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ON IWASAWA λ3-INVARIANTS
OF CYCLIC CUBIC FIELDS OF PRIME CONDUCTOR

TAKASHI FUKUDA AND KEIICHI KOMATSU

Abstract. For certain cyclic cubic fields k, we verified that Iwasawa invari-
ants λ3(k) vanished by calculating units of abelian number field of degree 27.
Our method is based on the explicit representation of a system of cyclotomic
units of those fields.

1. Introduction

Let k be a cyclic cubic field of prime conductor p in which 3 splits. Such a field
is uniquely determined by p. Let An be the 3-primary subgroup of the ideal class
group of the n-th layer kn of the cyclotomic Z3-extension of k and Dn the subgroup
of An generated by an ideal class containing a product of prime ideals lying over
3. Recently Ozaki and Yamamoto established an efficient algorithm determining
whether A1 = D1 based on a calculation using a primitive root of p and gave
examples of k which satisfy λ3(k) = µ3(k) = 0, where λ3 and µ3 are Iwasawa
invariants of k (cf. [9]). There remain some k’s which do not satisfy A1 = D1. For
such k’s, we studied the behavior of D2 by using cyclotomic units of k2 and found
that some of those satisfied λ3(k) = µ3(k) = 0. The aim of this paper is to explain
how we showed that λ3(k) = µ3(k) = 0.

2. General criteria for Greenberg’s conjecture

Let k be a real abelian extension of the rational number field Q and ` a prime
number. There are many criteria for Greenberg’s conjecture which asserts that
λ`(k) = µ`(k) = 0 based on numerical calculations. Especially effective algorithms
are known when the degree [k : Q] is prime to `. In this section, we introduce a
criterion which is valid for any abelian field k and one which is valid for a cyclic
field k of degree `. We restrict our attention to k’s in which ` splits.

Let k∞ be the cyclotomic Z`-extension of k. As stated in the Introduction, let
An be the `-primary part of the ideal class group of the n-th layer kn of k∞/k and
Dn the subgroup of An generated by ideal classes which contain a product of prime
ideals lying over `. Since every prime ideal of k lying over ` is totally ramified in
k∞, the order of Dn is nondecreasing as n increases. Futhermore we denote by
Bn the subgroup of An consisting of elements which are invariant under the Galois
action of G(k∞/k). Then Bn contains Dn and its order is also nondecreasing as n
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increases. The following lemma relying on Greenberg is the most fundamental and
important criterion.

Lemma 2.1 (Theorem 2 in [6]). Let k be an abelian field in which ` splits. Then
λ`(k) = µ`(k) = 0 if and only if Bn = Dn for all sufficiently large n.

The order of Bn is explicitly described as follows. For a unit ε of k, we define
m(ε) to be the maximal integer such that

`m(ε) | ε`−1 − 1 in k.

For a system of fundamental units Ω = {ε1, ε2, . . . , εr−1 }, we define

m(Ω) =
∑
i

m(εi) ,

where r = [k : Q]. Then there exists a maximal value m(k) of m(Ω) when Ω varies
over all systems of fundamental units and the order of Bn is expressed by m(k).

Lemma 2.2 (Proposition 2 in [8]). Let k be a real abelian field of degree r in which
` splits and m = m(k). Then

|Bn| = |A0| `m−(r−1) for n ≥ m.

In the practical calculation of m(k), the following lemma is useful.

Lemma 2.3. Let {v1, v2, . . . , vr} be an integral basis of k and Ω = {ε1, ε2, . . . ,
εr−1 } independent units of k which generate a subgroup of finite index prime to `
in the full unit group of k. Then there exist rational integers aij such that

ε`−1
i − 1 = `m(εi)

∑
j

aijvj .

If the rank of the matrix (aij) modulo ` is r − 1, then m(k) = m(Ω).

Since the proof of Lemma 2.3 is straightforward, we omit it. Another interpre-
tation of Lemma 2.2 is seen in [11].

When k is a cyclic extension of Q of degree `, then there is another criterion
which does not require the decomposition of ` in k.

Lemma 2.4 (Corollary 3.6 in [3]). Let k be a cyclic field of degree `. Then, the
following are equivalent:

1. λ`(k) = µ`(k) = 0.
2. For any prime ideal p of k∞ which is prime to ` and ramified in k∞/Q∞, the

order of ideal class of p is prime to `, where Q∞ is the cyclotomic Z`-extension
of Q.

3. Calculation in k1

From now on, let k be a cyclic cubic field of prime conductor p in which 3 splits.
We note p ≡ 1 (mod 3) (cf. [1]). If p 6≡ 1 (mod 9), then λ3(k) = 0 by Lemma
2.4. So we assume that p ≡ 1 (mod 9). There are twelve p less than 10000 for
which A1 6= D1 and λ3(k) is unknown. Namely, p =2269, 3907, 4933, 5527, 6247,
6481, 7219, 7687, 8011, 8677, 9001 and 9901. In this paper, we treat the case p 6≡ 1
(mod 27), namely p =3907, 4933, 5527, 6247, 7219, 7687, 8011, 8677, 9001 and
9901. Then the prime ideal p of k lying over p splits in k1 as p = p1p2p3 and each
pi remains prime in k∞. Let D′1 = 〈cl(p1), cl(p2), cl(p3)〉. Since D1 vanishes in kn
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for sufficiently large n, if one can show that D′1 ⊂ D1, then we see that λ3(k) = 0
from Lemma 2.4.

Noting that class numbers of Q1 and k are prime to 3, we have

|D′1| =
9

(EQ1 : Nk1/Q1(Ek1))
and |D1| =

9
(Ek : Nk1/k(Ek1 ))

from the genus formula. It is easy to calculate |D′1| and |D1| from this. In fact, we
see that |D′1| = |D1| = 3 for above ten k’s. Hence it is reasonable to expect that
D′1 = D1. We used the following lemma to test wether D′1 = D1 and verified that
D′1 = D1 for p =3907, 6247, 7687 and 8011. So λ3(k) = 0 for these p.

Lemma 3.1. Assume that |D′1| = |D1| = 3. Let α be a generator of a prime ideal
of Q1 lying over p and β a generator of lh, where l is a prime ideal of k lying over 3
and h is the class number of k. Then D′1 = D1 if and only if (αβε)1/3 or (αβ2ε)1/3

is contained in k1 for some representative ε of Ek1/E
3
k1

.

Proof. Let P and L be the prime ideals of k1 lying over (α) and (β), respectively.
Then the assertion follows from the fact D′1 = 〈cl(P)〉 and D1 = 〈cl(L)〉.

In order to check whether D′1 = D1 using Lemma 3.1, we need to construct
representatives of Ek1/E

3
k1

or E′/E′3, where E′ is a subgroup of Ek1 which has
index prime to 3. But the discriminant of k1 is equal to 312p6 and it is too large
to be handled by general algorithms which are implemented in several number
theoretic packages. So we wrote a custom program to construct E′ by means of
Hasse’s cyclotomic units (cf. [7]) which need calculating time proportional to 9p
(the conductor of k1).

4. Calculation in k2

For the remaining six k’s, we tried to verify Greenberg’s conjecture by Lemma
2.1. We show our computational results as Table 1.

The values of |Bn| for large n were calculated by Lemmas 2.2 and 2.3 and the
values of |A1| were calculated by using Theorem 4.1 in [10] and explicit construction
of the group of cyclotomic units of k1 (cf. [5]). We determined |D2| for p =4933,
9001 and 9901. In the following, we explain how we calculated |D2|.

Lemma 4.1. Let m and n be positive integers with m ≤ n. Then we have

|Dm| =
32n

(Ek : Nkn/k(Ekm))
.

Table 1.

p 4933 5527 7219 8677 9001 9901
|A1| 27 27 27 27 27 27
|D1| 3 3 3 3 3 3
|D2| 9 ≥ 9 ≥ 9 ? 9 9
|Bn| 9 81 81 81 9 9
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Proof. Since Nkn/k(Ekm) = Nkm/k(Ekm)3n−m , we have

32n

(Ek : Nkn/k(Ekm))
=

32n

(Ek : Nkm/k(Ekm )3n−m)

=
32n

(Ek : Nkm/k(Ekm ))(Nkm/k(Ekm ) : Nkm/k(Ekm)3n−m)

=
32n

(Ek : Nkm/k(Ekm ))32(n−m)

=
32m

(Ek : Nkm/k(Ekm ))
= |Dm|.

Lemma 4.2. Let m and n be positive integers with m < n and s a nonnegative
integer. We suppose that there exists a unit ε of k with ε 6∈ Nkm/k(Ekm). If there
exists unit η and α in kn such that η3m+s

= ε3sα with Nkn/k(α) = ± 1, then
|Dn| > |Dm|.

Proof. Since Nkn/k(η)3m+s
= ± ε3n+s

, we have Nkn/k(η) = ± ε3n−m , which means
Nkn/k(η) 6∈ Nkm/k(Ekm)3n−m = Nkn/k(Ekm ). This shows that |Dn| > |Dm| by
Lemma 4.1.

Now we denote by Ckn the group of cyclotomic units of kn (cf. [10]). We have
the following lemma from Theorem 3 of [5].

Lemma 4.3. We assume that 32 is the exact power of 3 dividing p− 1. Let g be a
primitive root of p, σ the element of G(Q(ζp)/Q) with ζσp = ζgp , K = Q(ζp, ζ27),

ε = NQ(ζp)/k

(1− ζgp
1− ζp

)
, ωij = NK/k2

(
1− ζgip ζ2j

27

)
, ξj =

1− ζ2j

27

1− ζ27
ζ
− 1

2 (2j−1)
27

for 0 ≤ i ≤ 2, 0 ≤ j ≤ 8. Then Ck2 is generated by −1, ε, εσ, ω06, ω16, ω07, ω17,
ξ1, ξ2 and ωij for 0 ≤ i ≤ 2, 0 ≤ j ≤ 5.

Since ξj belongs to the second layer Q2 of the cyclotomic Z3-extension of Q, we
have Nk2/k(ξj) = NQ2/Q(ξj) = ± 1. Moreover, we have

Nk2/k

(
ωij
)

= Nk2/kNK/k2

(
1− ζgip ζ2j

27

)
= NQ(ζp)/kNK/Q(ζp)

(
1− ζgip ζ2j

27

)
= NQ(ζp)/k

(
1− ζ27gi

p

1− ζ9gi
p

)
= 1

by 3(p−1)/3 ≡ 1 (mod p) (cf. [2]). We should notice that |D1| = 3 implies ε 6∈
Nk1/k(Ek1) because Ck = 〈−1, ε, εσ〉.

The above consideration shows the following.

Theorem 4.4. We suppose |D1| = 3. If there exists a unit η in k2 and rational
integers xij , xj with

η3 = ε
( ∏

0≤i≤2
0≤j≤5

ω
xij
ij

)
ωx06

06 ω
x16
16 ωx07

07 ω
x17
17 ξ

x1
1 ξx2

2 ,
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then |D2| > 3 and

x00 + x10 + x20 − x06 − x16 ≡ 0 (mod 3),
x01 + x11 + x21 − x07 − x17 ≡ 0 (mod 3),
x02 + x12 + x22 ≡ 0 (mod 3),
x03 + x13 + x23 − x06 − x16 ≡ 0 (mod 3),
x04 + x14 + x24 − x07 − x17 ≡ 0 (mod 3),
x05 + x15 + x25 ≡ 0 (mod 3) .

(1)

Proof. It is sufficient to show (1). We put

ωj = NQ(ζ27)/Q2

(
1− ζp2

j

27

1− ζ2j
27

)
.

Since Nk2/Q2(ωij) = ωj and since p ≡ 2± 6 (mod 27), we have ω6 = (ω0ω3)−1,
ω7 = (ω1ω4)−1 and ω8 = (ω2ω5)−1. Hence our congruence relation follows from

Nk2/Q2(η)3 =
( ∏

0≤i≤2
0≤j≤5

ω
xij
j

)
ωx06+x16

6 ωx07+x17
7 ξ3x1

1 ξ3x2
2 .

Using Theorem 4.4, we can find η with 318 trials if it exists. This is a reasonable
task for a modern computer. We note that such η always exists if |D2| > 3 and
the exponent of Ek2/Ck2 is 3. So Theorem 4.4 works well when Ek2/Ck2 is a 3-
elementary abelian group. In practice, we did precalculation using the fact that
Nk2/k1(η3) is a cube in k1 and verified that x1 = x2 = 0 in our case. So we can
reduce the number of trials to 316. In fact, we found that

εω−1
0,0ω0,3ω

−2
0,4ω1,0ω

−1
1,2ω

−1
1,3ω1,5ω

−1
2,1ω2,2ω2,4ω

−1
2,5ω

−1
0,7 ∈ k3

2

for p = 4933 in five minutes with a DEC Alpha Station 500/333. Futhermore, in a
similar manner as Theorem 4.4, we found that

ε3ω4
0,0ω

−10
0,1 ω

3
0,2ω0,3ω

−1
0,4ω

−3
0,5ω

−4
1,0ω

4
1,1ω

−1
1,3ω1,4ω

3
2,1ω

−3
2,2ω

−3
2,4ω

3
2,5ω

−2
0,6ω

2
1,6ω

−1
0,7ω

−2
1,7 ∈ k9

2

for p = 9001 and

ε3ω8
0,0ω

4
0,1ω

5
0,3ω

−2
0,4ω

−2
1,0ω

−1
1,1ω

−3
1,2ω1,3ω

−1
1,4ω

3
1,5ω

−3
2,1ω

3
2,2ω

3
2,4ω

−3
2,5ω

2
0,6ω

4
1,6ω0,7ω

−1
1,7 ∈ k9

2

for p = 9901. Hence we see that |D2| = 9 for these k from the value of |Bn| (cf.
Table 1) and Lemma 4.2 and that λ3(k) = 0 from Lemma 2.1.

We also found such relations for p =5527 and 7219. But we can only assert that
|D2| ≥ 9 because |Bn| = 81 for large n.

It is important to study the behavior of |Bn| and |Dn| in view of Greenberg’s
conjecture. It is especially interesting to find the least n which achieves the equality
Bm = Dm for all m ≥ n. For three examples in this section, we have n = 2. We
know no examples of larger n. On the other hand, there is an example of n = 6 in
the real quadratic case (cf. Example 1 in [4]).
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5. Computational techniques

We explain two computational techniques which we used to decrease the com-
puting time. First we note that cyclotomic units ε, ωij , ξj are squares of Hasse’s
cyclotomic units (cf. [7]). So we used Hasse’s cyclotomic units instead of ε, ωij , ξj
in actual calculation in order to decrease the magnitude of coefficients with respect
to an integral basis of k2.

Next we explain how we tested wether α1/3 ∈ k2 for an integer α of k2. Let {vi}
be an integral basis of k2 over Z. Then α is written as α =

∑
xivi with xi ∈ Z.

If α1/3 ∈ k2, then we can obtain coefficients yi of α1/3 by solving approximately
the linear equations

∑
yiv

σ
i = (ασ)1/3, where σ runs over G(k2/Q). This is a well-

known method but takes a lots of time. So we considered as follows. Let ` be a
prime number which splits completely in k2 and l a prime ideal of k2 lying over `.
Then α ≡ a (mod l) for some rational integer a and a+ `Z is a cube in (Z/`Z)× if
α is a cube in k2. Then we are led to the following lemma.

Lemma 5.1. Let {`1, `2, . . . , `r} be a finite set of prime numbers which split com-
pletely in k2. For an integer α in k2, take rational integers ai such that α ≡ ai
(mod li), where li is a prime factor of `i in k2. If ai+`iZ is not a cube in (Z/`iZ)×

for some i, then α is not a cube in k2.

Lemma 5.1 is quite effective. Indeed, by taking r = 20, we were able to avoid
the possibility of α1/3 ∈ k2 for almost all α with calculation in Z and were able to
execute 316 trials in Theorem 4.4.
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