
p

tp−1∑
n=0

∣∣∣∣∣∑
k∈L

ep
(
Aϑe

nek
)∣∣∣∣∣

2ν

.

Let d = (p−1)/T . Obviously, the powers ϑe
n

, n = 0, . . . , tp−1, are pairwise distinct
and are each of the form xd modulo p. Moreover, for each n there are precisely d
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values of x = 1, . . . , p − 1 which give rise to this value of ϑe
n

. Thus by replacing
ϑe

n

by xd we may write this last sum over n as d−1 times the corresponding sum
over x, where x runs over a certain subset of the nonzero residue classes modulo p.
Using positivity, we may majorize this last sum by the same sum over all classes
modulo p. In this way we obtain∣∣∣∣∣

tp−1∑
n=0

ep
(
Aϑe

n
)∣∣∣∣∣

2ν

≤ L−2νd−1t2ν−1
p

p−1∑
x=0

∣∣∣∣∣∑
k∈L

ep
(
Axde

k
)∣∣∣∣∣

2ν

= L−2νd−1t2ν−1
p

∑
j1,...,jν∈L

∑
k1,...,kν∈L

×
p−1∑
x=0

ep
(
A
(
xde

j1 + . . .+ xde
jν − xdek1 − . . .− xdekν

))
= L−2νd−1t2ν−1

p

∑
j1,...,jν∈L

∑
k1,...,kν∈L

×
p−1∑
x=0

ep
(
A
(
xdre

j1 + . . .+ xdre
jν − xdrek1 − . . .− xdrekν

))
because gcd(r, T ) = 1. For the case that (k1, ..., kν) is a permutation of (j1, ..., jν),
we must use the trivial bound and this gives a contribution Lνp. In case this
does not happen (there are at most L2ν ways) the inner sum above is a character
sum with a polynomial of degree at most dh. By Lemma 2.3 each of these terms
contributes at most dhp

1
2 . Thus∣∣∣∣∣

tp−1∑
n=0

ep
(
Aϑe

n
)∣∣∣∣∣

2ν

� L−2νd−1t2ν−1
p

(
Lνp+ L2νdhp

1
2

)
and so ∣∣∣∣∣

tp−1∑
n=0

ep
(
Aϑe

n
)∣∣∣∣∣ � t1−1/2ν

p

(
L−1/2p1/2νd−1/2ν + h1/2νp1/4ν

)
� t1−1/2ν

p

(
L−1/2T 1/2ν + h1/2νp1/4ν

)
.

By Lemma 2.5 we have L � tph/T . We substitute this in, use the trivial bound
T ≤ p, and equalize by choosing

h =
⌈
p(2ν+1)/2(ν+1)t−ν/(ν+1)

p

⌉
≥ p1/2(ν+1),

which thus satisfies h ≥ T δ with δ = 1/2(ν + 1). After a simple computation we
obtain ∣∣∣∣∣

tp−1∑
n=0

ep
(
Aϑe

n
)∣∣∣∣∣� t1−α(ν)

p pβ(ν),
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and similarly ∣∣∣∣∣
tl−1∑
k=0

el
(
Bϑe

k
)∣∣∣∣∣� t

1−α(ν)
l lβ(ν)

from which the result follows, provided that gcd(tp, tl) = 1.
In the general case we put µ = gcd(tp, tl) and remark that

Sa =
t−1∑
n=0

em (aun) =
µ∑
λ=1

t/µ−1∑
n=0

em (auλ+nµ) .

Using Lemma 2.6 one easily verifies that (uλ+nµ) has relatively prime periods mod-
ulo p and l (because they are divisors of tp/µ and tl/µ, respectively). By the above
bound we obtain

Sa � µ(t/µ)1−α(ν)mβ(ν).(2.2)

Now from µ ≤ gcd (p− 1, l− 1) = ∆ the result follows.

It is easy to check that for a given δ > 0 one may, by selecting sufficiently large ν,
obtain a bound which is nontrivial for all t ≥ ∆m3/4+δ/2. If also gcd (p− 1, l− 1)�
mδ/2, then it suffices to take t ≥ m3/4+δ. Under these conditions an asymptotically
optimal choice for small δ is ν = d1/2δe, which gives the bound O(t1−cδ

2
) with

an absolute constant c > 0. For sufficiently small δ, this holds with any value
c < 2/3. On the other hand, for large values of t the choice ν = 1 becomes optimal,
producing the bound

max
gcd(a,m)=1

|Sa| � ∆3/4t1/4m5/8.

In the most interesting case that t � m1−δ/2 and ∆ � mδ/2 with a small δ,
selecting ν = 1 we obtain

max
gcd(a,m)=1

|Sa| � t7/8+δ.(2.3)

Moreover, as the results of [11] show, for a random choice of the parameters of the
generator this case occurs almost always.

We note that although the condition gcd (p− 1, l− 1) � mε is satisfied for
almost all pairs of primes p and l, in fact our method works without any restriction
on gcd (p− 1, l − 1). Obviously, the parameter µ in the proof of Theorem 2.7 can
be estimated from the inequality t ≤ m/µ which, being substituted in (2.2) leads
to the estimate

max
gcd(a,m)=1

|Sa| � t1−(2ν+1)/ν(ν+1)m(7ν+4)/4ν(ν+1),

which holds for any p and l. One can also modify the scheme a little to prove
results under the natural assumption that the primes p and l are about the same
order. For example, for the Blum integers m = pl with p < l ≤ p1+ε and p ≡ l ≡ 3
(mod 4) we have

max
gcd(a,m)=1

|Sa| � t1−(3ν+1)/2ν(2ν+1)m(5ν+2)/4ν(2ν+1)+ε.

Several more statements of this kind can be proved as well; however in the case
gcd (p− 1, l− 1)� mε the bound of Theorem 2.7 supersedes them all.
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To study the distribution of s-tuples (un, . . . , un+s−1) we need to estimate more
general sums. For an integer vector a = (a0, . . . , as−1) ∈ Zs we define the expo-
nential sum

Sa =
t∑

n=1

em

(
s−1∑
i=0

aiun+i

)
.

Although in the next result we estimate these sums only for the special case of
the Blum–Blum–Shub generator, it can be extended to any power generator with
a small value of e.

Theorem 2.8. Let m = pl where p and l are two distinct primes with

gcd (p− 1, l − 1) = ∆.

If the sequence (un), given by (1.1) with e = 2, is purely periodic with period t, then
for any integer ν ≥ 1 and any dimension s ≥ 1, the bound

max
gcd(a0,... ,as−1,m)=1

|Sa| � 2sν/(ν+1)∆α(ν)t1−α(ν)mβ(ν)

holds with α(ν), β(ν) given by (2.1).

Proof. We put

h =
⌈
2−2sν/(ν+1)p(2ν+1)/2(ν+1)t−ν/(ν+1)

p

⌉
� p1/2(ν+1)

and proceed as in Theorem 2.7 getting the sum
p−1∑
x=0

ep

(
A

s−1∑
i=0

ν∑
η=1

ai

(
xdr2

jη+i
− xdr2

kη+i
))

,

which is an exponential sum with a polynomial of degree at most 2s−1h. Continuing
as in the proof of Theorem 2.7, after simple calculations we obtain the desired
result.

We remark that both Theorem 2.7 and Theorem 2.8 apply to prime moduli m
as well. In fact in this case even stronger results can be obtained, see [9].

3. Leftmost and Rightmost Bits

Here we show that a positive proportion of the leftmost and rightmost bits of
(un) are uniformly distributed. Let σ be a binary string of length k. Denote by
L(σ) the number of n = 1, . . . , t, such that σ is the string of the k least significant
bits of un.

Theorem 3.1. Let m = pl, where p and l are two distinct odd primes with

gcd (p− 1, l − 1) = ∆.

If the sequence (un) given by (1.1) is purely periodic with period t, then for any
integer ν ≥ 1 the bound

sup
σ

∣∣L(σ)− t2−k
∣∣� ∆α(ν)t1−α(ν)mβ(ν) logm

holds with α(ν), β(ν) given by (2.1) and where the supremum is taken over all
binary strings σ of length k.
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Proof. We denote by σ the integer whose binary representation coincides with σ
and put K = 2k, H = b(m− 1− σ)/Kc. We remark that L(σ) is equal to the
number W (σ) of solutions of the congruence

un ≡ Kx+ σ (mod m), 1 ≤ n ≤ t, 0 ≤ x ≤ H.
Thus, using Lemma 2.1 we write

W (σ) =
1
m

t∑
n=1

H∑
x=0

m−1∑
a=0

em (a (un −Kx− σ))

=
1
m

m−1∑
a=0

em (−aσ)Sa
H∑
x=0

em(−aKx).

The term corresponding to a = 0 equals

t(H + 1)m−1 = t2−k +O(1),

which gives the main term of the desired formula, apart from an admissible error.
To estimate the contribution R of the remaining terms, we apply Theorem 2.7
getting

R � ∆α(ν)t1−α(ν)m−1+β(ν)
m−1∑
a=1

gcd(a,m)=1

∣∣∣∣∣
H∑
x=0

em(−aKx)

∣∣∣∣∣
+m−1

l−1∑
a=1

|Sap|
∣∣∣∣∣
H∑
x=0

el(−aKx)

∣∣∣∣∣+m−1

p−1∑
a=1

|Sal|
∣∣∣∣∣
H∑
x=0

ep(−aKx)

∣∣∣∣∣ .
We still need to estimate the sums |Sap| and |Sal|. Let tp be the period of the

sequence (un) modulo p so that t ≤ tp(l− 1). It is easy to check that the bound of
Theorem 2.7 applies to the case when m is prime as well, and moreover the factor
related to the gcd(p− 1, l− 1) does not appear in this case. Therefore,

Sal =
t

tp

tp∑
n=1

ep (aun)� lt1−α(ν)
p pβ(ν)

if gcd(a, p) = 1. A similar estimate also holds for Sap.
Remarking that gcd(K,m) = 1, we see that −aK can be replaced by just a.

Therefore, applying Lemma 2.2, after some simple calculations we obtain the desired
estimate.

Virtually the same proof yields the same result for the most significant bits.
One simply replaces Kx + σ by x + Mσ for suitable M in the above congruence
for un. Since the most significant bits of a number are the ones most responsible
for locating it as a point on the line, this case may also be formulated somewhat
differently. For an interval I = [r, r + h − 1], where 0 ≤ r ≤ r + h − 1 ≤ m − 1
of length # I = h, we denote by N( I) the number of n = 1, . . . , t for which un
belongs to the interval I. In this form there is an alternative well-known way of
deriving the result from the exponential sum bound (see for example [5]) which,
however, does not apply to the least significant bits. The result is

Theorem 3.2. Let m = pl, where p and l are two distinct odd primes with

gcd (p− 1, l − 1) = ∆.
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If the sequence (un) given by (1.1) is purely periodic with period t, then for any
integer ν ≥ 1 the bound

sup
I⊆[0,m−1]

∣∣∣∣N( I)− t

m
# I

∣∣∣∣� ∆α(ν)t1−α(ν)mβ(ν) logm

holds with α(ν), β(ν) given by (2.1).

In the case gcd (p− 1, l− 1)� mε, the error terms in Theorems 3.1 and 3.2 take
the form t1−(2ν+1)/2ν(ν+1)m(3ν+2)/4ν(ν+1)+ε.

With very little change we can use Theorem 2.8 to also study the multidimen-
sional distribution of the Blum–Blum–Shub generator. Let Σ = (σ0, . . . , σs−1)
be a collection of s binary strings of length k. Denote by L(Σ) the number of
n = 1, . . . , t, such that σi is the string of the k least significant bits of un+i,
i = 0, . . . , s− 1.

Combining Theorem 2.8 with the same arguments used in the proof of Theo-
rem 3.1, we obtain

Theorem 3.3. Let m = pl, where p and l are two distinct odd primes with

gcd (p− 1, l − 1) = ∆.

There exists an absolute constant C > 0 such that if the sequence (un), given
by (1.1) with e = 2, is purely periodic with period t, then for any integer ν ≥ 1 and
every integer s the bound

sup
Σ

∣∣L(Σ)− t2−ks
∣∣� ∆α(ν)t1−α(ν)mβ(ν)(C logm)s

holds with α(ν), β(ν) given by (2.1) and where the supremum is taken over all
collections Σ of s binary strings of length k.

For an s-dimensional box

B = [r1, r1 + h1 − 1]× · · · × [rs, rs + hs − 1],

where 0 ≤ ri ≤ ri + hi − 1 ≤ m− 1, i = 1, . . . , s, of size #B = h1 · · ·hs, we denote
by N(B) the number of integers n = 1, . . . , t for which the s-tuple (un, . . . , un+s−1)
belongs to the box B.

Accordingly, in this case Theorem 2.8 yields

Theorem 3.4. Let m = pl, where p and l are two distinct primes with

gcd (p− 1, l − 1) = ∆.

There exists an absolute constant C > 0 such that if the sequence (un), given
by (1.1) with e = 2, is purely periodic with period t, then for any integer ν ≥ 1 and
every integer s the bound

sup
B⊆[0,m−1]s

∣∣∣∣N(B)− t

m
#B

∣∣∣∣� ∆α(ν)t1−α(ν)mβ(ν)(C logm)s

holds with α(ν), β(ν) given by (2.1).

We see that if gcd (p− 1, l − 1) � mδ/2 and t ≥ m3/4+δ, then for sufficiently
large ν depending on δ the bounds of Theorems 3.3 and 3.4 are nontrivial, that is
of the form o(t), for all s ≤ cδ2 logm/ log logm with an absolute constant c > 0.
In particular, under this condition Theorem 3.4 gives the statement of uniform
distribution of s-tuples produced by the Blum–Blum–Shub generator.
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4. Period of the Blum–Blum–Shub bit generator

Let us consider the binary sequence (ξn) where ξn is the rightmost bit of un. We
note that many cryptographic applications make use of this sequence instead of the
original sequence (un) (see [1, 6, 7, 8, 15, 18, 20, 29]). On the other hand, although
the period t of the sequence (un) admits a reasonably simple number theoretic
characterization via the Carmichael function, the period τ of the sequence (ξn)
does not seem to be easy to evaluate. Aside from the trivial property τ |t and a
certain lower bound for the Blum–Blum–Shub generator, valid for some very special
moduli m (see Section 14.8 of [7]), nothing is known about the period τ .

Here, using Theorem 3.3 we easily derive that if, for some fixed δ > 0, the
primes p and l and the period t satisfy the conditions gcd (p− 1, l− 1) � mδ/2

and t ≥ m3/4+δ, then τ is exponentially large in the bit size of m. Indeed, taking
k = 1 in Theorem 3.3, we have already noted that L(Σ) > 0 provided that s ≤
c(δ) logm/ log logm for some constant c(δ) > 0. For such s there are at least
2s distinct s-tuples of the form (ξn, . . . , ξn+s−1), so that, choosing s as large as
permitted, we find

τ ≥ 2s � 2c(δ) logm/ log logm.

Now we improve this bound by using a modified approach which allows us to show
that all L(Σ) > 0 for a slightly larger value of s by counting, instead of L(Σ) itself,
a weighted sum over the integers n which contribute to it.

Theorem 4.1. Let m = pl, where p and l are distinct odd primes with

gcd (p− 1, l − 1) = ∆.

If the sequence (un), given by (1.1) with e = 2, is purely periodic with period
t ≥ ∆m3/4+δ for some fixed δ > 0, then there exists a constant γ(δ) > 0 such that

τ � mγ(δ)

holds.

Proof. Using Theorem 2.8 with sufficiently large ν, we derive that there exists η > 0
such that

Sa � 2st1−η(4.1)

for any vector a = (a0, . . . , as−1) with gcd(a0, . . . , as−1,m) = 1. Let tp and tl be
the periods of the sequence (un) modulo p and l, respectively. It is also easy to see
that the same considerations also give the bounds

Sla � 2slt1−ηp and Spa � 2spt1−ηl(4.2)

for vectors with gcd(a0, . . . , as−1, p) = 1 and gcd(a0, . . . , as−1, l) = 1, respectively.
Let σ = (σ1, . . . , σs) be a binary string of length s ≥ 1. Denote by Q(σ) the

number of n = 1, . . . , t, such that (ξn, . . . , ξn+s−1) = σ.
Put H = bm/4c. Denote by W (σ) the number of solutions of the system of

congruences

un+i ≡ 2(H + xi − yi) + σi (mod m), 0 ≤ i ≤ s− 1,

where

1 ≤ n ≤ t, 0 ≤ x0, . . . , xs−1, y0, . . . , ys−1 ≤ H − 1.

It is obvious that if W (σ) > 0, then Q(σ) > 0.
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Using Lemma 2.1 we obtain

W (σ) =
1
ms

t∑
n=1

H−1∑
x0,... ,xs−1=0

H−1∑
y0,... ,ys−1=0

×
m−1∑

a0,... ,as−1=0

em

(
s−1∑
i=0

ai (un+i − 2xi + 2yi − 2H − σi)
)

=
1
ms

m−1∑
a0,... ,as−1=0

em

(
−
s−1∑
i=0

ai (2H + σi)

)
Sa

×
H−1∑

x0,... ,xs−1=0

H−1∑
y0,... ,ys−1=0

em

(
−2

s−1∑
i=0

ai (xi − yi)
)

=
1
ms

m−1∑
a0,... ,as−1=0

em

(
−
s−1∑
i=0

ai (2H + σi)

)
Sa

s−1∏
i=0

∣∣∣∣∣
H−1∑
xi=0

em (2aixi)

∣∣∣∣∣
2

.

The term corresponding to a0 = · · · = as−1 = 0 equals tH2sm−s. To estimate
the contribution of the terms with gcd(a0, . . . , as−1,m) = 1, we apply (4.1) together
with the identity (m is odd)

m−1∑
a0,... ,as−1=0

s−1∏
i=0

∣∣∣∣∣
H−1∑
xi=0

em (2aixi)

∣∣∣∣∣
2

=

m−1∑
a=0

∣∣∣∣∣
H−1∑
x=0

em (ax)

∣∣∣∣∣
2
s

= msHs.

To estimate the contribution of the terms with gcd(a0, . . . , as−1,m) = p and
gcd(a0, . . . , as−1,m) = l, we use (4.2) together with the analogue of the above
identity modulo l and p, respectively. This gives

W (σ) = tH2sm−s +O(2st1−ηHs) = tHs
(
Hsm−s +O(2st−η)

)
.

We can assume that m ≥ 15, thus

Hsm−s ≥
(
m− 3

4m

)s
≥ 5−s.

Therefore there is a constant γ(δ) > 0 such that W (σ) > 0, provided that we have
s ≤ γ(δ) logm, and from this the result follows.

Although in this section we have been restricting to k = 1 we may remark that
a result corresponding to the above holds for general k. It is easy to see that
if t � m � t1+ε, then the bound (2.3) implies that τ ≥ m1/24−ε. As we have
mentioned, the results of [11] imply that this inequality is most typical.

This also implies a lower bound for the linear complexity L of the sequence (ξn)
over F2. We recall that the linear complexity of a periodic sequence is defined as the
smallest possible order of a linear recurrence relation which this sequence satisfies,
(see [7, 20, 27]). It is clear that all L-tuples (ξn, . . . , ξn+L−1), n = 1, . . . , τ , are
pairwise distinct. Hence τ ≤ 2L and from Theorem 4.1 we derive the bound

L ≥ γ(δ) logm.(4.3)
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5. Remarks

As we have already mentioned, these results also hold for m prime (with a
slightly simpler version of the same proof and without the factor depending on ∆)
and similar results can be obtained for the case of a general square-free modulus
m.

Theorems 2.8, 3.3 and 3.4 can be extended to any small value of e. On the other
hand, it is not clear how to study the joint distribution of s-tuples (un, . . . , un+s−1)
if e is large. Even the case of pairs (un, un+1) is of interest.

It would be important to replace the logarithmic lower bound (4.3) by a stronger
result. The linear complexity of the original sequence (un) has been studied in [12,
28], with bounds obtained much stronger than (4.3), but the method of these papers
cannot be applied to the sequence (ξn).

It would also be interesting to extend the results of this paper to the case of the
exponential generator

vn ≡ gvn−1 (mod p), 0 ≤ vn ≤ p− 1, n = 1, 2, . . . ,

where g is a primitive root modulo a prime p, which also has numerous crypto-
graphic applications [7, 18]. Although we have not been able to obtain nontrivial
results about the distribution of this generator, we remark that exponential sums
still help to extract some nontrivial information about it. Indeed, let us consider
the sequence of binary strings

(
σ

(k)
n

)
generated by the k rightmost bits of vn,

n = 1, 2, . . . . Let the sequence (vn) be purely periodic with period t, and let
τ be the period of the sequence

(
σ

(k)
n

)
. Because there are at most O(p2−k) in-

tegers v with given k rightmost bits, then obviously τ ≥ 2kt/p. We show that
exponential sums implies a stronger bound. Indeed, using the well-known bound
(see [16, 17, 21, 22])

max
gcd(a,p)=1

∣∣∣∣∣
p−1∑
x=1

ep (agx) ep−1(bx)

∣∣∣∣∣� p1/2 log p,

one derives that the number of x, 0 ≤ x ≤ p−1 such that both x and the remainder
of gx modulo p have given k rightmost bits, is p2−2k +O(p1/2 log p). On the other
hand, all vkτ for k = 0, . . . , t/τ , have the same k rightmost bits, and the same is
true for vkτ+1 ≡ gvkτ (mod p) as well. Therefore, if k ≤ (0.25 − ε) log p (that is,
if we use less than a quarter of bits of vn), then τ � 22kt/p. This, rather weak,
improvement of the trivial bound makes us mildly optimistic about the possibility
of obtaining more interesting results about the exponential generator.
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