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A POSTERIORI ERROR ESTIMATOR
FOR A MIXED FINITE ELEMENT METHOD

FOR REISSNER-MINDLIN PLATE

ELSA LIBERMAN

Abstract. We present an a posteriori error estimator for a mixed finite ele-
ment method for the Reissner-Mindlin plate model. The finite element method
we deal with, was analyzed by Durán and Liberman in 1992 and can also be
seen as a particular example of the general family analyzed by Brezzi, Fortin,
and Stenberg in 1991. The estimator is based on the evaluation of the residual
of the finite element solution. We show that the estimator yields local lower
and global upper bounds of the error in the numerical solution in a natural
norm for the problem, which includes the H1 norms of the terms correspond-
ing to the deflection and the rotation and a dual norm for the shearing force.
The estimates are valid uniformly with respect to the plate thickness.

1. Introduction

In the implementation of numerical methods for approximation of partial dif-
ferential equations, the definition of a posteriori error estimators is the basic tool
for adaptive mesh-refinement techniques, necessary when we are in the presence of
local singularities of the solution.

In this paper we present an a posteriori error estimator for the finite element
approximation of the Reissner-Mindlin plate model, which describes the displace-
ment of a plate with moderate thickness subject to a transverse load. The definition
of the estimator is based on the evaluation of the residual of the finite element so-
lution.

Several a posteriori error estimators have been defined for different linear and
nonlinear elliptic problems by using the residual equations (see for example [3, 4,
5, 14, 19, 20])

For a fixed plate thickness the Reissner Mindlin plate model is a linear elliptic
problem. But for small thickness the ellipticity constant deteriorates and makes the
treatment of the problem difficult. In particular, in the definition of an estimator the
main difficulty is the attainment of equivalence with an error norm independently
of the plate thickness. To the author’s knowledge, an estimator with this property
has not yet been defined.

For the numerical solution of the Reissner-Mindlin equations, there are several
mixed finite element methods which present good approximations of the solutions
[2, 6, 7, 9, 10, 11, 15, 17] and are free from locking [8, 11, 12, 15, 17].
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We present an a posteriori error estimator for a method analyzed in [15] which
can also be seen as a particular example of the general family analyzed in [12].

We define the error estimator for the H1 norm of the deflection and the rotation,
and for a sum of norms for the shear force, which includes the H0(rot)′ norm, and
show that it yields local lower and global upper bounds of the error in the numerical
solution, valid uniformly with respect to the plate thickness. It must be remarked
that even though these norms are natural for the problem (in particular the inf - sup
condition holds for the H0(rot)′ norm [11] and, when t→ 0, H0(rot)′ becomes the
appropriate space for the shear), convergence for the shear force in this dual norm
has not been proved, as far as we know. The results hold for any polygonal domain
and, therefore, our estimator can be used for adaptive refinement when corner
singularities arise.

The rest of the paper is organized as follows. In Section 2 we introduce the
Reissner-Mindlin model and we analyze its approximation with the finite element
method. We also give an additional a priori estimate related with the L2 norm
of the error in the rotor of the shear force. For the sake of clarity we divide the
definition and analysis of the estimator in two sections. In Section 3 we define a
weak norm for the error in the rotation and in the shear force and obtain estimates
for this norm. Finally in Section 4, we define the estimator for the whole error and
show the corresponding relations between the estimator and the natural error norm
using the results of the previous section.

2. The Reissner-Mindlin equations

and mixed finite element approximation

We use boldface type to denote vector quantities.
Let Ω × [−t/2, t/2] be the region occupied by the undeformed elastic plate of

thickness 0 < t < 1, where Ω ⊂ R2 is a simply connected polygon.
Let us denote by w and β the transverse displacement of the midsection of the

plate and the rotation of fibers normal to it, respectively. Then, assuming for
simplicity that the plate is clamped along the boundary of Ω, the Reissner-Mindlin
problem is:

Find w ∈ H1
0(Ω) and β ∈ H1

0(Ω) such that

t3a(β,η) + λt(∇w − β,∇ζ − η) = (g, ζ) ∀η ∈ H1
0(Ω), ∀ζ ∈ H1

0(Ω),
(2.1)

where ( , ) denotes the scalar product in either L2(Ω) or L2(Ω), and a(β,η) is a
coercive and continuous bilinear form defined by

a(β,η) =
E

12(1− ν2)

∫
Ω

DΞ(β) : Ξ(η),

where Ξ(η) is the symmetric part of the gradient of η, D is defined by

DΥ = [(1− ν)Υ + νtr(Υ)I],

E is the Young modulus, ν is the Poisson ratio, λ = Ek/2(1 + ν), where k is the
shear correction factor, and g represents the transverse load.

To analyze the problem for small values of t, g is scaled in the form g = t3f so
that the solution tends to a nonzero limit as t tends to zero [11]. Taking, for the
sake of simplicity, λ = 1 and introducing

γ = t−2(∇w − β),(2.2)
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equation (2.1) can be written equivalently as

 a(β,η) + (γ,∇ζ − η) = (f , ζ) ∀η ∈ H1
0(Ω), ∀ζ ∈ H1

0(Ω),

t2(γ,χ)− (∇w − β,χ) = 0 ∀χ ∈ L2(Ω),

(2.3)

which in the limit t→ 0 takes the form of a saddle point problem.
Let

H0(rot,Ω) = {χ ∈ L2(Ω) : rot(χ) ∈ L2(Ω) and χ.τ = 0 on ∂Ω},

where ∂Ω denotes the boundary of Ω and τ is the unit tangent to the boundary,
with the norm

‖χ‖H0(rot,Ω) := ‖χ‖0 + ‖rotχ‖0.

The following proposition, which is proved in [11], gives a decomposition for any
χ ∈ H0(rot,Ω), showing also that γ ∈ H0(rot,Ω).

Proposition 2.1. Let B be defined on H1
0(Ω)×H1

0(Ω) by

B : (η, ζ) −→ (∇ζ − η).

The mapping B is surjective onto the space H0(rot,Ω), and for every χ∈H0(rot,Ω)
there exists (η, ζ) ∈ H1

0(Ω)×H1
0(Ω) such that

χ = ∇ζ − η

and

‖∇ζ‖0 + ‖η‖1 ≤ C{‖χ‖0 + ‖rotχ‖0}

with C independent of χ. 2

As we stated in the Introduction, we will also consider the space

Γ = H0(rot,Ω)′ = {χ ∈ H−1(Ω)/divχ ∈ H−1(Ω)}

with the norm

‖χ‖2Γ = ‖χ‖2−1 + ‖divχ‖2−1,

which is equivalent to the dual norm.

Remark 2.1. From this and Proposition 2.1, it immediately follows that the follow-
ing inf - sup condition holds:

sup
(η, ζ) ∈ H1

0(Ω)×H1
0(Ω)

(η, ζ) 6= (0, 0)

(∇ζ − η, χ)
‖η‖1 + ‖ζ‖1

≥ C‖χ‖Γ ∀χ ∈ Γ.(2.4)

We describe now the finite element method for the Reissner-Mindlin model that
we will consider.
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Let {Th}0<h<1 be a regular family of triangulations of Ω, where h stands for
the maximum diameter of the elements in the triangulation Th. In order to define
the mixed finite element approximation, we have to give finite element spaces for
the rotations, the transverse displacement, and the shear strain. Also we have to
define an operator, usually some kind of interpolation, in order to relax the discrete
equation corresponding to (2.2).

We use the standard notation Pm for the space of polynomials of degree less
than or equal to m and set Pm = Pm × Pm.

Given an element T , let {λi}1≤i≤3 be its barycentric coordinates and τ i be the
tangential vector to the edge ∂Ti where λi = 0. We define,

φ1 = λ2λ3τ 1, φ2 = λ3λ1τ 2 and φ3 = λ1λ2τ 3,

then the finite element spaces for the method, Hh ⊂ H1
0(Ω) for the rotations,

Wh ⊂ H1
0(Ω) for the transverse displacement, and Γh ⊂ L2(Ω) for the shear strain,

are defined as follows:

Hh = {ηh ∈ H1
0(Ω) : ηh|T ∈ P1 ⊕ span{φ1,φ2,φ3}, ∀ T ∈ Th},

Wh = {ζh ∈ H1
0(Ω) : ζh|T ∈ P1, ∀ T ∈ Th},

and Γh is a rotation of the lowest order Raviart-Thomas space [11],

Γh = {ηh ∈ H0(rot,Ω) : ηh|T ∈ P0 ⊕ (x2,−x1)P0, ∀ T ∈ Th}.

In particular, the inclusion

∇Wh ⊂ Γh(2.5)

holds.
The interpolation operator for this method Π : H0(rot,Ω)∩H1 −→ Γh is defined

by Πη|T = ηI , where ηI is such that∫
∂Ti

ηI .τ i =
∫
∂Ti

η.τ i, i = 1, 2, 3,(2.6)

and which satisfies (see [11] for example)

||η −Πη||0 ≤ Ch||η||1 ∀η ∈ H1
0(Ω).(2.7)

Therefore the approximate solution (βh, wh,γh) ∈ Hh ×Wh × Γh is defined by

 a(βh,ηh) + (γh,∇ζh −Πηh) = (f , ζh), ∀ηh ∈ Hh, ∀ζh ∈Wh,

γh = t−2(∇wh −Πβh).

(2.8)

Hereafter, C denotes a constant which could depend on the minimum angle of
the triangulation but is independent of the thickness t and the meshsize h, and the
symbol ‖.‖ denotes a norm over the region Ω, if no explicit reference to the region
is made.
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For the error in the approximation of the Reissner-Mindlin model with this
method, the following a priori estimates are known [12], [15]:

‖β − βh‖1 + t‖γ − γh‖0 + ‖w − wh‖1 ≤ Ch{‖β‖2 + t‖γ‖1 + ‖γ‖0}
(2.9)

and also [12],

‖γ − γh‖−1 ≤ Ch{‖β‖2 + t‖γ‖1 + ‖γ‖0}(2.10)

and when Ω is a convex polygon [2],

‖β‖2 + t‖γ‖1 + ‖γ‖0 ≤ C‖f‖0.(2.11)

Taking into account the definition of the norm in H0(rot,Ω), we add to this a
priori estimates the following one related with ‖rot(γ − γh)‖0.

Lemma 2.1. For the method defined previously it holds that

t2‖rot(γ − γh)‖0 ≤ Ch{‖β‖2 + t‖γ‖1 + ‖γ‖0}.(2.12)

Proof. From the definition of γ and γh it follows that

t2rot(γ − γh) = −rot(β −Πβh).

Then

t2‖rot(γ − γh)‖0 ≤ ‖rot(β −Πβ)‖0 + ‖rot(Πβ −Πβh)‖0.
(2.13)

It is known [11] that for η ∈ H0(rot,Ω),

rot(Πη) = Prot(η),(2.14)

where P denotes the L2 projection operator into Qh := rot(Γh) and

‖rot(η −Πη)‖0 ≤ Ch‖η‖2.(2.15)

From (2.13), (2.14) and (2.15) we obtain

t2‖rot(γ − γh)‖0 ≤ C{h‖β‖2 + ‖β − βh‖1},(2.16)

then (2.12) follows from the a priori estimates in (2.9).

3. Preliminary error estimates

According to the approximation results in the previous section and our remarks
in the Introduction, our aim is to give an estimator for the following sum of errors:

‖∇w −∇wh‖0 + ‖β − βh‖1 + t2‖rot(γ − γh)‖0 + t‖γ − γh‖0 + ‖γ − γh‖Γ.

However, for the sake of clarity, we have divided the definition and analysis of the
estimator in two sections. In this section we give, as a preliminary result, estimates
for the errors in the rotation and the shear force in a weak norm.
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We define the weak norm for the error in β and γ, as the dual norm in H1
0(Ω)×

H1
0(Ω) of the operator a(β − βh,η) + (γ − γh,∇ζ − η); that is,

‖(β − βh), (γ − γh)‖∗,Ω

=
sup

(η, ζ) ∈ H1
0(Ω)×H1

0(Ω)
(η, ζ) 6= (0, 0)

|a(β − βh,η) + (γ − γh,∇ζ − η)|
‖η‖1 + ‖ζ‖1

.

(3.1)

Let k be a fixed integer, k ≥ 1. The estimator for this error norm is defined for
any T ∈ Th as

εT =

{
‖P kf‖20,T |T |+

1
2

∑
∂Ti⊂∂T

‖[γhni]J‖20,∂Ti |∂Ti|

+ ‖divDΞ(βh) + γh‖20,T |T | +
1
2

∑
∂Ti⊂∂T

‖[DΞ(βh)ni]J‖20,∂Ti |∂Ti|
}1/2

,

(3.2)

where P k is the L2 projection onto Pk, |T | and |∂Ti| are the area of T and the
length of ∂Ti, ni is the normal vector to the edge ∂Ti, and [.]J denote the jump
of the corresponding function across ∂Ti.

For each T ∈ Th let

ωT = {
⋃

T̃ ∈ Th : T ∩ T̃ 6= ∅}.

The following theorem shows the equivalence between the error norm and the
estimator.

Theorem 3.1. There exist two constants C1 and C2, depending on the minimum
angle of the mesh, such that

‖(β − βh), (γ − γh)‖∗ ≤ C1

{∑
T∈Th

[ε2
T + ‖f − P kf‖20,T |T |]

}1/2

(3.3)

and

εT ≤ C2{‖(β − βh), (γ − γh)‖∗,ωT +
∑
T̃∈ωT

|T̃ |1/2‖f − P kf‖0,T̃}.
(3.4)

Proof. From (2.3) we have

a(β − βh,η) + (γ − γh,∇ζ − η) = (f, ζ)− a(βh,η)− (γh,∇ζ − η).
(3.5)

For ψ ∈ H1
0(Ω) or H1

0(Ω) we denote by ψI ∈ H1
0(Ω) or H1

0(Ω), respectively, a
piecewise linear average interpolant, as defined in [13, 18], satisfying

‖ψ − ψI‖0 ≤ Ch‖ψ‖1(3.6)

and

‖ψI‖1 ≤ C‖ψ‖1.(3.7)
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Taking ηh = ηI and ζh = ζI in (2.8) and subtracting it from (3.5) we get

a(β − βh,η) + (γ − γh,∇ζ − η)

=(f, ζ−ζI)−a(βh,η−ηI)−(γh, (∇ζ−η)−(∇ζI−ηI))+(γh,ηI−ΠηI)

=
∑
T∈Th

{
(f, ζ − ζI)T −

1
2

∑
∂Ti⊂∂T

∫
∂Ti

[γhni]J(ζ − ζI)

+ (divDΞ(βh) + γh,η − ηI)T

− 1
2

∑
∂Ti⊂∂T

∫
∂Ti

[DΞ(βh)ni]J (η − ηI)
}

+ (γh,ηI −ΠηI)

≤
∑
T∈Th

{
‖f‖0,T‖ζ − ζI‖0,T +

1
2

∑
∂Ti⊂∂T

‖[γhni]J‖0,∂Ti‖ζ − ζI‖0,∂Ti

+ ‖divDΞ(βh) + γh‖0,T ‖η − ηI‖0,T

+
1
2

∑
∂Ti⊂∂T

‖[DΞ(βh)ni]J‖0,∂Ti‖η − ηI‖0,∂Ti

}
+ (γh,ηI −ΠηI)

≤ C
{∑
T∈Th

[ε2
T + |T |‖f − P kf‖20,T ]

}1/2

{‖η‖1 + ‖ζ‖1}+ (γh,ηI −ΠηI).

(3.8)

We are going now to bound the term (γh,ηI −ΠηI).
It is known ([16], Lemma 3.3) that for ηI as defined above, there exists φ ∈ H1

0 (Ω)
such that φ|T ∈ P2 and

∇φ = ηI −ΠηI .

In [16] it is also proved that φ vanishes at all the nodes of the triangulation. Hence,
an usual scaling argument on each element T yields

‖φ‖0,∂Ti ≤ C|∂Ti|1/2‖∇φ‖0,T .

Then

(γh,ηI −ΠηI) = (γh,∇φ) =
∑
T∈Th

1
2

∑
∂Ti⊂∂T

∫
∂Ti

[γhni]Jφ

≤
∑
T∈Th

1
2

∑
∂Ti⊂∂T

‖[γhni]J‖0,∂Ti‖φ‖0,∂Ti

≤ C
∑
T∈Th

{
1
2

∑
∂Ti⊂∂T

‖[γhni]J‖0,∂Ti |∂Ti|1/2
}
‖∇φ‖0,T

≤ C
{∑
T∈Th

[
1
2

∑
∂Ti⊂∂T

‖[γhni]J‖20,∂Ti |∂Ti||T |
]}1/2

‖η‖1

(3.9)

where we have used (2.7) and (3.7) to obtain the last inequality.
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This shows that the last inner product in (3.8) can be bounded by the previous
terms of the same expression.

From (3.8) and (3.9) we obtain

|a(β − βh,η) + (γ − γh,∇ζ − η)|
‖η‖1 + ‖ζ‖1

≤ C
{∑
T∈Th

[ε2
T + ‖f − P kf‖20,T |T |]

}1/2

(3.10)

from which it follows (3.3).

In order to prove inequality (3.4) we need the following lemma.

Lemma 3.1. Let T ∈ Th. Given q ∈ L2(T ), p ∈ L2(∂T ), there exists η̂T ∈ Pk+3

such that 

(η̂T , r)T = (q, r)T ∀r ∈ Pk(T )∫
∂Ti

η̂T s =
∫
∂Ti

ps ∀s ∈ Pk+1(∂T )

η̂T = 0 at the vertices of T,

(3.11)

and

‖η̂T ‖0,T ≤ C{‖q‖0,T +
∑

∂Ti⊂∂T
|∂Ti|1/2‖p‖0,∂Ti}.(3.12)

In particular if p = 0, then η̂T |∂T = 0.

Proof. The proof follows with arguments similar to those given in [1].

In particular, the previous result is also valid for scalar functions:

Lemma 3.2. Let T ∈ Th. Given q ∈ L2(T ), p ∈ L2(∂T ), there exists ζ̂T ∈ Pk+3

such that 

(ζ̂T , r)T = (q, r)T ∀r ∈ Pk(T ),∫
∂Ti

ζ̂T s =
∫
∂Ti

p s ∀s ∈ Pk+1(∂T ),

ζ̂T = 0 at the vertices of T,

(3.13)

and

‖ζ̂T ‖0,T ≤ C{‖q‖0,T +
∑

∂Ti⊂∂T
|∂Ti|1/2‖p‖0,∂Ti}.(3.14)

In particular if p = 0, then ζ̂T |∂T = 0. 2

Now for fixed T ∈ Th, we take

q = P kf |T | ∈ Pk(T ),

p|∂Ti = 1
4 |∂Ti|[γhni]J , p ∈ P1(∂T ),

(3.15)
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and we take the corresponding ζ̂T defined in Lemma 3.2, making appropriate mod-
ifications when T intercepts ∂Ω; whereas for each T̃ ∈ ωT , T̃ 6= T , ζ̂|T̃ is defined
by the same lemma taking now

q = 0,

p|∂Ti =
{

0 if ∂T̃i ∩ ∂T = ∅,
the same as in (3.15) if ∂T̃i ∩ ∂T 6= ∅.

(3.16)

Let ζ̂ be defined such that ζ̂|T = ζ̂T if T ∈ ωT and 0 is outside of ωT . From its
definition we see that ζ̂ ∈ H1

0(Ω), and

‖P kf‖20,T |T |+
1
4

∑
∂Ti⊂∂T

‖[γhni]J‖20,∂Ti‖|∂Ti|

=
∑
T̃∈ωT

{(γh,∇ζ̂)T̃ + (P kf, ζ̂)T̃ } = (γh − γ,∇ζ̂)ωT +
∑
T̃∈ωT

(P kf − f, ζ̂)T̃ .

(3.17)

For the same fixed T we proceed in the same way and determine η̂T applying
(3.11) for

q = −(divDΞ(βh) + γh)|T | ∈ P1(T ),

p|∂Ti = 1
4 [DΞ(βh)ni]J |∂Ti|, p ∈ P1(∂T ),

(3.18)

and η̂T̃ for T̃ ∈ ωT , T̃ 6= T , making the corresponding modifications as in (3.16).
Let η̂ ∈ H1

0(Ω) be defined as η̂|T = η̂T if T ∈ ωT and 0 are outside of ωT . Then

‖divDΞ(βh) + γh‖20,T |T | +
1
4

∑
∂Ti⊂∂T

‖[DΞ(βh)ni]J‖20,∂Ti |∂Ti|

=
∑
T̃∈ωT

{a(βh, η̂)T̃ − (γh, η̂)T̃ } = a(βh − β, η̂)ωT + (γh − γ,−η̂)ωT .

(3.19)

Adding (3.17) and (3.19) we obtain

ε2
T

‖ζ̂‖1,ωT + ‖η̂‖1,ωT

≤ C

{
|a(β − βh, η̂)ωT + (γ − γh,∇ζ̂ − η̂)ωT |

‖ζ̂‖1,ωT + ‖η̂‖1,ωT
+

∑
T̃∈ωT (P kf − f, ζ̂)T̃
‖ζ̂‖1,ωT + ‖η̂‖1,ωT

}

≤ C

{
‖(β − βh), (γ − γh)‖∗,ωT +

∑
T̃∈ωT ‖P

kf − f‖0,T̃ ‖ζ̂‖0,T̃
‖ζ̂‖1,ωT + ‖η̂‖1,ωT

}
.

(3.20)

Replacing (3.15) in (3.14) and (3.18) in (3.12), we get the bound

‖ζ̂‖0,T̃ + ‖η̂‖0,T̃ ≤ C|T̃ |1/2εT for T̃ ∈ ωT ,

and by standard scaling arguments we also get

‖ζ̂‖1,ωT + ‖η̂‖1,ωT ≤ CεT .
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Using these bounds in (3.20), it follows that

εT ≤ C{‖(β − βh), (γ − γh)‖∗,ωT +
∑
T̃∈ωT

|T̃ |1/2‖P kf − f‖0,T̃},

so the theorem is proved.

4. Error estimator

Now we are able to define an estimator for the whole error. For any T ∈ Th we
define it as

ηT = {ε2
T + ‖βh −Πβh‖20,T + ‖rot(βh −Πβh)‖20,T }1/2.(4.1)

Before coming to the main result of equivalence we need the following proposition.

Proposition 4.1. There exists a constant C such that

‖∇w −∇wh‖0 + ‖β − βh‖1 + t‖γ − γh‖0 + t2‖rot(γ − γh)‖0

≤ C
{∑
T∈Th

[η2
T + ‖f − P kf‖20,T |T |]

}1/2

.

(4.2)

Proof. Consider the expression

|a(β − βh,η) + (γ − γh,∇ζ − η)|
‖η‖1 + ‖ζ‖1

.(4.3)

If we replace in (4.3) ζ = w − wh and η = β − βh, we obtain

|a(β − βh,β − βh) + t2‖γ − γh‖20 + (γ − γh,βh −Πβh)|
‖β − βh‖1 + ‖∇w −∇wh‖0

≤ ‖(β − βh), (γ − γh)‖∗.
(4.4)

Taking into account that βh − Πβh ∈ H0(rot,Ω), and according to Proposition
2.1, there exist φ ∈ H1

0(Ω) and ψ ∈ H1
0(Ω) such that

βh −Πβh = ∇ψ − φ,(4.5)

with

‖∇ψ‖0 + ‖φ‖1 ≤ C{‖βh −Πβh‖0 + ‖rot(βh −Πβh)‖0}.(4.6)

Replacing again in (4.3) ζ = ψ and η = φ, and using (4.6) we get

|a(β − βh,φ) + (γ − γh,βh −Πβh)|
‖βh −Πβh‖0 + ‖rot(βh −Πβh)‖0

≤ C |a(β − βh,φ) + (γ − γh,∇ψ − φ)|
‖∇ψ‖0 + ‖φ‖1

(4.7)

≤ C‖(β − βh), (γ − γh)‖∗.
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Then

|(γ − γh,βh −Πβh)|
≤C {‖(β−βh), (γ−γh)‖∗[‖βh−Πβh‖0+‖rot(βh−Πβh)‖0]+‖β−βh‖1‖φ‖1}
≤ C{‖(β − βh), (γ − γh)‖∗[‖βh −Πβh‖0 + ‖rot(βh −Πβh)‖0]

+ [‖βh −Πβh‖0 + ‖rot(βh −Πβh)‖0] ‖β − βh‖1}
≤ C{[‖(β − βh), (γ − γh)‖∗ + ‖βh −Πβh‖0 + ‖rot(βh −Πβh)‖0]

× [‖β − βh‖1 + ‖∇w −∇wh‖0 + ‖βh −Πβh‖0 + ‖rot(βh −Πβh)‖0]},

(4.8)

where we have used continuity of a(, ) to obtain the first inequality, and (4.6) to
bound ‖φ‖1 in the second inequality.

Returning to (4.4) we can see that

a(β − βh,β − βh) + t2‖γ − γh‖20
≤ ‖(β − βh), (γ − γh)‖∗{‖β − βh‖1 + ‖∇w −∇wh‖0

+ ‖βh −Πβh‖0 + ‖rot(βh −Πβh)‖0}
+ |(γ − γh,βh −Πβh)|,

(4.9)

so, using the coerciveness of a(, ) and (4.8) we also have

‖β − βh‖21 + t2‖γ − γh‖20

≤ C{‖(β − βh), (γ − γh)‖∗ + ‖βh −Πβh‖0 + ‖rot(βh −Πβh‖0}

×{‖β − βh‖1 + ‖∇w −∇wh‖0 + ‖βh −Πβh‖0 + ‖rot(βh −Πβh)‖0}.

(4.10)

From the definition of γ and γh we have the following identity:

∇w −∇wh = t2(γ − γh) + (β − βh) + (βh −Πβh),(4.11)

from which it follows that

‖∇w −∇wh‖0 ≤ t‖γ − γh‖0 + ‖β − βh‖1 + ‖βh −Πβh‖0.
(4.12)

Adding ‖βh−Πβh‖20 +‖rot(βh−Πβh)‖20 to both members in (4.10) and making
use of (4.12) we arrive at

‖βh −Πβh‖20 + ‖rot(βh −Πβh)‖20 + ‖β − βh‖21 + t2‖γ − γh‖20

≤ C{‖(β − βh), (γ − γh)‖∗ + ‖βh −Πβh‖0 + ‖rot(βh −Πβh)‖0}

×{‖βh −Πβh‖0 + ‖rot(βh −Πβh)‖0 + ‖β − βh‖1 + t‖γ − γh‖0},

(4.13)

from which we obtain

‖βh −Πβh‖0 + ‖rot(βh −Πβh)‖0 + ‖β − βh‖1 + t‖γ − γh‖0

≤ C{‖(β − βh), (γ − γh)‖∗ + ‖βh −Πβh‖0 + ‖rot(βh −Πβh)‖0}.

(4.14)
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Also from (4.11) we have

t2rot(γ − γh) = −rot(β − βh)− rot(βh −Πβh),(4.15)

from which

t2‖rot(γ − γh)‖0 ≤ ‖β − βh‖1 + ‖rot(βh −Πβh)‖0.(4.16)

From (4.12) and (4.16) we see that

t2‖rot(γ − γh)‖0 + ‖∇w −∇wh‖0 + ‖β − βh‖1 + t‖γ − γh‖0

≤ C{‖βh −Πβh‖0 + ‖rot(βh −Πβh)‖0 + ‖β − βh‖1 + t‖γ − γh‖0}.

(4.17)

From this inequality and (4.14) we get

t2‖rot(γ − γh)‖0 + ‖∇w −∇wh‖0 + ‖β − βh‖1 + t‖γ − γh‖0

≤ C{‖(β − βh), (γ − γh)‖∗ + ‖βh −Πβh‖0 + ‖rot(βh −Πβh)‖0}.

(4.18)

Finally (4.2) follows easily from (4.18), using (3.3) and the definition of ηT .

In the following theorem we obtain the main result of equivalence between the
estimator and the sum of errors.

Theorem 4.1. There exist two constants C1 and C2 depending on the minimum
angle of the mesh such that

‖∇w −∇wh‖0 + ‖β − βh‖1 + t2‖rot(γ − γh)‖0 + t‖γ − γh‖0 + ‖γ − γh‖Γ

≤ C1

{∑
T∈Th

[η2
T + ‖f − P kf‖20,T |T |]

}1/2

(4.19)

and

ηT ≤ C2{‖(β − βh)‖1,ωT + ‖∇w −∇wh‖0,ωT + t2‖rot(γ − γh)‖0,ωT
+ t‖γ − γh‖0,ωT + t‖γ − γh‖Γ,ωT +

∑
T̃∈ωT

|T̃ |1/2‖f − P kf‖0,T̃}.

(4.20)

Proof. For the proof of the first inequality, taking into account Proposition 4.1, we
have to bound only ‖γ − γh‖Γ. For fixed η

a(β − βh,η)
‖η‖1

+
(γ − γh,−η)
‖η‖1

≤ ‖(β − βh), (γ − γh)‖∗.

From this,

‖γ − γh‖−1 ≤ C{‖β − βh‖1 + ‖(β − βh), (γ − γh)‖∗}.(4.21)

Also

‖div(γ − γh)‖−1 ≤ ‖(β − βh), (γ − γh)‖∗.(4.22)

Combining (4.21), (4.22), and the results in Proposition 4.1 and Theorem 3.1, we
arrive at (4.19).
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To obtain (4.20), we consider the bound for εT from Theorem 3.1 and the fol-
lowing inequality:

‖(β − βh), (γ − γh)‖∗,ωT ≤ ‖β − βh‖1,ωT + ‖γ − γh‖−1,,ωT + ‖div(γ − γh)‖−1,ωT .

(4.23)

On the other hand we obtain from (4.11)

‖βh −Πβh‖0,T ≤ ‖∇w −∇wh‖0,T + ‖β − βh‖1,T + t‖γ − γh‖0,T ,
(4.24)

and from (4.15)

‖rot(βh −Πβh)‖0,T ≤ t2‖rot(γ − γh)‖0,T + ‖β − βh‖1,T .(4.25)

The proof is completed by adding (3.4), (4.24) and (4.25) and making use of (4.23).
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