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A NEW STABILIZING TECHNIQUE
FOR BOUNDARY INTEGRAL METHODS

FOR WATER WAVES

THOMAS Y. HOU AND PINGWEN ZHANG

Abstract. Boundary integral methods to compute interfacial flows are very
sensitive to numerical instabilities. A previous stability analysis by Beale, Hou
and Lowengrub reveals that a very delicate balance among terms with singu-
lar integrals and derivatives must be preserved at the discrete level in order
to maintain numerical stability. Such balance can be preserved by applying
suitable numerical filtering at certain places of the discretization. While this
filtering technique is effective for two-dimensional (2-D) periodic fluid inter-
faces, it does not apply to nonperiodic fluid interfaces. Moreover, using the
filtering technique alone does not seem to be sufficient to stabilize 3-D fluid
interfaces.

Here we introduce a new stabilizing technique for boundary integral meth-
ods for water waves which applies to nonperiodic and 3-D interfaces. A sta-
bilizing term is added to the boundary integral method which exactly cancels
the destabilizing term produced by the point vortex method approximation to
the leading order. This modified boundary integral method still has the same
order of accuracy as the point vortex method. A detailed stability analysis
is presented for the point vortex method for 2-D water waves. The effect of
various stabilizing terms is illustrated through careful numerical experiments.

1. Introduction

Boundary integral methods have been one of the commonly used numerical meth-
ods in studying the motion of free surfaces. Examples of applications include water
waves, vortex sheets, multifluid interfaces, Hele-Shaw cells, and crystal growth and
solidification. The advantage of boundary integral methods is that they reduce the
dimension of the problem by using quantities along the interface only. As a con-
sequence, this avoids the difficulty of differentiating discontinuous fluid quantities
across the fluid interface, and makes it possible to design high-order discretizations
for the governing equations. On the other hand, it is also well known that bound-
ary integral methods are very sensitive to numerical instabilities [10, 5, 2, 3, 7].
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Numerical errors even at the round-off level may grow rapidly in time. This has
been one of the main difficulties of using boundary integral methods in practice.

Beale, Hou, and Lowengrub [3] presented a convergence proof of a spectrally
accurate boundary integral method for 2-D water waves with or without surface
tension. They found that a certain compatibility is required between the choice
of quadrature rules for the singular integrals and the choice for the approximation
of the spatial derivative in the evolution equations of the water interface. This
compatibility ensures that a delicate balance of terms on the continuous level is
preserved on the discrete level. This balance is crucial for maintaining numerical
stability. When the water interface is a periodic perturbation of the flat interface, a
suitable filtering on the interface position variable, z(α), is introduced by Beale et
al. [3] to enforce the discrete compatibility. Here α is a Lagrangian parameter. The
filtering in z(α) is done by multiplying by a nonnegative cut-off function, ρ(kh) in
the Fourier transform. When zj is an approximation to z(αj), sj = zj − αj will be
periodic. The filtering of zj , denoted as zpj , is defined as αj+s

p
j , where ŝpk = ρ(kh)ŝk,

and ŝk is the discrete Fourier transform of s corresponding to wavenumber k. The
amount of filtering, ρ, is determined by the quadrature rule in approximating the
integral that gives the velocity and the derivative rule being used (see [3] and the
filtering scheme described by equations (46)-(48) in Section 4).

However, the Fourier filtering also has some limitations. It does not apply di-
rectly to nonperiodic interfaces. Moreover, for problems without spectrally accurate
discretizations for the singular boundary integral, there are insufficient degrees of
freedom to enforce all the compatibility conditions by filtering alone. For example,
for 3-D free surfaces, the singular kernel has an unremovable branch point singu-
larity. It seems extremely difficult to obtain a spectrally accurate discretization for
3-D water waves. Furthermore, the singular 3-D kernel introduces a number of ad-
ditional compatibility conditions between different singular integral operators and
the Lagrangian derivative operator [8]. This makes it almost impossible to enforce
the corresponding discrete compatibility conditions by using Fourier filtering alone.

In this paper, we introduce a new stabilizing technique which does not rely on
Fourier filtering. A stabilizing term is added to the boundary integral method
which exactly cancels the destabilizing term produced by the point vortex method
approximation. The stabilizing term is proportional to the mismatch produced
by violating the compatibility condition. We show that the modified method is
consistent with the water wave equations, and it has the same order of accuracy as
the point vortex method. Moreover, the added stabilizing term does not introduce
new destabilizing terms. This stabilizing technique seems to be quite general. It
can be generalized to nonperiodic or 3-D fluid surfaces.

The organization of the rest of the paper is as follows. In Section 2 we present
the boundary integral method for the 2-D water wave problem. The compatibility
conditions are discussed there. We introduce the new stabilizing technique in Sec-
tion 3 and present the stability analysis. Some numerical results are presented in
Section 4 to illustrate the effect of various stabilizing terms.

2. Boundary integral formulation and discretization

Consider the two-dimensional incompressible, inviscid and irrotational fluid flow
separated by a free interface. We assume the fluid above the interface is air with
zero density, and the fluid below the interface has infinite depth. We represent in
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parametric form the position of the water interface by a complex variable, z(α, t).
The parameter α is the Lagrangian variable. Furthermore, we denote by φ(α, t) the
velocity potential on the interface, and the real and imaginary parts of z as x and
y, i.e., z(α, t) = x(α, t)+ iy(α, t). To express the evolution of the interface, we need
to write the velocity on the surface in terms of these variables. Following [1], we
begin with a double layer or dipole representation for the potential in terms of the
dipole strength µ(α), to be determined from φ(α). We write the complex potential
in the fluid domain as

Φ(z) =
1

2πi

∫
µ(α′)

z − z(α′)
dz(α′).(1)

The real potential in the interior is

φ(z) = ReΦ(z) =
∫

∂

∂n(α′)
G(z − z(α′))µ(α′)ds(α′),

where G(z) = (2π)−1 log |z| is the free space Green function for the 2-D Laplace
equation, ∂

∂n(α′) is the normal derivative along the interface. For simplicity, we
often drop the time variable from now on, but all the quantities, z, µ, φ will be
time dependent. It follows from the properties of the double layer potential that
the value of φ on the interface is given by

φ(α) =
1
2
µ(α) + Re

{
1

2πi

∫
µ(α′)

z(α)− z(α′)
dz(α′)

}
,(2)

where φ(α) = φ(z(α)), and the integral is understood as the Cauchy principle value
integral. Differentiating equation (2) with respect to α and integrating by parts we
obtain

φα(α) =
γ(α)

2
+ Re

[
zα(α)
2πi

∫
γ(α′)

z(α)− z(α′)
dα′
]
,(3)

which defines an integral equation for γ. Here γ = µα is the nonnormalized vortex
sheet strength. The complex velocity w = u− iv can be obtained by differentiating
the complex potential with respect to z. We get

w(z) =
dΦ
dz

(z) =
1

2πi

∫
γ(α′)

z − z(α′, t)
dα′.(4)

Using the Plemelj formula (see, e.g., [9], p. 316), we obtain the fluid velocity on
the interface

w(α) =
1

2πi

∫
γ(α′)

z(α)− z(α′)
dα′ +

γ(α)
2zα(α)

,(5)

where we have taken the limit of z approaching the free surface z(α) from the fluid
region and w(α) = w(z(α)). The integral is understood as the Cauchy principle
value integral. Since α is the Lagrangian variable, the velocity on the interface is
that of the fluid below. We obtain an evolution equation for the interface [3]

∂z̄

∂t
(α) = w(α),(6)

where z̄ is the complex conjugate of z. For the evolution of φ(α), we use the
Bernoulli equation. If we neglect surface tension, the Bernoulli equation in the
Lagrangian frame is [3]

φt −
1
2
|w|2 + gy = 0,(7)
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where g is the gravity coefficient. The evolution equations (6) and (7) together with
the relations (3) and (5) completely specify the motion of the system.

From now on, with z(α, t) = α + s(α, t), we assume that s(α, t) and φ(α, t) are
periodic in α with period 2π. To reduce the computational domain to a single
period, we need to replace the original Green’s function by a periodic one, which
is obtained by summing up all its periodic images. The singular kernel 1

z in the
velocity integrand becomes 1

2 cot( z2 ) (this can be derived following a similar argu-
ment leading to equation (26) in Section 3). To summarize, we obtain a system of
time evolution equations for z and φ as follows:

dz̄

dt
(α) =

1
4πi

∫ 2π

0

γ(α′) cot
(
z(α)− z(α′)

2

)
dα′ +

γ(α)
2zα(α)

≡ u(α)− iv(α),
(8)

φt(α) =
1
2

(u2 + v2)(α) − gy(α),(9)

φα(α) =
γ(α)

2
+ Re

[
zα(α)
4πi

∫ 2π

0

γ(α′) cot
(
z(α)− z(α′)

2

)
dα′
]
.(10)

Equations (8)-(10) completely determine the motion of the system. A unique solu-
tion is specified by giving initial conditions for the interface position z and velocity
potential φ. It can be shown that the integral equation (10) for the vortex sheet
strength γ can be solved in terms of φα [1] (note that the integral kernel for γ is an
adjoint operator of the integral kernel for µ). This is done at each time step. We
then use the interface equation (8) and the Bernoulli equation (9) to update z and
φ, respectively.

In order to discretize the water wave equations (8)-(10), we need to make choices
for a discrete derivative operator and a quadrature rule. We approximate the
velocity integral by the point vortex method [11]. To describe the discrete derivative
operator, we recall that the discrete Fourier transform is defined by

ûk =
1
N

N∑
j=1

u(αj)e−ikαj , αj = jh, h =
2π
N
, k = −N/2 + 1, ..., N/2.

The inversion formula reads

u(αj) =
N/2∑

k=−N/2+1

ûke
ikαj .

Here we assume that N is even. We note that ûk is periodic in k with period N .
A discrete derivative operator, denoted as Dh, may be expressed in the Fourier
transform as follows

(̂Dhf)k = ikρ(kh)f̂k, k = −N
2

+ 1, ...,
N

2
.

We assume that ρ(kh) ≥ 0. The choice of ρ depends on the discrete derivative
operator. For the second-order centered difference operator, we have

ρ2(kh) =
sin(kh)
kh

≥ 0;

for the fourth-order centered differencing,

ρ4(kh) =
8 sin(kh)− sin(2kh)

6kh
≥ 0;
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for the cubic spline approximation,

ρc(kh) =
sin(kh)
kh

(
3

2 + cos(kh)

)
≥ 0.

For the pseudo-spectral derivative with smoothing, ρ(kh) satisfies the following
properties: (i) ρ(x) is a nonnegative even function; (ii) ρ(·) ∈ C2 and ρ(π) = 0; and
(iii) ρ(x) = 1 for |x| ≤ λπ where 0 < λ < 1. Property (iii) guarantees that Dh is
spectrally accurate.

Denote by zj(t) the discrete approximation of z(αj , t), where αj = jh, j =
1, 2, ..., N , h = 2π/N is the mesh size, and N is the number of grid points in one
periodic interval, [0, 2π]. The quantities φj(t) and γj(t) are defined similarly. Then
the discrete complex interface velocity, denoted as wj , is given by

wj = uj − ivj =
1

4πi

N∑
k=1,k 6=j

γk cot
(
zj − zk

2

)
h+

γj
2Dhzj

.(11)

Now we can present the point vortex method for the water wave equations (8)-(10)
as follows:

d

dt
z̄j =

1
4πi

N∑
k=1,k 6=j

γk cot
(
zj − zk

2

)
h+

γj
2Dhzj

≡ uj − ivj ,(12)

dφj
dt

=
1
2

(u2
j + v2

j )− gyj,(13)

Dhφj =
1
2
γj + Re

Dhzj
4πi

N∑
k=1,k 6=j

γk cot
(
zj − zk

2

)
h

 .(14)

These equations can be solved once initial conditions are specified for zj and φj
and a time discretization is chosen. The integral equation (14) must be solved for
γj at each time step. In practice it is solved iteratively (see Section 4).

There are many ways by which one can discretize the singular integral and the
derivative. These choices affect critically the accuracy and stability of the numerical
method. Straightforward numerical discretizations, such as (12)-(14), may lead
to rapid growth of the numerical solution in the high wavenumbers. To avoid
numerical instability, a certain compatibility between the choice of the quadrature
rule for the singular integral and the discrete derivative must be satisfied. This
compatibility ensures that a delicate balance of terms that hold on the continuous
level is preserved on the discrete level. Violation of this compatibility will lead to
numerical instability [3]. The compatibility condition mentioned above is related
to the properties of the continuous Hilbert transform. Recall that the Hilbert
transform is defined as follows:

H(f)(α) =
1

2π

∫ 2π

0

cot
(
α− α′

2

)
f(α′)dα′, for f ∈ L2[0, 2π].

A related Λ operator is defined as

Λ(f)(α) =
1

4π

∫ 2π

0

(f(α)− f(α′))dα′

sin2(α− α′)
, for f ∈ L2[0, 2π].
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It is easy to show that the Λ operator and the Hilbert transform satisfy the prop-
erties

Λ = HDα, H2Dα = −Dα,

where Dα is a derivative operator. These two properties are essential in obtaining
the well-posedness of the water wave equations [14]. Linear stability analysis away
from equilibrium seems to indicate that the corresponding discrete operators need
to satisfy similar relations for stability [3]. More specifically, if we define the discrete
Hilbert transform, Hh, and the discrete Λ operator, Λh, as follows

Hh(fj) =
1

2π

N∑
k=1,k 6=j

cot
(
αj − αk

2

)
fkh,

Λh(fj) =
1

4π

N∑
k=1,k 6=j

(fj − fk)
sin2(αj − αk)

h,

(15)

then the discrete compatibility condition is given by

Λh(żj) = HhDh(żj),(16)

(H2
h + I)Dh(żj) = 0.(17)

In [3], Beale et al. use the alternating trapezoidal rule to approximate the velocity
integral, which gives a spectrally accurate approximation. In this case, property
(17) is automatically satisfied. Fourier filtering on the interface variable, zj , can
be used to enforce the compatibility condition (16). For a periodic perturbation
of the flat interface, z(α, t) = α + s(α, t), the Fourier filtering on z is defined as
zpj = α+spj , where ŝpk = p(kh)ŝk, p is a nonnegative cut-off function in the frequency
domain, and ŝk is the discrete Fourier transform of s with wavenumber k. The
cut-off function p is determined by satisfying a modified compatibility condition
Λh(żpj ) = HhDh(żj). We refer to Section 4 for more discussions.

On the other hand, for the point vortex method approximation which is only first
order accurate, it seems very difficult, if not impossible, to use the Fourier filtering
to enforce both compatibility conditions (16) and (17). This is also the essential
difficulty for 3-D free surface problems since there seems to be no spectrally accurate
discretization available for 3-D interfaces due to the branch point singularity in
the 3-D Green’s function. In the next section, we will introduce a new stability
technique to enforce both compatibility conditions indirectly. This technique gives
a stable discretization of the point vortex method for 2-D water waves.

3. A new stabilizing technique for 2-D water waves

In this section, we will illustrate the main idea of our new stabilizing technique
for the point vortex method for 2-D water waves. Let wj be the point vortex method
approximation to the complex interface velocity, w(αj) (see (11)). We modify the
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point vortex method as follows:

dz̄j
dt

= wj +Aj +Bj ≡ uj − ivj,(18)

dφj
dt

=
1
2

(u2
j + v2

j )− gyj,(19)

Dhφj =
γj
2

+ Re

Dhzj

 1
4πi

N∑
k=1,k 6=j

γk cot
(
zj − zk

2

)
h+Aj

 ,(20)

where A and B are our stabilizing terms defined as

Aj =
γj

2i(Dhzj)2
(Λh −HhDh)zj ,(21)

Bj = − 1
Dhzj

(
(I +H2

h)Dhφj − Re(wj(I +H2
h)Dhzj)

)
− 1

2iDhzj
Im
(

γj
Dhzj

(I +H2
h)Dhzj

)
.

(22)

The first stabilizing term, A, is to enforce the compatibility condition of Λh =
HhDh, while the second stabilizing term, B, is to eliminate the destabilizing terms
introduced by violating the compatibility condition, H2

hDh = −Dh. The role of
A and B in stabilizing the point vortex method will become clear as we perform
stability analysis far from equilibrium. Note that both stabilizing terms are discrete
convolution operators. Hence they can be evaluated in O(N log(N)) operations by
the Fast Fourier Transform.

The main result of this section is the following convergence result.

Theorem 1. Assume that the water wave problem is well-posed and has a smooth
solution in Cm+2 (m ≥ 3) up to time T . Let Dh be a r-th order derivative ap-
proximation with Fourier symbol ρ, i.e., (̂Dh)k = ikρ(kh). We further assume that
r ≥ 2, ρ(x) ≥ 0, and ρ(π) = 0. Then the modified point vortex method (18)-(22)
is stable and convergent. More precisely, there exist positive constants, h0(T ) and
C(T ) independent of h such that for 0 < h ≤ h0(T ) we have

‖z(t) − z(·, t)‖l2 ≤ C(T )h.(23)

Similar convergent results hold for φj and γj. Here ‖z‖2l2 =
∑N
j=1 |zj |2h.

Proof of Theorem 1. First of all, we note that the modified algorithm is consistent
with the water wave equations since the point vortex method is a first-order ap-
proximation to the singular velocity integral [4]. For a smooth interface solution,
z(α), we have

(Λh −HhDh)z(αj) = O(h), (I +H2
h)zα(αj) = O(h),

where we have used the compatibility conditions at the continuous level, i.e., Λ =
HD and H2D = −D. Thus, the modified point vortex method gives a first order
approximation to the 2-D water wave equations. In fact, using the same argu-
ment as in [6], we can prove that the numerical error in the point vortex method
approximation has a power series expansion in the odd powers of h

wj = w(αj) + C1(αj)h+ C3(αj)h3 + C5(αj)h5 + · · · .(24)
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Similar error expansions also hold for the correction terms, A and B. The existence
of the error expansion enables us to use Strang’s argument to obtain nonlinear
stability and convergence (see [12]).

Denote the errors in zj , γj and φj by żj = zj − z(αj), γ̇j = γj − γ(αj), and
φ̇j = φj − φ(αj), respectively. Define

Ej =
1

4πi

N∑
k=1,k 6=j

γk cot
(
zj − zk

2

)
h and ζj =

γj
Dhzj

.(25)

Accordingly, we define Ėj = Ej − E(αj), Ȧj = Aj − A(αj), Ḃj = Bj − B(αj),
and ζ̇j = ζj − ζ(αj). Here the quantities, E(αj), A(αj), and B(αj) are defined by
replacing zj by z(αj) and γj by γ(αj), in (25), (21) and (22). To prove stability,
we need to show that ż, φ̇ and γ̇ are bounded in a suitable norm for as long as a
smooth solution exists. To achieve this, we need to estimate Ėj , ζ̇j , Ȧj and Ḃj ,
etc., in terms of żj , φ̇j , and γ̇j . It is sufficient to consider the linear stability around
an arbitrary smooth solution. The nonlinear stability can be obtained in a manner
similar to that used in [3] for a spectrally accurate discretization by using Strang’s
argument [12]. We first study the linear variation of Ej . For technical reasons, it is
easier to work with the kernel in the infinite domain than in the periodic domain.
For this purpose, we first extend the sum over a single period to the sum over the
whole line. Note that

1
2

cot
(z

2

)
=

1
z

+
∞∑
m=1

2z
z2 − (2mπ)2

,

which converges absolutely away from z = 2mπ for any integer m. Thus we have

1
2

N∑
k=1,k 6=j

γ(αk) cot
(
z(αj)− z(αk)

2

)
h

=
N∑

k=1,k 6=j

γ(αk)h
z(αj)− z(αk)

+
∞∑
m=1

N∑
k=1,k 6=j

2(z(αj)− z(αk))γ(αk)h
(z(αj)− z(αk))2 − (2mπ)2

.

Recall that z(α) = α + s(α), s(α) and γ(α) are 2π-periodic. Define αj+mN =
αj + 2mπ. We obtain after some algebra that

M∑
m=1

N∑
k=1,k 6=j

2(z(αj)− z(αk))γ(αk)h
(z(αj)− z(αk))2 − (2mπ)2

=
M∑
m=1

N∑
k=1,k 6=j

(
γ(αk)

z(αj)− z(αk)− 2mπ
+

γ(αk)
z(αj)− z(αk) + 2mπ

)
h

=
M∑
m=1

N∑
k=1,k 6=j

(
γ(αk+mN )

z(αj)− z(αk+mN )
+

γ(αk−mN )
z(αj)− z(αk−mN )

)
h

=
(M+1)N∑

k=−MN+1,k 6=j

(
γ(αk)

z(αj)− z(αk)

)
h−

N∑
k=1,k 6=j

(
γ(αk)

z(αj)− z(αk)

)
h.
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Thus, we get

1
2

N∑
k=1,k 6=j

γ(αk) cot
(
z(αj)− z(αk)

2

)
h

= lim
M→∞

(M+1)N∑
k=−MN+1,k 6=j

(
γ(αk)

z(αj)− z(αk)

)
h.

(26)

In the rest of the paper, we will use the notation

∑
k 6=j

γ(αk)h
z(αj)− z(αk)

≡ lim
M→∞

(M+1)N∑
k=−MN+1,k 6=j

(
γ(αk)

z(αj)− z(αk)

)
h.(27)

Therefore, we have

Ej =
1

2πi

∑
k 6=j

γkh

zj − zk
.(28)

Direct calculations show that the linear variation ĖLj is given by

ĖLj ≡
1

2πi

∑
k 6=j

γ̇k
z(αj)− z(αk)

h− 1
2πi

∑
k 6=j

γ(αk)(żj − żk)
(z(αj)− z(αk))2

h.(29)

Note that

1
z(αj)− z(αk)

=
1

zα(αj)(αj − αk)
+ f(αj , αk),

for some smooth function f(α, β). Thus, to the leading order, ĖLj becomes

ĖLj =
1

2izα(αj)
Hh(γ̇j)−

γ(αj)
2izα(αj)2

Λhżj +A−1(γ̇j) +A0(żj),(30)

where A0 is a bounded operator from l2 to l2, and A−1 is a discrete smoothing
operator of order one, i.e., DhA−1 = A0 and A−1Dh = A0. Here we have used the
fact that the commutator [Hh, g] = Hhg − gHh = A−1 is a smoothing operator for
smooth g, and [Λh, g] = A0. This is not true for the alternating trapezoidal rule
due to aliasing errors.

Next we estimate the stability error for our first correction term:

ȦLj =
(

γj
2i(Dhzj)2

− γ(αj)
2iDhz(αj)

)
(Λh −HhDh)z(αj)

+
γ(αj)

2iz2
α(αj)

(Λh −HhDh)żj.
(31)

Observe that for a smooth solution z(α), we have (Λh − HhDh)z(αj) = O(h).
Therefore, we have to the leading order that

ȦLj =
γ(αj)

2iz2
α(αj)

(Λh −HhDh)żj +A0(żj) +A−1(γ̇j).(32)
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Now combining ĖLj with ȦL, we obtain

ĖLj + ȦLj =
1

2izα(αj)
Hh(γ̇j)−

γ(αj)
2izα(αj)2

Λhżj

+
γ(αj)

2iz2
α(αj)

(Λh −HhDh)żj +A0(żj) +A−1(γ̇j)

=
1

2izα(αj)
Hh(γ̇j)−

γ(αj)
2iz2

α(αj)
HhDhżj +A0(żj) +A−1(γ̇j).

Note that the two Λhżj terms cancel each other in the above equation, and only the
HhDhżj term survives in place of Λhżj . Thus, in effect we enforce the compatibility
condition Λh = HhDh by adding the stabilizing term A. It is important that
the coefficient γj

2i(Dhzj)2 in front of (Λh − HhDh)zj does not give rise to any new
destabilizing term to the leading order because (Λh−HhDh)z(αj) = O(h) is small.
This is why the we can add a stabilizing term A to exactly cancel the destabilizing
term corresponding to the violation of the compatibility condition Λh = HhDh.

To summarize, we have

ĖLj + ȦLj + ζ̇Lj =
1

2zα(αj)
(I − iHh)

(
γ̇j −

γ(αj)
zα(αj)

Dhżj

)
+A0(żj) +A−1(γ̇j).

(33)

Using the estimate for Ėj + Ȧj , we can also obtain an estimate for γ̇j following an
argument similar to that in [3]

γ̇j = 2Dhφ̇j − 2Re(w0(αj)Dhżj) +DhHhIm
(
γ(αj)
zα(αj)

żj

)
+A0(żj) +A0(φ̇j),

(34)

where w0 is the integral part of the interface velocity, i.e., w = w0 + ζ.
Next we will consider the role of our second correction term, B, which is used

to stabilize the terms introduced by violating the second compatibility condition,
(I +H2

h)Dh = 0. Using the identity

(I − iHh)(I + iHh)Dh = (I +H2
h)Dh,

we get

(I − iHh)HhDh = (I − iHh)(iDh) +
1
i
(I +H2

h)Dh.

Substituting (34) into (33) and using the above identity, we obtain by following the
same argument as in [3] that

d ¯̇zj
dt

=
1

zα(αj)
(I − iHh)Dh[φ̇j − Re(w(αj)żj)]

+
1

2izα(αj)
(I +H2

h)Im
(
γ(αj)Dhżj
zα(αj)

)
+ Ḃj +A0(żj) +A0(φ̇j).

(35)
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We now estimate the linear variation of the second stabilizing term, Ḃ. Recall
that

Bj = − 1
Dhzj

(
(I +H2

h)Dhφj − Re(wj(I +H2
h)Dhzj)

)
− 1

2iDhzj
Im
(

γj
Dhzj

(I +H2
h)Dhzj

)
.

By a direct calculation, one can show that

ḂLj = − 1
zα(αj)

(
(I +H2

h)Dhφ̇j − Re(w(αj)(I +H2
h)Dhżj)

)
− 1

2izα(αj)
Im
(
γ(αj)
zα(αj)

(I +H2
h)Dhżj

)
+A0(żj) +A−1(γ̇j),

(36)

where we have used the fact that (I +H2
h)zα(αj) = O(h). Define

Ḟj = φ̇j − Re(w(αj)żj).

Using the fact that the commutator [(I +H2
h), g] = A−1 for smooth g, we have

ḂLj = − 1
zα(αj)

(I +H2
h)DhḞj −

1
2izα(αj)

Im
(
γ(αj)
zα(αj)

(I +H2
h)Dhżj

)
+A0(żj) +A−1(γ̇j).

(37)

Substituting the estimate for ḂLj into (35), we get after some cancellations that

d ¯̇zj
dt

=
1

zα(αj)
(I − iHh)DhḞj −

1
zα(αj)

(I +H2
h)DhḞj

+A0(żj) +A0(φ̇j).
(38)

In order to complete our energy estimate, it is important to project the errors
into local normal and tangent vectors

żT = (ẋ, ẏ) · t, żN = (ẋ, ẏ) · n,
where t = σ(α)(xα, yα), n = σ(α)(−yα, xα) are the unit tangent and normal vec-
tors, respectively, σ = (x2

α + y2
α)−1/2. After projecting the error equation (38) into

the local tangent and normal vectors, we obtain

(żTj )t = σ(αj)DhḞj − σ(αj)(I +H2
h)DhḞj +A0(żj) +A0(Ḟj),(39)

(żNj )t = σ(αj)HhDhḞj +A0(żj) +A0(Ḟj).(40)

By differentiating Ḟj in time and using the Bernoulli equation, we arrive at (see [3]
for details)

(Ḟj)t = −c(αj)żNj +
1
2

(u̇2
j + v̇2

j ),(41)

where c(αj) = (ut, vt + g) ·n is the net acceleration in the normal direction. When
air is above water, the water wave problem is well-posed, and the sign condition,
c(α) > 0, is satisfied (see [14]). In fact, we may assume that c(α) ≥ c0 > 0.

As in [3], we will make a change of variables to eliminate the contribution from
the tangential direction

δ̇j = żTj +Hhż
N
j , żNj = żNj .
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By differentiating δ̇ with respect to t and using (39) and (40), we get after cancel-
lation of the leading order terms that

(δ̇j)t = A0(żj) +A0(Ḟj),(42)

(żNj )t = σ(αj)HhDhḞj +A0(żj) +A0(Ḟj),(43)

(Ḟj)t = −c(αj)żNj +
1
2

(u̇2
j + v̇2

j ).(44)

Thus, we have reduced the error estimates for the full nonlinear, nonlocal water wave
equations into a simple linear and almost local system for the variation quantities.
Now it is easy to perform an energy estimate based on the balance between żN and
Ḟ , in the same way as in [3]. To illustrate the main idea, we will present the linear
stability analysis below.

First, we observe that HhDh is a symmetric positive operator. In fact a direct
calculation shows that HhDh has the discrete Fourier symbol |k|(1− |kh|/π)ρ(kh),
where ρ(kh) is related to the Fourier symbol of Dh, i.e., (̂Dh)k = ikρ(kh). By
assumption, ρ(kh) ≥ 0. Introduce a discrete H1/2 norm

‖f‖
H

1/2
h

= ((HhDh + I)f, f)1/2,

where (f, g) =
∑N

j=1 fjgjh is the discrete inner product. To perform energy esti-

mates, we multiply (42) by δ̇j , (43) by c(αj)
σ(αj)

żNj , and (44) by (HhDh + I)Ḟj , sum
in j, then add up the resulting equations. Define

y0(t)2 = ‖(c/σ)
1
2 żN‖2l2 + ‖δ̇‖2l2 + ‖Ḟ‖2

H
1/2
h

,

where ‖f‖2l2 =
∑N
j=1 f

2
j h is the discrete L2 norm. It follows that

1
2
d

dt
y2

0(t) = (HhDhḞ , cż
N)− (cżN , (HhDh + I)Ḟ )

+ (f (1), żN) + (f (2), δ̇),
(45)

where

‖f (j)‖l2 ≤ C(‖żN‖l2 + ‖δ̇‖l2 + ‖Ḟ‖l2), for j = 1, 2.

Here C is a generic constant independent of h. This capital C should not be
confused with the little c(α) = (ut, vt + g) ·n. Note that the leading order terms in
(45) cancel each other. The remaining terms are of lower order and can be bounded
by y2

0 . Hence, we obtain
1
2
d

dt
y2

0(t) ≤ Cy2
0 .

This proves linear stability. Nonlinear stability and convergence of the method can
be obtained by using the asymptotic error expansion and Strang’s argument [12]
(also see [3]). Roughly speaking, Strang’s observation is that if a numerical method
is consistent with a well-posed (nonlinear) hyperbolic system and has an error
expansion, then linear stability implies convergence as long as a smooth solution
exists. The main idea is to construct a perturbation to the exact solution z(α, t),

z̃(α, t) = z(α, t) + hz1(α, t) + h2z2(α, t) + · · ·hmzm(α, t),

in such a way that z̃(α, t) satisfies the discrete equations up to high order, O(hm+1).
The correction term zj can be determined recursively from z, z1, ..., and zj−1, and
satisfies a linearized equation. The convergence analysis is then based on the error



A NEW STABILIZING TECHNIQUE 963

estimate for żj = zj(t) − z̃(αj , t) instead of żj = zj(t) − z(αj , t). By taking m
sufficiently large (say m ≥ 2 in our case), the truncation error in żj can be made
arbitrarily small (O(hm+1)). Then nonlinear stability can be obtained by using
the smallness of the truncation error. This implies convergence. We will omit the
details here. This completes our stability analysis for the 2-D point vortex method.

In the above analysis, it is clear that the role of B is to eliminate the destabilizing
terms introduced by violating H2

hDh = −Dh. The specific form of this correction
term can be explicitly determined after we project the errors into the tangent and
normal coordinate and making the change of variable from żT to δ̇.

4. Numerical results

In this section, we present a series of numerical calculations to demonstrate the
effect of various stabilizing terms in the stability analysis. We consider two ex-
amples. The first one is a standing wave. The second one is a breaking wave.
The second example is a more severe test since it generates high frequency compo-
nents dynamically. We found that for the standing wave, the point vortex method,
without adding any stabilizing term, is numerically unstable. For this mild test
problem, the first stabilizing correction, A, seems to be sufficient to stabilize the
calculation for long time. However, for the breaking wave example, we found that
we need both correction terms A and B in order to stabilize the calculation close to
the breaking of the wave. This gives a strong numerical validation to our stability
analysis.

In the standing wave calculations we use four different discretizations. In all
cases, the velocity integral is discretized using the point vortex method. The
space derivative Dα is approximated by the pseudo-spectral derivative with Fourier
smoothing. In our computations, we choose a specific cut-off function

ρ(x) =

{
1, x ∈ [0, π/2],

P
(

π−x
π−x/2

)
, x ∈ (π/2, π],

where P (ξ) = 35ξ4 − 84ξ5 + 70ξ6 − 20ξ7. With this choice of P (ξ), we have
ρ(π) = 0 and ρ ∈ C3[0, π]. Since we use the same discrete derivative operator
in all our four schemes, the only difference in these schemes is in the way we
stabilize the spatial discretization of the velocity integral. In the first scheme, we
use the new stabilizing technique which includes both correction terms A and B.
This scheme has been proved to be stable in Section 3. The second scheme uses
only one stabilizing term A, but does not include B. The third scheme uses the
Fourier filtering to enforce the compatibility condition Λh(sp) = HhDh(s), where
s is the periodic perturbation of z, i.e., z(α) = α + s(α), sp is a Fourier filtering
defined as (ŝp)k = p(kh)ŝk for some cut-off function p (please do not confuse p
with ρ in the discrete derivative operator). The cut-off function p is determined by
satisfying the modified compatibility condition Λh(sp) = HhDh(s). For the point
vortex method approximation, we can compute explicitly the Fourier symbols of
Hh and Λh. For 1-periodic functions, we have (̂Hh)k = −i sgn(k)(1 − 2|kh|), and
(̂Λh)k = 2π|k|(1 − |kh|). Here sgn(x) is the sign function. The corresponding
Fourier filtering is defined as p(kh) = ρ(kh)(1− 2|kh|)/(1− |kh|). Thus, our third
scheme using the Fourier filtering is given as follows (after taking into account the
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1-periodicity)

dz̄j
dt

=
1
2i

N∑
k=1,k 6=j

γk cot
(
π(zpj − z

p
k)
)
h+

γj
2Dhzj

≡ uj − ivj ,(46)

dφj
dt

=
1
2

(u2
j + v2

j )− gyj,(47)

Dhφj =
1
2
γj + Re

Dhzj
2i

N∑
k=1,k 6=j

γk cot
(
π(zpj − z

p
k)
)
h

 .(48)

Finally, our fourth scheme is the point vortex method without using any stabilizing
technique,

dz̄j
dt

=
1
2i

N∑
k=1,k 6=j

γk cot (π(zj − zk))h+
γj

2Dhzj
≡ uj − ivj ,

dφj
dt

=
1
2

(u2
j + v2

j )− gyj,

Dhφj =
1
2
γj + Re

Dhzj
2i

N∑
k=1,k 6=j

γk cot (π(zj − zk))h

 .
In our calculations we choose a small sinusoidal perturbation to the equilibrium

solution of period 1. The initial condition is given by

x(α, 0) = α+ 0.01 sin(2πα), y(α, 0) = −0.01 sin(2πα),
γ(α, 0) = 0.01 sin(2πα).

The gravity coefficient g is set to be 10. This choice of g and the wavelength of
the initial data, which is set to be 1, determine the time and length scales. With
this particular initial data, the familiar linear theory of water waves (see, e.g., [13])
predicts a standing wave, periodic in time, with period 0.801.

Throughout our calculations we use a fourth-order explicit Adams-Bashforth
method as our time integration scheme. A fourth-order explicit Runge-Kutta
method is used to initialize the first three time steps in the Adams-Bashforth
method. A simple iterative scheme is used to solve for γ. For example, for our
first scheme, the (m+ 1)st iterative solution for γ is given by

γm+1
j = 2Dhφj

− 2Re

Dhzj

 1
2i

N∑
k=1,k 6=j

γmk cot (π(zj − zk)) h+
γmj

2i(Dhzj)2
(Λh −HhDh)zj

 .

We use a fourth-order extrapolation in time to obtain a more accurate initial guess
for γ0

j as suggested in [1]. We stop the iteration when the difference between the
two consecutive iterative solutions is smaller that 10−10.

In Figures 1a and 1b, we plot the numerical interface positions obtained from
the first scheme from t = 0 to t = 4.8 and from t = 5.2 to t = 10, respectively.
In these calculations, we use N = 128 and dt = 0.0025. As predicted from the
linear theory, we obtain a standing wave with a period of about 0.8 time unit. So
there are, in total, about 12.5 complete oscillations by time t = 10. Clearly, the
numerical solution is stable and smooth. It also suggests that there is a global
smooth solution.
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Figure 1. (a) Interface positions of the standing wave from t = 0
to t = 4.8 with time increment equal to 0.4. Numerical solutions
are obtained using the first scheme with N = 128 and ∆t = 0.0025.
(b) Interface positions of the standing wave from t = 5.2 to t = 10
with time increment equal to 0.4. The same computation as in
Figure 1(a).

In Figure 2, we plot log |ŝk|, where the log is the natural logarithm. We can see
that the round-off errors remain small at all times, indicating that no high-mode
instability occurs in the calculation. We also test the time step stability in our
computations. In Figure 11, we plot the maximum sizes of the time steps allowed
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Figure 2. log |ŷk| versus the wavenumbers k from t = 0 to t = 10
time increment equal to 0.4. Numerical solutions are obtained
using the first scheme with N = 128 and ∆t = 0.0025.

for obtaining time step stability for different mesh sizes. The time step and the
mesh size clearly satisfy a linear CFL condition, i.e. ∆t ≤ Ch.

The calculations presented in Figures 3 and 4 are for the second scheme and
the third scheme, respectively. The numerical solutions corresponding to these
calculations appear to be stable, at least up to the time we have computed. The two
schemes give almost indistinguishable solutions. This suggests that the numerical
instability caused by violating the compatibility condition H2

hDh = −Dh is much
milder than that caused by violating the compatibility condition Λh = HhDh. This
is expected. In fact, the equilibrium stability analysis shows that the method is
stable as long as the compatibility condition Λh = HhDh is satisfied.

The calculations presented in Figures 5 and 6 are for the point vortex method
without any stability technique. In Figure 5, we plot the vortex sheet strength. The
numerical solution has developed oscillations by this time. Moreover, the numerical
oscillation grows rapidly in time. Increasing the numerical resolution does not help
to reduce the numerical instability. In fact, the oscillation will develop earlier with
increasing resolutions, indicating numerical instability. In Figure 6 we examine the
growth of the Fourier coefficients associated with the vortex strength. The log plot
of the spectrum at different times is illustrated in Figure 6. For t small, we see that
the spectrum decays exponentially. But as time increases, the round-off errors are
amplified by the numerical instability. As we can see, the round-off errors at the
high modes are amplified the fastest. By the time the high frequency modes have
grown to order O(1), we observe order one oscillations in the physical space. We
remark that using the γ formulation (10) gives a more stable discretization than
the corresponding formulation for the dipole strength µ. The growing eigenvalues
for the γ formulation are at most of order O(k), whereas the growing eigenvalues
for the dipole formulation can be as large as O(k2).
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Figure 3. (a) Interface positions of the standing wave from t = 0
to t = 10 with time increment equal to 0.4. Numerical solutions are
obtained using the second scheme with N = 128 and ∆t = 0.0025.
(b) Interface positions of the standing wave from t = 0 to t = 10
with time increment equal to 0.4. Numerical solutions are obtained
using the third scheme with N = 128 and ∆t = 0.0025.

Next, we present calculations of the breaking wave using the point vortex method.
In order to produce breaking in the water wave we use the initial condition

x(α, 0) = α, y(α, 0) = 0.1 cos(2πα),
γ(α, 0) = −1.0 + 0.1 sin(2πα).
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Figure 4. (a) log |ŷk| versus the wavenumbers k from t = 0 to t =
10 time increment equal to 0.4. Numerical solutions are obtained
using the second scheme with N = 128 and ∆t = 0.0025. (b)
log |ŷk| versus the wavenumbers k from t = 0 to t = 10 time
increment equal to 0.4. Numerical solutions are obtained using
the third scheme with N = 128 and ∆t = 0.0025.

Note that the vortex sheet strength γ does not have zero mean in this case. With
this choice of initial data, there is a shear velocity at infinity equal to ±1/2.

In Figure 7, we present two numerical calculations with N = 256 and N = 512
using the first scheme in which both correction terms are included. With N = 512,
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Figure 5. (a) Vortex sheet strength γ(α, t) as a function α at
t = 6.6. The numerical solution is computed using the fourth
scheme with N = 128 and ∆t = 0.0025. (b) Vortex sheet strength
γ(α, t) as a function α at t = 7.4. The same computation as in
Figure 5(a).

we can compute longer in time due to the increase of numerical resolution. In
Figure 8, curvatures at different times are also presented. In Figure 9, we plot the
Fourier spectrum of the interface positions (the y component). It is clear that the
numerical round-off errors are kept small even in the fully nonlinear regime of the
solution. Again, we test the time step stability in our computations. In Figure
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Figure 6. log |γ̂k| versus the wavenumbers k from t = 1 to t = 4.6
time increment equal to 0.6. Numerical solutions are computed
using the fourth scheme with N = 128 and ∆t = 0.0025.

12, we plot the maximum sizes of the time steps allowed for obtaining time step
stability for different mesh sizes. The time step and the mesh size clearly satisfy a
linear CFL condition, i.e., ∆t ≤ Ch.

We repeat the same calculation using the second and the third schemes. Neither
scheme enforces the compatibility condition, (H2

h + I)Dh = 0. Stability analysis
near equilibrium does not reveal any unstable eigenvalues, but our stability analysis
far from equilibrium reveals the potential numerical instability. The inclusion of the
second stabilizing term B is exactly to eliminate this potential numerical instability
induced by violating the compatibility condition (H2

h + I)Dh = 0. Our numerical
computations indicate that both schemes give rise to numerical instabilities in the
breaking wave calculations. In Figure 10, we plot the Fourier spectrum of the
interface position (the y component) for both schemes. It is evident that round-off
errors grow rapidly in time, leading to large oscillations in the physical space at
later times. It is also interesting to note that the numerical instabilities seem to
occur at almost the same time for the both calculations.
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Figure 7. (a) Interface position of the breaking wave at t = 0.45
computed from the first scheme with N = 256 and ∆t = 0.001.
(b) The same calculation as in Figure 7(a) with N = 512 and
∆t = 0.0005.
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Figure 8. (a) Curvatures of the breaking wave from t = 0.01 to
0.45 with time increment equal to 0.04. Solutions are computed
from the first scheme with N = 256 and ∆t = 0.001. (b) The same
calculation as in Figure 8(a) with N = 512 and ∆t = 0.0005.
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Figure 9. (a) log |ŷk| versus the wavenumbers k from t = 0.01
to t = 0.45 time increment equal to 0.04. Numerical solutions are
obtained using the first scheme with N = 256 and ∆t = 0.001. (b)
The same calculation as in Figure 9(a) with N = 512 and ∆t =
0.0005.



974 T. Y. HOU AND P. ZHANG

0 20 40 60 80 100 120 140
−45

−40

−35

−30

−25

−20

−15

−10

−5

0
spectrum of y at t=0.01,0.02,...,0.22,N=256,dt=0.001

(a)

0 20 40 60 80 100 120 140
−45

−40

−35

−30

−25

−20

−15

−10

−5

0
spectrum of y at t=0.01,0.02,...,0.22,N=256,dt=0.001

(b)

Figure 10. (a) log |ŷk| versus the wavenumbers k from t = 0.01
to t = 0.22 time increment equal to 0.01. Numerical solutions are
obtained using the second scheme with N = 256 and ∆t = 0.001.
(b) log |ŷk| versus the wavenumbers k from t = 0.01 to t = 0.22
time increment equal to 0.01. Numerical solutions are obtained
using the third scheme with N = 256 and ∆t = 0.001.
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Figure 11. The maximum sizes of the time steps versus the num-
ber of mesh points. Computations are performed for the first
scheme for the standing water wave.
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Figure 12. The maximum sizes of the time steps versus the num-
ber of mesh points. Computations are performed for the first
scheme for the breaking water wave.



976 T. Y. HOU AND P. ZHANG

Acknowledgments

We would like to thank Dr. Hector Ceniceros for several valuable suggestions
during the preparation of this paper. We also appreciate constructive comments
from the referee.

References

[1] G. Baker, D. Meiron, and S. Orszag, Generalized vortex methods for free-surface flow prob-
lems, J. Fluid Mech. 123, 477-501 (1982). MR 84a:76002

[2] G. Baker, and A. Nachbin, Stable methods for vortex sheet motion in the presence of surface
tension, SIAM J. Sci Comput., 19, 1737-1766 (1998). MR 99c:76073

[3] J.T. Beale, T.Y. Hou and J.S. Lowengrub, Convergence of a boundary integral method for
water waves, SIAM J. Numer. Anal., 33, 1797-1843 (1996). MR 98b:76009

[4] R. E. Caflisch and J. S. Lowengrub, Convergence of the Vortex Method for Vortex Sheets,
SIAM J Numer. Anal., 26, 1060-1080 (1989). MR 91g:76073

[5] J. W. Dold, An efficient surface-integral algorithm applied to unsteady gravity waves, J.
Comp. Phys., 103, 90-115 (1992). MR 93g:76091

[6] J. Goodman, T. Y. Hou and J. Lowengrub, Convergence of the point vortex method for the
2-D Euler equations, Comm. Pure and Appl. Math., 43, 415-430 (1990). MR 91d:65152

[7] T. Y. Hou, Numerical Solutions to Free Boundary Problems, Acta Numerica, 335-415 (1995).
MR 96i:65113

[8] T. Y. Hou, Z.-H. Teng, and P. Zhang, Well-Posedness of Linearized Motion for 3-D Water
Waves Far From Equilibrium, Comm. in PDE’s, 21, 1551-1586 (1996). MR 98c:76013

[9] A. I. Markushevich, Theory of Functions of a Complex Variable, translated to English by
Richard Silverman, second edition, Chelsea Publishing Company, New York, 1977. MR
56:3258

[10] A.J. Roberts, A stable and accurate numerical method to calculate the motion of a sharp
interface between fluids, I.M.A. J. Appl. Math 31, 13-35 (1983).

[11] L. Rosenhead, The point vortex approximation of a vortex sheet, Proc. Roy. Soc. London Ser.
A, 134, 170-192 (1932).

[12] G. Strang, Accurate partial differential methods II: Nonlinear problems, Numer. Math., 6,
37-64 (1964). MR 29:4215

[13] G. B. Whitham, Linear and Nonlinear Waves, John Wiley & Sons. Publications, New York,
1974. MR 58:3905

[14] S. J. Wu, Well-posedness in Sobolev spaces of the full water-wave problem in 2-D, Invent.
Math., 130, 39-72 (1997). MR 98m:35167

Applied Mathematics, California Institute of Technology, Pasadena, California

91125

E-mail address: hou@ama.caltech.edu

School of Mathematical Science, Peking University, Beijing 100871, China

E-mail address: pzhang@sxx0.math.pku.edu.cn

http://www.ams.org/mathscinet-getitem?mr=84a:76002
http://www.ams.org/mathscinet-getitem?mr=99c:76073
http://www.ams.org/mathscinet-getitem?mr=98b:76009
http://www.ams.org/mathscinet-getitem?mr=91g:76073
http://www.ams.org/mathscinet-getitem?mr=93g:76091
http://www.ams.org/mathscinet-getitem?mr=91d:65152
http://www.ams.org/mathscinet-getitem?mr=96i:65113
http://www.ams.org/mathscinet-getitem?mr=98c:76013
http://www.ams.org/mathscinet-getitem?mr=56:3258
http://www.ams.org/mathscinet-getitem?mr=29:4215
http://www.ams.org/mathscinet-getitem?mr=58:3905
http://www.ams.org/mathscinet-getitem?mr=98m:35167

	1. Introduction
	2. Boundary integral formulation and discretization
	3. A new stabilizing technique for 2-D water waves
	4. Numerical results
	Acknowledgments
	References

