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HERMITE INTERPOLATION
BY PYTHAGOREAN HODOGRAPH CURVES

OF DEGREE SEVEN

B. JÜTTLER

Abstract. Polynomial Pythagorean hodograph (PH) curves form a remark-
able subclass of polynomial parametric curves; they are distinguished by having
a polynomial arc length function and rational offsets (parallel curves). Many
related references can be found in the article by Farouki and Neff on C1 Her-
mite interpolation with PH quintics. We extend the C1 Hermite interpolation
scheme by taking additional curvature information at the segment boundaries
into account. As a result we obtain a new construction of curvature continu-
ous polynomial PH spline curves. We discuss Hermite interpolation of G2[C1]
boundary data (points, first derivatives, and curvatures) with PH curves of
degree 7. It is shown that up to eight possible solutions can be found by com-
puting the roots of two quartic polynomials. With the help of the canonical
Taylor expansion of planar curves, we analyze the existence and shape of the
solutions. More precisely, for Hermite data which are taken from an analytical
curve, we study the behaviour of the solutions for decreasing stepsize ∆. It is
shown that a regular solution is guaranteed to exist for sufficiently small step-
size ∆, provided that certain technical assumptions are satisfied. Moreover,
this solution matches the shape of the original curve; the approximation order
is 6. As a consequence, any given curve, which is assumed to be G2 (curva-
ture continuous) and to consist of analytical segments can approximately be
converted into polynomial PH form. The latter assumption is automatically
satisfied by the standard curve representations of Computer Aided Geometric
Design, such as Bézier or B-spline curves. The conversion procedure acts lo-
cally, without any need for solving a global system of equations. It produces
G2 polynomial PH spline curves of degree 7.

1. Introduction

Polynomial parametric curves x(t) = {x1(t), x2(t)} (such as Bézier or B-spline
curves) with polynomial components xi(t) form the mathematical foundation of
the various computer-aided design tools that are currently in use for the design
and manufacturing of planar shapes (see [5, 10]). For instance, a polynomial Bézier
curve of degree n is given by the parametric representation

x(t) = {x1(t), x2(t)} =
n∑
i=0

Bni (t) bi, t ∈ [0, 1],(1.1)
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with control points bi = {bi,1, bi,2} ∈ R2, where the Bni (t) =
(
n
i

)
ti(1 − t)n−i are

the Bernstein polynomials of degree n. The Pythagorean hodograph (PH) curves
are an interesting subclass of these curves; they are distinguished by the fact that
the components of the first derivative vector x′(t) = {x′1(t), x′2(t)} (also sometimes
called the hodograph) satisfy the Pythagorean condition

x′1
2 + x′2

2 = σ2(1.2)

for some polynomial σ = σ(t). That is, the components of the first derivative vector
(or hodograph) belong to a Pythagorean triple in the polynomial ring R[t]. Clearly,
σ is then a polynomial of degree n− 1.

Pythagorean hodograph curves have been introduced and studied by Farouki and
various coauthors in a number of remarkable publications (see [6] and the references
cited therein). The Pythagorean condition entails a number of useful properties:

• The arc length of any segment t ∈ [t0, t1] can be computed exactly, without
numerical quadratures:

S =
∫ t1

t0

√
x′1

2 + x′2
2 dt =

∫ t1

t0

|σ(t)| dt.(1.3)

(Note that sign changes of σ correspond to degenerate points (cusps) of the
PH curve, which have to be avoided in applications. The interpolation scheme
described below is guaranteed to give regular solutions.) This property is espe-
cially advantageous in applications such as NC milling or robotics, where the tool
has to be moved along a trajectory with a certain specified speed or “feedrate”
(cf. [8, 9]).

• The offsets (or parallel curves) of Pythagorean hodograph curves can be repre-
sented exactly by rational parametric curves. Offset curves and their approxima-
tion have attracted a great deal of research from the geometric design community,
as they are useful in numerous applications. See the excellent survey by Elber et
al. for references and a comparison of various approximation techniques [4].

Using PH curves instead of “ordinary” polynomial curves, however, it is pos-
sible to bypass the need for an approximation. The offset (or parallel curve) of a
given PH curve (1.1) at a certain distance d is given by

xd = x +
d

σ
{−x′2, x′1} =

1
σ
{σ x1 − d x′2, σ x2 + d x′1},(1.4)

hence it can be represented exactly as a rational Bézier curve of degree 2n− 1.

A number of methods are available that deal with the construction of tangent con-
tinuous (C1 or G1) piecewise Pythagorean hodograph curves, mainly via Hermite
interpolation. Farouki and Neff [6] solve the C1 Hermite interpolation problem with
the help of PH quintics. Meek and Walton [13] use PH cubics (also called Tschirn-
hausen cubics) for matching point and tangent (i.e., G1) boundary data. Moreover
it is shown that if the Hermite data stem from a sufficiently smooth function, then
the approximation order of the Tschirnhausen cubic is four.

For many applications it is advantageous to use spline curves with continuous
curvature function (i.e., G2 curves). For instance, in NC milling applications, us-
ing such curves produces motions with continuous accelerations, hence continuous
cutting forces. This will increase the possible speed of the manufacturing process,
and/or the lifetime of the machinery.
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The construction of C2 PH interpolating splines has been discussed by Albrecht
and Farouki [1]. The solution process involves solving a global system of quadratic
equations with the help of the homotopy method. Clearly, the use of a global
nonlinear system restricts the number of data that possibly can be handled with
this approach. Even if the size of the nonlinear system increases only linearly with
the number n of data, the number of solutions (counted with multiplicities over the
projective domain, see [1]) equals 2n !

Walton and Meek [17] use cubic and quintic polynomial PH spirals for interac-
tively designing G2 parametric curves.

Pottmann [16] uses rational PH curves of degree 6 for Hermite interpolation of
G2 boundary data. His approach is based on the so-called dual representation of a
curve, as the envelope of its tangents. Unlike polynomial PH curves, however, their
rational counterparts no longer have a simple arc-length function. Nevertheless,
the offset curves are still rational.

The present paper discusses the construction of a curvature continuous polyno-
mial PH spline curve via Hermite interpolation of G2[C1] boundary data (points,
first derivatives, and curvatures) by PH curves of degree 7. As an advantageous
feature of the construction presented, it is possible to convert any given planar G2

curve approximately into polynomial Pythagorean hodograph form without solving
a global nonlinear system. The conversion procedure acts locally, as it is based on
Hermite interpolation.

There are various reasons for choosing G2[C1] boundary data, rather than just
tangent and curvature information.

• In many applications it is necessary to approximate both the original curve and its
parameterization, as the latter may represent a desired speed distribution along
the curve. Also, using purely geometric curve constructions (without taking
the information about the first derivatives into account) may produce poorly
parameterized curves.

• Using the information about the length of the first derivatives also offers some
computational advantages: the interpolating curve can be found by solving a
single equation of degree 4. Consequently, criteria for the existence of solutions
are available. Alternatively one might consider using PH quintics in order to
match G2 boundary data. The latter approach, however, would produce a highly
nonlinear system of equations that could only be dealt with numerically.

The remainder of this paper is organized as follows. The next section summa-
rizes some basic facts about PH curves and their construction with the help of
stereographic projection. Section 3 discusses the problem of G2[C1] Hermite in-
terpolation by PH curves of degree 7. We derive a procedure for computing the
solutions. Section 4 is devoted to the asymptotic behaviour of both solutions and
solvability, by discussing the following question: Provided that the C2[G1] bound-
ary data stem from an analytical curve, how does the solution to the interpolation
problem depend on the distance between the segment end points? Finally, Section 5
formulates an approximation procedure for converting arbitrary planar curves into
globally curvature continuous (i.e., G2) polynomial PH spline curves of degree 7.
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2. Pythagorean hodograph curves

Pythagorean hodograph (PH) curves can be constructed with the help of the
following observation which is based on an algebraic result concerning Pythagorean
triples in unique factorization domains. Note that we are using a slightly different
formulation than Farouki and Neff [6, Definition 1], in order to derive a geometric
interpretation of the formula.

Lemma 2.1. A polynomial Bézier curve x = x(t) of degree n is a PH curve if and
only if its first derivative vector (hodograph) x′ = x′(t) can be expressed in the form

{ x′1, x′2 } = { 2wu1 (1 + u2), w( (1 + u2)2 − u2
1) }(2.1)

with real polynomials w(t), u1(t), and u2(t) of certain degrees k, m, and m, re-
spectively, where n = 2m + k + 1. The associated polynomial σ(t) satisfying the
Pythagorean condition σ2 = x′1

2 + x′2
2 is then given by

σ = w (u2
1 + (1 + u2)2 ).(2.2)

Proof. According to a result on Pythagorean triples in unique factorization do-
mains, any solution of (1.2) can be represented as

{ x′1, x′2 } = {w (v2
1 − v2

2), 2w v1 v2 } and σ = w(v2
1 + v2

2),(2.3)

with real polynomials w(t), v1(t), v2(t) of degrees k, m and m, respectively, where
n = 2m+ k+ 1 (see [6, 12]). The formulas (2.1) and (2.3) are equivalent. This can
be seen by substituting u1 = (v1 − v2)/

√
2, u2 = (v1 + v2)/

√
2 − 1 in (2.1), and

conversely v2 = (u2 + 1− u1)/
√

2, v1 = (u1 + u2 + 1)/
√

2 in (2.3).

After choosing the hodograph, the corresponding PH curve can easily be com-
puted by integrating the components of the hodograph. The integration constants
specify the starting point x(0) of the curve.

Remark 2.2. In the remainder of this paper we will assume that the polynomial
w(t) has strictly positive values in [0, 1]. Zeros of this polynomial within [0, 1] would
cause the resulting PH curve to have a singularity; therefore, they are excluded.
Without loss of generality one may then choose the polynomial w to be positive.

Lemma 2.1 admits a geometric interpretation:

Lemma 2.3. Consider the unit tangent of the PH curve (1.1) which has been ob-
tained from (2.1),

~t(t) =
1
σ
{ x′1(t), x′2(t) } = { 2 u1 (1 + u2)

u2
1 + (1 + u2)2

,
(1 + u2)2 − u2

1

u2
1 + (1 + u2)2

}.(2.4)

For t ∈ [0, 1], the unit tangent ~t(t) traces a segment of the unit circle. For any
parameter value t ∈ R, the three points z = {0,−1}, ~t(t), and u(t) = {u1(t), u2(t)}
are collinear.

Proof. The unit tangent can be rewritten as α(t) u(t) + β(t) z with the rational
functions α = 2 (1 + u2)/((1 + u2)2 + u2

1) and β = 1− α.

Thus, the unit tangent ~t(t) is obtained by stereographic projection of the curve u(t)
onto the unit circle, where the centre of projection is chosen at z = {0,−1}. See
Figure 1a for an illustration. The curve u(t) will be referred to as the preimage
curve.
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Figure 1. (a) Geometric interpretation of Lemma 2.1 as a stere-
ographic projection. (b) Inflection of the PH curve corresponds to
tangents of u passing through z.

Remark 2.4. The hodograph formula (2.1) has a symmetry: the preimage curves
u(t) = {u1(t), u2(t)} and 2z − u(t) = {−u1(t),−2 − u2(t)} produce the same PH
curves. Both curves are centrally symmetric with respect to z = {0,−1}.

From the geometric interpretation we conclude some relations between the geo-
metric properties of the preimage curve u and the resulting PH curve x(t).

• The PH curve has a singular point at t = t0 (i.e., x′(t0) = {0, 0}) iff t0 is a zero
of w(t) (but this was excluded in Remark 2.2 for t0 ∈ [0, 1]) or u(t0) = z, i.e., iff
the preimage curve passes through the centre of projection.

• The PH curve has vanishing curvature at t = t0 (inflection or flat point of higher
order) iff the tangent of the preimage curve u(t) at t = t0 passes through the
centre z and u(t0) 6= z (see Figure 1b). Recall that the curvature can be computed
from

κ = [x′,x′′]/‖x′‖3,(2.5)

with the determinant [p,q] = p1q2 − p2q1 of vectors p,q ∈ R2. A short compu-
tation indeed confirms that

[x′,x′′] = 2w2 (u2
1 + (1 + u2)2) [u− z,u′].(2.6)

Thus, at a regular curve point, zeros of the curvature are equivalent to linear
dependency between u− z and the tangent u′ of the preimage curve.

In the remainder of this paper we deal exclusively with PH curves of degree 7, as
these curves are capable of matching G2[C1] Hermite boundary data. According
to the representation of Lemma 2.1, there are four possibilities of constructing PH
curves of degree 7: any choice of degrees (m, k) = (i, 6 − 2i) with 0 ≤ i ≤ 3 is
possible. However, the geometric flexibility of the PH curve depends mainly on
the degree m of the preimage curve u(t). For instance, the number of potential
inflections equals the number of possible tangents that pass through the centre of
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Figure 2. Lemma 2.5.

projection. Thus, the choice (m, k) = (3, 0) seems to be the most appropriate one
for our application, as the resulting PH curves of degree 7 can have the maximum
number of inflections (i.e., 2), hence providing the maximum flexibility of shape.
From now on we will consider PH curves with cubic preimage curve u(t) and a
constant w = 1.

The final lemma prepares the interpolation of G2[C1] boundary data.

Lemma 2.5. Let the cubic preimage curve u(t) =
∑3
i=0 B

3
i (t) di be given in Bézier

form with the boundary control points

d0 = (1 − τ) z + τ ~t, d1 = ~t + ρ~t⊥ + ν (~t− z)(2.7)

and with certain control points d2,d3 ∈ R2. The unit vector ~t = {− sinφ, cosφ}
corresponds to a point on the unit circle, and ~t⊥ = {cosφ, sinφ}. As in the previous
lemma, z = {0,−1} is the center of projection. The real parameters ρ, τ, ν are
arbitrary. Then, the boundary tangent and curvature of the resulting PH curve of
degree 7 at t = 0 are

x′(0) = 2 τ2 (cosφ+ 1)~t and κ(0) = − 3 ρ
2 τ3 (cosφ+ 1)

.(2.8)

The proof results from straightforward calculations. An analogous observation
can be derived for the opposite segment end point, i.e., at t = 1.

According to this lemma, the first derivative and the the curvature can be inter-
polated by choosing the parameters τ and ρ. The remaining parameter ν is free:
it influences neither x′(0) nor κ(0). That is, the second control point d1 of the
cubic preimage curve can be moved on a parallel to ~t− z without altering the first
derivative or curvature of the resulting PH cubic at t = 0 (cf. Figure 2).

This observation will be used to facilitate the G2[C1] Hermite interpolation prob-
lem with PH curves: curvatures and first derivatives at the segment boundaries will
be interpolated by choosing the parameters τ , ρ (for t = 0) and analogous param-
eters for t = 1. This leaves the PH curve with two free parameters (one each for
the inner control points d1, d2 of the preimage curve) which will then be used to
match the given positional data.
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Figure 3. Adapted system of coordinates

3. Hermite interpolation

We construct a PH curve of degree 7, represented as a Bézier curve (1.1), that
matches the following data:

• the boundary points p0, p1;

• the unit tangents ~t0, ~t1 and the lengths l0, l1 of the first derivatives at the
boundary;

• the boundary curvatures k0, k1, cf. (2.5).

This leads to the interpolation conditions

x(0) = p0, x′(0) = l0~t0, κ(0) = k0,

x(1) = p1, x′(1) = l1~t1, and κ(1) = k1.
(3.1)

Throughout this section we are using an adapted system of coordinates, with the
origin at p0 = {0, 0} and with the x2-axis spanned by the bisector of the unit
tangents (see Figure 3). The direction of the x1-axis is obtained by a rotation
of −π/2. Consequently, the given unit tangents may be represented as

~t0 = {−s, c} and ~t1 = {s, c},(3.2)

with s = sinφ and c = cosφ, where φ is the oriented angle between the x2-axis and
the unit tangent ~t0.

3.1. Finding the interpolants. The interpolating PH curve of degree 7 will be
constructed with the help of the observations from Lemmas 2.1 and 2.5. The
preimage curve of the stereographic projection is chosen as

u(t) = { u1(t), u2(t) } =
3∑
i=0

diB3
i (t)(3.3)

with the control points

d0 = (1− τ0) z + τ0~t0, d1 = ~t0 + ρ0~t⊥0 + (µ0 + µ1) (~t0 − z),

d2 = ~t1 − ρ1~t⊥1 + (µ0 − µ1) (~t1 − z), and d3 = (1 − τ1) z + τ1~t1

(3.4)

that depend on the six unknown parameters τi, ρi, and µi, i = 0, 1.
The special representation (3.4) of the preimage control points is inspired by

Lemma 2.5. In addition, we have split the two ν-parameters (one for each segment
boundary) into µ0± µ1. This simplifies the forthcoming calculations. It is possible
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to represent all cubic preimage curves in this way, provided that the resulting PH
curves of degree 7 have the boundary unit tangents ~t0 and ~t1.

Once the parameters τi, ρi, and µi have been found, the first derivative vector
of the interpolating PH cubic results from (2.1),

x′(t) = { x′1(t), x′2(t) } = { 2 u1 (1 + u2), (1 + u2)2 − u2
1 } =

6∑
i=0

ciB6
i (t).(3.5)

Explicit formulas for the control points ci = { ci,1, ci,2 } can be generated easily
with the help of computer algebra tools such as Maple or Mathematica. For the
sake of brevity we omit these (somewhat lengthy) expressions.

Finally, the PH curve is given as a Bézier curve (1.1) of degree 7, with the control
points bi = 1

7

∑i
j=0 cj . In particular we obtain

b0 = x(0) = { 0, 0 } and b7 = x(1) = { ~µ>Q~µ, ~µ>R~µ }(3.6)

with the 3-vector ~µ = {1, µ0, µ1}>. The two symmetric 3×3 matricesQ = (qi,j) and
R = (ri,j) are listed in the appendix: they depend on the remaining parameters τi
and ρi. The matrices satisfy

q2,2 = q3,3 = 0 and r2,3 = r3,2 = 0.(3.7)

These facts will make it very easy to compute the parameters µ0, µ1 by solving a
single equation of degree 4. They are a consequence of the special choice (3.4).

According to Lemma 2.5, the parameters τi, ρi can be computed from the given
curvature and derivative information at the boundaries, as follows.

• Firstly, the parameters τi are found from (2.8). This gives the two solutions

τ
(1)
0 = +

√
1
2 l0 / (c+ 1), τ

(1)
1 = +

√
1
2 l1 / (c+ 1), and

τ
(2)
0 = −

√
1
2 l0 / (c+ 1), τ

(2)
1 = +

√
1
2 l1 / (c+ 1).

(3.8)

The remaining two possible combinations of signs will be ignored, as they do not
produce different solutions. This is due to the symmetry property of formula (2.1)
(see Remark 2.4). The solutions arising from the first (resp. second) choice of
signs will be called the solutions of the first (resp. second) kind. Note that for the
solutions of the first (resp. second) kind, the preimage control points d0 and d3

are on the same side (resp. on different sides) of the centre z. Thus, the solutions
of the first kind can be expected to exhibit better shapes, as they should not get
close to the centre z of projection. The shape of solutions will be examined in
more detail later.

• Secondly, the curvature parameters ρi are computed from the given curvatures
ki,

ρi = −2
3
ki τ

3
i (c+ 1); i = 0, 1;(3.9)

again, see (2.8).

The remaining two unknowns µ0, µ1 are found from the interpolation of the bound-
ary points p0 = {0, 0} (the origin of the coordinate system has been chosen there)
and p1 = {p1,1, p2,2}. The condition at the starting point is automatically satisfied
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(see (3.6)). The interpolation condition at the second point produces two quadratic
equations

~µ>Q~µ = p1,1 and ~µ>R~µ = p1,2,(3.10)

with ~µ = {1, µ0, µ1}>. Owing to q2,2 = q3,3 = 0, the first equation can immediately
be solved for one of the unknowns, say µ0, giving a bilinear expression in µ1,

µ0 = −q1,1 + 2µ1q1,3 − p1,1

2 q1,2 + 2µ1q3,2
.(3.11)

Substituting the result into the second equation leads to a single equation for the
remaining variable. The numerator of this equation gives a quartic equation for µ1,

0 = 4 r3,3q2,3
2 µ4

1 + (8 r1,3q2,3
2+8 r3,3q1,2q2,3) µ3

1 + (4 r1,1q2,3
2

+ 4 q1,3
2r2,2−8 r1,2q1,3q2,3−4 p1,2q2,3

2+16 r1,3q1,2q2,3+4 r3,3q1,2
2) µ2

1

+ (8 r1,1q1,2q2,3−8 r1,2q1,3q1,2−8 p1,2q1,2q2,3+8 r1,3q1,2
2+4 q1,3q1,1r2,2

− 4 p1,1q1,3r2,2−4 r1,2q1,1q2,3+4 r1,2p1,1q2,3)µ1 + 4 r1,1q1,2
2−2 r2,2q1,1p1,1

− 4 r1,2q1,1q1,2+r2,2p1,1
2+4 r1,2p1,1q1,2−4 p1,2q1,2

2+r2,2q1,1
2.

(3.12)

This equation can now be solved either using appropriate numerical methods, or
with the help of Ferrari’s solution for the general quartic (see [3]). The latter
approach is particularly useful for a theoretical analysis of the existence of solutions
(see Section 4). For the practical implementation, however, it is more appropriate
to rely on a numerical root-finding procedure that deals directly with the quadratic
equations (3.10). The Taylor expansions (4.17) derived in Section 4 may be used in
order to generate suitable initial values for the iterative numerical computations.

Equation (3.12) for µ1 may produce up to four real different solutions. After
finding them, we substitute into (3.11) and compute the corresponding values of
the first parameter µ0. In total, one may get up to eight different PH curves of
degree 7 matching the given G2[C1] boundary data, four for each kind of solutions
(cf. (3.8)).

3.2. Number of solutions. In order to illustrate the Hermite interpolation prob-
lem we consider an example. Let the following tangent and curvature boundary
data be given:

φ =
π

12
, l0 =

18
10
, l1 = 1, k0 = 5, k1 = 7.(3.13)

The angle φ specifies the directions of the boundary unit tangents~t0, ~t1 with respect
to the adapted system of coordinates (see (3.2)). From the given data we may find
the values of the parameters τ0, τ1 and ρ0, ρ1 (see (3.8) and (3.9)). We obtain two
quadruples of solutions, corresponding to the solutions of the first and second kind.

We will now discuss how many PH curves of degree 7 exist that interpolate these
given boundary data, depending on the location of the segment end point p1. Note
that p0 = {0, 0}, due to the adapted choice of coordinates.

We consider the feasible locations of the segment end point x(1), depending on
the parameters µ0, µ1. They are obtained from the quadratic mapping R2 → R2

(µ0, µ1) 7→ x(1) = { ~µ>Q~µ, ~µ>R~µ }(3.14)

(see (3.6)). In general, such a quadratic bivariate mapping maps the plane R2 to a
subset of R2, which is multiply covered. A detailed study and classification of such
mappings can be found, e.g., in [15].
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Figure 4. Number of solutions, depending on the location of p1.

In the above example, the situation is shown in Figure 4.
The left (resp. right) figure corresponds to the solutions of the first (resp. second)

kind. The two families of parabolas (thin lines) are the images of the lines µi =
constant in the µ0, µ1-plane. Their envelope is a quartic rational curve (thick lines);
this curve separates the regions that lead to a different number of solutions.

The innermost region is covered four times by the quadratic mapping. Conse-
quently, if the given segment end point p1 belongs to that region, the interpolation
problem has four real solutions. The outer region is not a part of the range domain
of the mapping (3.14). Thus, if p1 lies in this part of the plane, then there are no
solutions of the interpolation problem available. In between both regions the image
plane is covered twice, leading to two potential solutions.

3.3. Summary. The discussion of G2[C1] Hermite interpolation leads to the fol-
lowing result.

Proposition 3.1. Consider the G2[C1] Hermite interpolation problem with Py-
thagorean hodograph curves of degree 7. Here, we restrict ourselves to PH curves
which are obtained from a cubic preimage curve. Then, the interpolation problem
may have up to eight real solutions. The interpolants can be computed with the help
of the algorithm which is summarized in Table 1.

Clearly, the proposition does not address the questions of existence and regularity
of the solutions. This will be examined in the next section.

The Hermite interpolation procedure may produce several solutions; hence in
applications it will be necessary to pick one of them. There are several possible
criteria for this decision (examples follow).

• The distance (measured by a suitable norm) between the PH curves and a given
curve. This measure is particularly useful if the Hermite data stem from an
underlying given curve.

• The “fairness” or the “bending energy” of the PH curves. This is measured by
expressions such as

∫ s1
s0
κ2ds or, as an approximation to the latter,

∫ 1

0 ‖x′′(t)‖2dt.
• The arc length of the PH curves.

Clearly, the choice of the appropriate functional depends on the specific application.
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Table 1. The G2[C1] Hermite interpolation algorithm.

1) Transform the G2[C1] Hermite boundary data into the adapted system
of coordinates.

2) Compute the parameters τ (j)
i and ρi from the given boundary curva-

tures ki and the lengths of the first derivatives li, i = 0, 1, j = 1, 2 (see
(3.8) and (3.9)).

3) Find the parameters µ0, µ1 by solving the two quadratic equations
(3.10). This may lead to up to eight different solutions, four each for
the solutions of the first (resp. second) kind.

4) Compute the control points bi of the interpolating PH curves (see
equations (3.3)–(3.6)).

5) Transform the interpolating PH curves back into world coordinates.
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a) Hermite interpolants

b) Curvature plots

Solutions of the first kind Solutions of the second kind

Figure 5. (a) The eight solutions of the G2[C1]-Hermite interpo-
lation problem, and (b) the associated curvature plots.
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Example 3.2. We consider G2[C1] data which have been taken from an arc of an
ellipse. Applying the Hermite interpolation procedure to these data leads to eight
distinct PH curves (see Figure 5a). The solutions of the first and the second kind
are shown in the right and left figures, respectively. There are four solutions each,
visualized by different line styles (“hollow”, “solid”, “dashed”, and “dotted”). Note
that the dotted and the dashed curves in the right figure are almost identical.

In order to judge the quality of the solutions, the associated curvature plots are
provided in the second line of the figure. As shown by these plots, only one of these
solutions behaves as expected (the solid black curve in the left figure). This PH
curve is virtually indistinguishable from the original elliptic arc (not shown). The
remaining seven curves exhibit singular points and/or almost singular points, as
indicated by the poles of the curvature function.

The next section studies the behaviour of the solutions in more detail.

4. Asymptotic solvability and asymptotic behaviour

The G2[C1] Hermite interpolation problem from the previous section does not
necessarily have regular real solutions. Based on Ferrari’s solution of the general
quartic, one could formulate criteria that guarantee the existence of real solutions.
These criteria, however, would give very little geometrical insight, as the resulting
expressions are rather technical and complicated. Instead we consider the asymp-
totic behaviour of the solutions. More precisely, assuming that the G2[C1] Hermite
data are taken from an arc of an analytical curve, we investigate the asymptotic
behaviour of solvability and shape of solutions for decreasing stepsize. In order to
get results which can be interpreted geometrically, we use the so-called canonical
expansion of the curve from differential geometry, as follows.

4.1. Canonical Taylor expansion. Consider a planar parametric curve. It is
assumed to be analytical in a neighborhood of one of its points. Let p̄(S) =
{ p̄1(S), p̄2(S) } be the parametric representation of the curve with respect to the
arc length S; it is characterized by ‖p̄′(S)‖ ≡ 1. Differentiation gives the unit
tangent

p̄′(S) = ~t(S).(4.1)

Its derivatives are governed by the Frenet–Serret formulas

~t′(S) = κ(S) ~n(S) and ~n′(S) = −κ(S) ~t(S),(4.2)

where ~n(S) and κ(S) are the unit normal and the curvature at p̄(S). At each
point p̄(S), unit tangent and unit normal form a positively oriented base of R2.
Consequently, points on curves with positive curvature travel counterclockwise for
increasing arc-length parameter S.

Starting from the Taylor expansion of p̄(S),

p̄(S) = p̄(0) + p̄′(0)S + 1
2 p̄′′(0)S2 + 1

6 p̄′′′(0)S3 +O(S4),(4.3)

and with the help of the Frenet–Serret formulas, one may successively replace the
derivatives of p̄(S) at S = 0 with certain linear combinations of ~t(0) and ~n(0).
Expressions for the higher order derivatives of p̄ are obtained by differentiating the
Frenet–Serret formulas. Clearly, this generates expressions involving the derivatives
of the curvature κ(S).
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Combining these formulas, one gets the so-called canonical Taylor expansion
with respect to the arc length parameterization p̄(S) = { p̄1(S), p̄2(S) } with

p̄1(S) = S − 1
6 κ

2
0 S

3 − 1
8 κ0 κ1 S

4 +O(S5) and

p̄2(S) = 1
2 κ0 S

2 + 1
6 κ1 S

3 + 1
24 (κ2 − κ3

0)S
4 +O(S5).

(4.4)

Here, the system of coordinates has been chosen such that ~t(0) = {1, 0}> and
~n(0) = {0, 1}>, with the origin at p̄(0). The coefficient κi is the ith derivative of
the curvature with respect to the arc length parameter at S = 0.

For more information the reader should consult any textbook on elementary
differential geometry, e.g., [11, §§ 9, 15 and 18].

In computer-aided design applications, however, curves are generally not param-
eterized by the arc length (cf. [7]). In order to obtain a parametric representation
of the given curve with respect to a general parameter T , we apply the substitution
S = S(T ) with S(0) = 0. Again, in a neighbourhood of T = 0, the substitution is
represented by its Taylor expansion with respect to the new curve parameter T ,

S(T ) = r1 T + 1
2 r2 T

2 + 1
6 r3 T

3 + 1
24 r4 T

4 +O(T 5)(4.5)

with certain coefficients ri ∈ R. Without loss of generality we may assume that
r1 = 1 holds; hence ‖p′(0)‖ = 1. This normalization can be achieved by a suitable
scaling of the original curve.

By combining (4.4) and (4.5) we obtain the Taylor expansion of the given curve

p(T ) = { p1(T ), p2(T ) } = { p̄1(S(T )), p̄2(S(T )) }(4.6)

at T = 0, as summarized in

Proposition 4.1. Any given curve p = p(T ), T ∈ [a, b] ⊆ R, which is assumed to
be analytical in a neighbourhood of T = 0, can (after switching to suitable Cartesian
coordinates and possible scaling) locally be approximated by the Taylor expansion

p1(T ) = T + 1
2 r2 T

2 +
(

1
6 r3 − 1

6 κ0
2
)
T 3

+
(

1
24 r4 − 1

4 κ0
2r2 − 1

8 κ0 κ1

)
T 4 +O(T 5),

p2(T ) = 1
2 κ0 T

2 +
(

1
2 κ0 r2 + 1

6 κ1

)
T 3

+
(

1
6 κ0 r3 + 1

8 κ0 r2
2 + 1

4 κ1 r2 + 1
24 κ2 − 1

24 κ0
3
)
T 4 +O(T 5).

(4.7)

The coefficients κi are the derivatives of the curvature with respect to the arc length
parameter at S = 0. The coefficients ri are the derivatives of the arc length function
S = S(T ) =

∫ T
0 ‖p′(τ)‖ dτ at T = 0, where r1 = 1 is assumed.

This Taylor expansion serves as the basic tool for studying the asymptotic be-
haviour of solvability and of the solutions of the Hermite interpolation problem.
By combining the canonical Taylor expansion (4.4), specifying the geometry of the
given curve, with the general parameterization (4.5), we are able to study both the
influence of the geometry and of the parameterization. However, in order to make
the result of the Hermite interpolation procedure independent of the initial param-
eterization of the given curve, one may wish to choose its arc-length parameteriza-
tion. In the results derived below, this is achieved by choosing r2 = r3 = · · · = 0.
On the other hand, in many applications it may be desirable to approximate both
the given curve and its parameterization with a PH curve. This corresponds to
using the more general representation (4.7).
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4.2. Asymptotical Hermite interpolation. Consider the segment T ∈ [0,∆]
of an analytical curve p(T ) for some stepsize ∆ > 0. Using the local parameter
t ∈ [0, 1], this segment is parameterized as p(t∆). It produces the following G2[C1]
Hermite boundary data.

p0 = p(0), p1 = p(∆),
~t0 = p′(0)/‖p′(0)‖, ~t1 = p′(∆)/‖p′(∆)‖,
l0 = ∆ ‖p′(0) ‖, l1 = ∆ ‖p′(∆) ‖,
k0 = [p′(0),p′′(0)]/‖p′(0)‖3, k1 = [p′(∆),p′′(∆)]/‖p′(∆)‖3.

(4.8)

We apply the Hermite interpolation procedure with PH curves of degree 7 to these
data (see Proposition 3.1 and Table 1).

Question 4.2. How do the solvability of the interpolation problem and the shape
of the solutions behave for decreasing stepsize ∆→ 0+?

In order to answer this question, we generate Taylor expansion for all quantities
that are involved in the previously described Hermite interpolation procedure. This
is most efficiently done with the help of suitable computer algebra tools. Our results
rely on the Maple V system. We sketch some steps of the computations. In order
to be as brief as possible, we give only a few shortened Taylor expansions for some
of the required variables.

As the very first step, one has to generate Taylor expansions for the input
data (4.8). In order to apply the Hermite interpolation procedure from the pre-
vious section, these data have to be transformed into the adapted system of co-
ordinates. After this transformation, the segment end points are p0 = {0, 0} and
p1 = {p1,1, p1,2} with

p1,1 = 1
12 κ1 ∆3 +

(
1
24 κ2 + 1

8 κ1 r2

)
∆4 +O(∆5),

p1,2 = ∆ + 1
2 r2 ∆2 +

(
1
6 r3 − 1

24 κ0
2
)
∆3

+
(

1
24 r4 − 1

16 κ0
2r2 − 1

24 κ0 κ1

)
∆4 +O(∆5).

(4.9)

The directions of the boundary unit tangents ~t0, ~t1 are specified by the sine and
cosine functions

s = − 1
2 κ0 ∆−

(
1
4 κ0 r2 + 1

4 κ1

)
∆2

+
(

1
48 κ0

3 − 1
12 κ0 r3 − 1

4 κ1 r2 − 1
12 κ2

)
∆3 +O(∆4),

c = 1− 1
8 κ0

2∆2 +
(
− 1

8 κ0
2r2 − 1

8 κ0 κ1

)
∆3 +O(∆4)

(4.10)

(see (3.2)). The lengths of the boundary tangents and the boundary curvatures
have the expansions

l0 = ∆, l1 = ∆ + r2 ∆2 + r3
2 ∆3 + r4

6 ∆4 +O(∆5),
k0 = κ0, and k1 = κ0 + κ1 ∆ +

(
1
2 κ1 r2 + 1

2 κ2

)
∆2 +O(∆3).

(4.11)

During the discussion of the asymptotic behaviour we have to examine the case of
a curved point (κ0 6= 0) and an inflection or flat point (κ0 = 0) separately.

4.3. The case κ0 6= 0. At first we consider the solutions of the first kind.

Proposition 4.3. Assume that the original curve has nonvanishing curvature at
the point p(0), i.e., κ0 6= 0. If the technical assumption

κ0 r2 + 2 κ1 6= 0(4.12)
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is satisfied, and provided that the stepsize ∆ is sufficiently small, then the G2[C1]
Hermite interpolation problem with PH curves of degree 7 has exactly four real
solutions of the first kind. These solutions have Taylor expansions

x(j)(t) = { x(j)
1 (t)κ0 ∆2 +O(∆3), x(j)

2 (t)∆ +O(∆2) }, j = 1, . . . , 4,(4.13)

with certain polynomials x(j)
1 , x(j)

2 of degree 7 not depending on the coefficients κi
or ri. In particular, x(3)

1 = 1
2 t−

1
2 t

2 and x(3)
2 = t.

Remark 4.4. Due to space limitations we do not present explicit formulas for all
solutions x(j)(t). Instead, they are visualized in Figure 6 (see the explanations
below). As observed later, the solution for j = 3 seems to be the most useful one.

Proof. From (3.8) and (3.9) we obtain the following Taylor expansions with respect
to powers of

√
∆:

τ0 = 1
2

√
∆ + 1

64 κ0
2∆5/2 +

(
1
64 κ0

2r2 + 1
64 κ0κ1

)
∆7/2 +O(∆9/2),

τ1 = 1
2

√
∆ + 1

4 r2∆3/2 +
(

1
8 r3 + 1

64 κ0
2 − 1

16 r2
2
)
∆5/2,

+
(

1
24 r4 + 3

128κ0
2r2 + 1

64 κ0κ1 + 1
32 r2

3 − 1
16 r2r3

)
∆7/2 +O(∆9/2),

ρ0 = − 1
6 κ0∆3/2 − 1

192 κ0
3∆7/2 +O(∆9/2),

ρ1 = − 1
6 κ0∆3/2 +

(
− 1

4 κ0r2 − 1
6 κ1

)
∆5/2

+
(
− 1

192 κ0
3 − 1

8 κ0r3 − 1
16 κ0r2

2 − 1
3 κ1r2 − 1

12 κ2

)
∆7/2 +O(∆9/2).

(4.14)

Equation (3.12) gives a quartic equation for the unknown parameter µ1:

3456
42875 κ0

2µ1
4 +

(
3456
42875 κ0

2µ1
4r2+ 3456

42875 κ0 µ1
4κ1− 342

875 µ1
2κ0

2
)
∆4 +O(∆5).(4.15)

(Only the very first terms of the expansion are shown.) We solve this equation with
the help of Ferrari’s solution of the general quartic (see [3]). First we consider the
associated cubic resolvent and solve it via Cardan’s solution of the general cubic.
This involves generating a certain discriminant. If the discriminant is negative, then
the cubic resolvent has three real roots. The Taylor expansion of the discriminant
is

D = −2373434722791475
1014454095446016

(κ0 r2 + 2 κ1)
2

κ0
2

∆8 +O(∆9),(4.16)

hence real solutions are guaranteed to exist, provided that the conditions κ0 6= 0
and (4.12) are satisfied. Similarly, by generating their Taylor expansions, the roots
of the cubic resolvent can be shown to be nonnegative, provided that the stepsize
∆ is sufficiently small. Then, as a consequence from Ferrari’s formulas, we obtain
four real solutions for µ(j)

1 . Similarly it can be shown that four associated solutions
µ

(j)
0 exist.
We generate Taylor expansions of the four solution pairs (µ(j)

0 , µ
(j)
1 ), as fol-

lows. The leading terms of the Taylor expansions are obtained with the help of
Cardan’s and Ferrari’s formulas. Then the higher order terms can be generated by
substituting them in the expansions of the interpolation conditions (3.10).
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Figure 6. Asymptotic behaviour of the solutions of the first kind
(right) x(j)(t) and of their hodographs x(j) ′(t) (left). The solutions
1–4 correspond to the line styles “hollow”, “dotted”, “solid”, and
“dashed”, respectively.

Summing up, we obtain Taylor expansions for the four pairs of solutions
(µ(j)

0 , µ
(j)
1 ):

µ
(1)
0 = −1− 7

6

√
∆ +O(∆3/2), µ

(1)
1 = − 140κ1+89 κ0r2

456 κ0
∆3/2 +O(∆5/2),

µ
(2)
0 = −1− 3

8

√
∆ +O(∆3/2), µ

(2)
1 = − 7

√
57

24

√
∆ +O(∆3/2),

µ
(3)
0 = −1 + 1

2

√
∆ +O(∆3/2), µ

(3)
1 = − 1

24 r2 ∆3/2 +O(∆5/2),

µ
(4)
0 = −1− 3

8

√
∆ +O(∆3/2), µ

(4)
1 = 7

√
57

24

√
∆ +O(∆3/2).

(4.17)

Now we substitute the expansions (4.10), (4.14), (4.17) into the equations (3.2)–
(3.5). This produces Taylor expansions of the hodographs x′(t) of the four inter-
polating PH curves, of the form

x(j)′(t) = { x(j)
1
′(t)κ0 ∆2 +O(∆3), x(j)

2
′(t)∆ +O(∆2) }, j = 1, . . . , 4,(4.18)

with certain polynomials x(j)
1
′, x(j)

2
′ of degree 6 not depending on the coefficients

κi or ri. Finally, integrating these hodographs with respect to t gives the Taylor
expansions (4.13) of the interpolating PH curves themselves.

The asymptotic shapes of the hodographs and of the PH curves are shown in
Figure 6. We have plotted the curves { x(j)

1
′(t), x(j)

2
′(t) } and { x(j)

1 (t), x(j)
2 (t) },

t ∈ [0, 1], that are generated by the leading terms of the Taylor expansions. If the
stepsize ∆ becomes sufficiently small, then the shapes of the four solutions and of
their hodographs get more and more similar to the curves which are shown in the
figure.

At the boundaries t ∈ {0, 1}, the hodographs match the leading terms of the
prescribed boundary tangents

l0~t0 = { 1
2 κ0 ∆2 +O(∆3), ∆ +O(∆2) },

l1~t1 = { − 1
2 κ0 ∆2 +O(∆3), ∆ +O(∆2) }

(4.19)
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Figure 7. Asymptotic behaviour of the solutions of the second
kind (right) x(t) and of their hodographs x′(t) (left).

(cf. (3.2), (4.10), and (4.11)). Similarly, the PH curves interpolate the leading terms
of the boundary points pi (see (4.9)). The solutions 1, 2 and 4 lead asymptotically
to PH curves of degree 7 with two singularities (cusps) each, corresponding to the
simultaneous roots of the components of the hodograph. Some of these singularities
are hard to detect in the right figure, but their existence can clearly be seen from
the hodographs. The third solution, however, gives a regular curve—it leads to the
best approximation of the original curve among the four solutions.

Note the similarity between the asymptotic shapes of the interpolants (Figure
6, right) and the curves which are obtained in the example (Figure 5a, left)! De-
creasing the stepsize ∆ would pull the loops of the examples into the cusps of the
asymptotic shapes.

The solutions of the second kind can be discussed in an analogous way.

Proposition 4.5. Assume again that the original curve has nonvanishing curva-
ture at p(0), i.e., κ0 6= 0. If the technical assumption

13 κ0 r2 + 34 κ1 6= 0(4.20)

is satisfied, and provided that the stepsize ∆ is sufficiently small, then the G2[C1]
Hermite interpolation problem with PH curves of degree 7 has exactly four real
solutions of the second kind. These solutions have Taylor expansions

x(j)(t) = { x(j)
1 (t)κ0 ∆2 +O(∆3), x(j)

2 (t)∆ +O(∆2) }, j = 5, . . . , 8,(4.21)

with certain polynomials x(j)
1 , x(j)

2 of degree 7 not depending on the coefficients κi
or ri.

The asymptotic shapes of the four hodographs and the corresponding PH curves
are shown in Figure 7. Again, we have plotted the curves which are generated by
the leading terms of the Taylor expansions. The hollow interpolant has got three
singularities, the remaining three solutions have only one singularity each. Note
again the similarity between the asymptotic shapes of the interpolants (Figure 7,
right) and the curves which are obtained in the example (Figure 5a, right).
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Remark 4.6. We conjecture that the technical assumptions (4.12), (4.20) can be
eliminated from the discussion of solutions. By taking into acocunt the higher
order terms of the Taylor expansions of the cubic discriminants D, it should be
possible to conclude the existence of four real solutions for each kind of solution,
even if the conditions

κ0 r2 + 2 κ1 6= 0 or 13 κ0 r2 + 34 κ1 6= 0(4.22)

are violated.
Note that the conditions (4.22) have a geometric meaning also. If the original

curve is given by its arc-length parameterization S(t) ≡ t (cf. (4.5)), then they
are violated at points with stationary curvature (κ1 = 0), the so-called vertices or
cyclic points. For instance, if the Hermite data are taken from a circle in arc-length
parameterization, then both conditions are violated. Moreover, in this case it can
be shown that the cubic discriminant is even identically zero! In this case, the cubic
resolvents have real solutions with multiplicity greater than 1. Nevertheless, if the
stepsize gets sufficiently small, then the interpolation problem leads to eight real
solutions, with the same asymptotic shapes as discussed earlier.

The remaining condition κ0 6= 0 (which is violated at inflections of the original
curve) cannot be eliminated; it requires a separate analysis.

4.4. The case κ0 = 0. So far, the case κ0 = 0 (which occurs at inflection or flat
points of the original curve) had to be excluded. In this case it is possible to give
a similar analysis of the existence and behaviour of solutions. In the case of the
solutions of the first kind we obtain:

Proposition 4.7. Assume that the original curve has a nonflat inflection point
at p(0), i.e., κ0 = 0 and κ1 6= 0. If the stepsize ∆ is sufficiently small, then the
G2[C1] Hermite interpolation problem with PH curves of degree 7 has exactly four
real solutions of the first kind. These solutions have Taylor expansions

x̂(j)(t) = { x̂(j)
1 (t)κ1 ∆3 +O(∆4), x̂(j)

2 (t)∆ +O(∆2) }, j = 1, . . . , 4,(4.23)

with certain polynomials x̂(j)
1 , x̂(j)

2 of degree 7 not depending on the coefficients κi
or ri. In particular, x̂(3)

1 = 1
4 t−

1
8 t

3 and x̂(3)
2 = t.

Again, only the third solution has the desired shape, without singularities. The
results are illustrated in Figure 8. At the boundaries t ∈ {0, 1}, each of the four
hodographs matches the leading terms of the prescribed boundary tangents

l0~t0 = { 1
4 κ1 ∆3 +O(∆4), ∆ +O(∆2) },

l1~t1 = { − 1
4 κ1 ∆3 +O(∆4), ∆ +O(∆2) }

(4.24)

(cf. (3.2), (4.10), and (4.11)). Similarly, the PH curves of degree 7 match the leading
terms of the boundary points pi (see (4.9)). Note that the unit of the horizontal axes
is now κ1 ∆3! Again, three of the four solutions of the first kind lead asymptotically
to PH curves with two singularities (cusps) each, corresponding to the simultaneous
roots of the components of the hodograph. The remaining solution gives a regular
curve; it leads to the best approximation of the original curve among the four
solutions.

Remark 4.8. This analysis applies to points with κ1 6= 0 only, i.e., to nonflat inflec-
tion points. A similar analysis could be derived given at inflections and flat points
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Figure 8. Asymptotic behaviour of the solutions of the first kind
(right) x(t) and of their hodographs x′(t) (left) at an inflection
point (κ0 = 0).

of higher order which are characterized by κ0 = · · · = κl = 0, κl+1 6= 0. So far it
is not clear whether Propositions 4.3, 4.5 and 4.7 can be generalized to arbitrarily
l > 1. For instance, if the original curve is “too flat”, then one might well imagine
that no interpolating PH curve of degree 7 exists. Generating the required Tay-
lor expansions at inflections or flat points of higher order becomes more and more
complicated, as terms of higher orders have to be taken into account. At this point
we cannot present any further results.

In applications, however, flat points of higher order can often be excluded. For
instance, a cubic (spline) curve has points with κ0 = κ1 = 0 only if it (resp. a
segment of it) is degenerated into a straight line.

4.5. Approximation order. A general framework for high-accuracy parametric
interpolation, and for the discussion of the approximation order in particular, has
been developed by Mørken and Scherer [14]. With the help of the Taylor expansions
from Propositions 4.3 and 4.5, we investigate the approximation order of the G2[C1]
Hermite interpolation scheme with PH curves of degree 7.

Proposition 4.9. If the assumptions of Propositions 4.1 and 4.3 are satisfied (in
particular κ0 6= 0), then the third solution of the first kind has the approximation
order 6.

Proof. In order to prove this result, we generate Taylor expansions of the original
curve p(T ), of the third solution of the first kind x(3)(t), and of the quantities s
and c (cf. equations (4.7), (4.13) and (4.10)), with residuals in the order of O(∆6).

Let U be the special orthogonal matrix U =
(−s c
−c −s

)
. It transforms the solution

x(3)(t) from the adapted system of coordinates (see Figure 3) back into world
coordinates, leading to the curve U x(3)(t). This curve is to be compared with the
original curve segment p(t̃∆), t̃ ∈ [0, 1], of length ∆.

In order to analyze the approximation order of a parametric interpolation scheme,
one has to take suitable parameter transformations ψ of the solution into account
(cf. [14]). We replace the original parameter t of the third solution of the first kind
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x(3)(t) with the polynomial

ψ(t̃) = t̃+ ψ3(t̃)∆3 + ψ4(t̃)∆4,(4.25)

where

ψ3(t̃) =
t̃ 2 (1− t̃)2

κ0
C3 and ψ4(t) =

t̃ 2 (1− t̃)2

κ2
0

(C4,0 + t̃ C4,1),(4.26)

with certain coefficients C3, C4,0, and C4,1. These coefficients are polynomial ex-
pressions of the quantities κi and ri (cf. Proposition 4.1). The polynomials ψ3 and
ψ4 can be found by applying the substitution (4.25) to the solution Ux(3)(t) and
comparing the resulting Taylor expansions with the original curve segment p(t̃∆).

For sufficiently small stepsize ∆, the substitution ψ(t̃) is a bijective transforma-
tion of the parameter domain [0, 1]. Moreover, the parameter transformation ψ
preserves the C1 boundary data, as

ψ(0) = 0, ψ(1) = 1, ψ′(0) = 1, and ψ′(1) = 1.(4.27)

Using suitable computer algebra tools, it can now be verified that

‖p(t̃∆)− U x(3)(ψ(t̃) ) ‖ = O(∆6) for all t̃ ∈ [0, 1].(4.28)

This completes the proof.

Without the parameter transformation (4.25), i.e., by choosing the identity
ψ(t̃) = t̃, the left-hand side of (4.28) would behave as O(∆4), which is to be ex-
pected for C1 Hermite interpolation. A separate discussion is required at inflections
of the original curve.

Proposition 4.10. If the assumptions of Propositions 4.1 and 4.5 are satisfied (in
particular κ0 = 0 and κ1 6= 0), then the third solution of the first kind has the
approximation order 5.

That is, inflections of the original curve lead to a reduction of the approximation
order by 1. A similar phenomenon has been observed by de Boor et al. [2] in the
case of G2 Hermite interpolation with parametric cubic curves.

The proof is omitted; it is analogous to that of the preceding result. The required
parameter transformation now takes the form

ψ(t̃) = t̃+ ψ2(t̃)∆2 + ψ3(t̃)∆3,(4.29)

where the denominators of the coefficients ψ2 and ψ3 are κ1 and κ2
1. Without the

parameter transformation, the left-hand side of (4.28) would behave as O(∆3).

Remark 4.11. In consequence of Remark 4.8, the approximation order at flat points
or inflections of higher order (κ0 = κ1 = 0) is still open.

4.6. Summary. Summing up, we have the following result.

Theorem 4.12. Consider G2[C1] Hermite interpolation data which are taken from
an analytical curve. If the technical assumptions (4.12), (4.20), and (κ0, κ1) 6= (0, 0)
are satisfied, and provided that the stepsize ∆ is sufficiently small, then the G2[C1]
Hermite interpolation problem with PH curves of degree 7 is solvable, giving eight
real solutions. Moreover, at least one regular solution (the third solution of the
first kind) exists that matches approximately the shape of the original curve. The
approximation order at points with κ0 6= 0 is 6; it is reduced by one at inflections.

As outlined in Remarks 4.6 and 4.8, some of these technical assumptions can
probably be eliminated by taking higher order terms of the expansions into account.
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5. Converting planar curves into PH splines of degree 7

Based on the results of the preceding sections, we formulate a procedure for ap-
proximately converting a given planar curve into a PH spline curve of degree 7 with
any desired accuracy. The original curve is assumed to be globally C2, consisting
of analytical segments. For instance, this assumption is satisfied by the standard
NURBS (NonUniform Rational B–Spline, see [5, 10]) representations. The approx-
imating PH curves can be computed with the help of the following algorithm.

1) Split the given curve into its analytical segments and apply step 2) to the
individual segments. For instance, a given NURB spline curve is to be split
into its rational Bézier segments with the help of Boehm’s algorithm or knot
insertion (see [10]).

2) Take G2[C1] data from the boundaries of the curve segment and apply the
Hermite interpolation procedure (see Table 1) to them. If no suitable solution
exists (among the eight potential solutions) or if the accuracy of the approxi-
mation is not as good as desired, then split the segment into halves and apply
the Hermite interpolation to the new segments. The splitting is iterated until
a suitable solution has been found.

In order to benefit directly from the results of the previous section, one might
introduce an additional splitting step at the inflections (resp. flat points) of the
original curve. For instance, if a cubic (spline) curve p(t) is given, then these points
correspond to roots of the (piecewise) quadratic polynomial [p′,p′′]. However,
according to our numerical experiences, this additional splitting step is not really
necessary and we have therefore abstained from including it in the algorithm.

The second step is guaranteed to be successful after finitely many iterations, as
solutions to the Hermite interpolation problem always exist for sufficiently small
stepsize (cf. subsection 4.6).

Original curve G2[C1] PH spline of degree 7 Quintic C1 PH spline

Figure 9. Approximation of a given curve (left) via Hermite inter-
polation of G2[C1] data with 2 PH curves of degree 7 (center) and
via Hermite interpolation of C1 data with 2 PH quintics (right).
The scaled curve normals visualize the curvature distribution.
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Theorem 5.1. With the help of the above-described algorithm, any piecewise ana-
lytical C2 curve can approximately be converted into a polynomial PH spline curve
of degree 7, provided that the technical assumptions of Propositions 4.3, 4.5 and 4.7
are satisfied at all points.

Example 5.2. The original curve is chosen as a planar Bézier curve of degree 4; it
is shown on the left-hand side of Figure 9. It is approximated by two PH curves of
degree 7 (center), forming a G2[C1] polynomial PH spline curve. We compare the
result with the corresponding results of C1 Hermite interpolation by PH quintics
(right) (see [6]). The curvature distribution of the curves is visualized by the scaled
curve normals (“porcupines”). Both approximating curves have been drawn along
with their control polygons (dotted).

It can clearly be seen that the PH curves of degree 7 match the original curve
quite well. They even reproduce the original curvature distribution. The PH quin-
tics, by contrast, lead to curvature discontinuities, and do not match the original
shape as well as desired. Consequently, a bigger number of spline segments would
be needed in order to obtain a similar accuracy.

6. Conclusion

As the main result of this paper, we have derived a method for constructing
curvature continuous polynomial PH spline curves. The construction is based on
Hermite interpolation of curvature and first derivative boundary information, and
it can be used for approximately converting arbitrary planar curves into polyno-
mial PH form. As an advantage, the interpolation scheme acts locally, without
any need for solving a global system of equations. We have discussed the asymp-
totic behaviour of the solvability and of the solutions to the Hermite interpolation
problem, including the approximation order.

As a matter of further research, we will try to modify the scheme, in order to
obtain lower degree interpolants. This may be advantageous in order to reduce the
degree of the offset curves.

Appendix

For the convenience of the reader, the components of the symmetric 3×3-matrices
Q and R have been gathered below.

q1,1 = ((−24 ρ0 − 20 ρ0 τ0 + 24 ρ1 + 20 τ1 ρ1) s2 + ((12 ρ2
0 + 20 τ2

1 − 20 τ0 + 20 τ1
−20 τ2

0 − 12 ρ2
1) c− 20 τ0 + 20 τ1 − 20 τ2

0 + 20 τ2
1 ) s+ (−10 τ1 ρ1 − 21 ρ1

+10 ρ0 τ0 + 21 ρ0 − 4 ρ1 τ0 + 4 τ1 ρ0) c− 10 τ1 ρ1 − 21 ρ1 + 10 ρ0 τ0 + 21 ρ0

−4 ρ1 τ0 + 4 τ1 ρ0)/70,
q1,2 = ((−24 ρ0+24 ρ1) s2+((−20 τ0 + 20 τ1) c−20 τ0+20 τ1) s+(21 ρ0−21 ρ1) c

+21 ρ0 − 21 ρ1)/140,
q1,3 = ((−24 ρ1 − 24 ρ0) s2 + ((−48− 20 τ1 − 20 τ0) c− 48− 20 τ1 − 20 τ0) s

+(3 ρ1 + 3 ρ0) c+ 3 ρ1 + 3 ρ0)/140,
q2,2 = 0, q2,3 = −12 s (1 + c)/35, q3,3 = 0,
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and
r1,1 = ((12 ρ2

0 − 20 τ2
1 − 20 τ2

0 + 12 ρ2
1 − 24− 20 τ0 − 20 τ1) s2 + ((24 ρ1 + 20 ρ0 τ0

+24 ρ0 + 20 τ1 ρ1) c+ 4 ρ1 τ0 + 21 ρ0 + 21 ρ1 + 10 ρ0 τ0 + 10 τ1 ρ1 + 4 τ1 ρ0) s
+(20 τ2

0 + 2 τ1 τ0 + 42 + 28 τ0 + 28 τ1 + 20 τ2
1 ) c+ 42 + 20 τ2

0 + 28 τ0 + 28 τ1
+20 τ2

1 + 2 τ1 τ0 − 6 ρ2
0 − 6 ρ2

1 + 9 ρ0 ρ1)/70,
r1,2 = ((−12− 5 τ1 − 5 τ0) s2 + ((6 ρ0 + 6 ρ1) c+ 21/4 ρ0 + 21/4 ρ1) s

+(21 + 7 τ1 + 7 τ0) c+ 21 + 7 τ1 + 7 τ0)/35,
r1,3 = ((−5 τ0 + 5 τ1) s2 + ((−6 ρ1 + 6 ρ0) c+ 3/4 ρ0 − 3/4 ρ1) s+ (3 τ0 − 3 τ1) c

+3 τ0 − 3 τ1)/35,
r2,2 = (21 + 21 c− 12 s2)/35, r3,3 = (3 − 12 s2 + 3 c)/35, r2,3 = 0.
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