UPPER BOUNDS FOR THE PRIME DIVISORS OF WENDT'S DETERMINANT

ANASTASIOS SIMALARIDES

ABSTRACT. Let $c \geq 2$ be an even integer, (3,c)=1. The resultant W_c of the polynomials t^c-1 and $(1+t)^c-1$ is known as Wendt's determinant of order c. We prove that among the prime divisors q of W_c only those which divide 2^c-1 or $L_{c/2}$ can be larger than $\theta^{c/4}$, where $\theta=2.2487338$ and L_n is the nth Lucas number, except when c=20 and q=61. Using this estimate we derive criteria for the nonsolvability of Fermat's congruence.

1. Introduction

Let $c \geq 2$ be an even integer. Given two polynomials f(t) and g(t) denote by R(f(t), g(t)) their resultant. The integer

$$W_c = R(t^c - 1, (1+t)^c - 1)$$

is known as Wendt's determinant. The prime divisors of W_c are of importance because of the following result of Wendt [16].

Theorem 1. Let p, q be odd primes such that q = 1 + cp, (3, c) = 1. Then, Fermat's congruence

$$(1) x^p + y^p + z^p \equiv 0 \pmod{q}$$

has a nontrivial solution (that is, a solution (x, y, z) such that $xyz \not\equiv 0 \pmod{q}$) if and only if q divides W_c .

Although Fermat's Problem has been solved completely, some questions concerning congruence (1) (or, equivalently, the number W_c) remain still unanswered (cf. Section 5).

Since $W_c = 0$ if and only if (3, c) > 1, we shall assume through the paper that (3, c) = 1. The quantity $|W_c|$ grows rapidly with c; Boyd [1] proved that

$$10^{-1/3}\lambda^{c^2} < |W_c| < 10^{1/3}\lambda^{c^2},$$

where $\log \lambda = \frac{2}{\pi} \int_0^{\pi/3} \log(2\cos\theta) d\theta = 0.323...$ In the Table 1 below we list the first few values of $|W_c|$. Several authors carried out the complete factorization of W_c for $c \le c_0$: Frame [8] for $c_0 = 50$; Fee and Granville [6] for $c_0 = 200$; Ford and Jha [7] for $c_0 = 500$.

Received by the editor April 13, 1999 and, in revised form, February 24, 2000. 2000 Mathematics Subject Classification. Primary 11C20; Secondary 11Y40, 11D79. Key words and phrases. Wendt's determinant, Fermat's congruence.

c	$ W_c $	c	$ W_c $
2	3	14	$2^{24} \cdot 3 \cdot 29^6 \cdot 43^3 \cdot 127^3$
4	$3 \cdot 5^3$	16	$3^7 \cdot 5^3 \cdot 7^6 \cdot 17^{15} \cdot 257^3$
8	$3^7 \cdot 5^3 \cdot 17^3$	20	$3 \cdot 5^{24} \cdot 11^9 \cdot 31^3 \cdot 41^9 \cdot 61^6$
10	$3 \cdot 11^9 \cdot 31^3$		

Table 1. The values of $|W_c|$ for $c \leq 20$

By the well-known factorizations (cf. [8])

(2)
$$W_{c} = \prod_{\substack{a=1 \ b=1}}^{c} \prod_{b=1}^{c} (1 + \zeta^{a} + \zeta^{b})$$
$$= \prod_{\substack{a=1 \ b=1}}^{c} \prod_{b=1}^{c} (1 - \zeta^{a} - \zeta^{b}), \quad \zeta = e^{2\pi i/c},$$

of W_c , it follows immediately that the integer 2^c-1 divides W_c . It follows also in an analogous way (cf. Section 2) that $L_{c/2}$ divides W_c (L_n is the *n*th Lucas number), in case $c \equiv 2 \pmod{4}$.

Such nice factors of W_c are called *principal factors*. Further information on the principal factors of W_c can be found in E. Lehmer [11], Frame [8] and Ribenboim [12]; for a recent result see Helou [9]. The factorization of the principal factors

(3)
$$2^c - 1, L_{c/2},$$

is of special importance, because the greatest prime divisor of W_c divides often one of the numbers (3). The extensive tables by Brillhart et al. [2], contain all the known factorizations of the numbers $2^c - 1$ for $c \le 2400$; other tables by Brillhart et al. [3] contain all the known factorizations of the Lucas numbers L_n for $n \le 500$. Unfortunately, no complete factorization of W_c is known that involves only simple principal factors.

Upper bounds for the prime divisors of W_c are obtained in the following way. Let q be a prime divisor of W_c , which does not divide c. It follows by (2) that a prime ideal divisor of q in $\mathcal{Q}(\zeta)$ divides a trinomial cyclotomic integer $1 + \zeta^a + \zeta^b$. In consequence, q divides both the norm

$$N = N(a,b) = N_{\mathcal{Q}(\zeta)/\mathcal{Q}}(1 + \zeta^a + \zeta^b)$$

of $1 + \zeta^a + \zeta^b$ and the resultant

$$R = R(a,b) = R(1 + t^a + t^b, t^{c/2} + 1)$$

of the polynomials $1+t^a+t^b$ and $t^{c/2}+1$; in consequence, it suffices to estimate one of the numbers |N| and |R|. Bounds which arise from the estimation of |N| have their origin in Vandiver [15], who first noticed and used the simplest possible estimate $|N| \leq 3^{\phi(c)}$ of this type (ϕ is Euler's function). Improved bounds of this type were proved and used by Denes [5], Simalarides [13], and, Fee and Granville [6]. Bounds that arise from the estimation of |R| have their origin in Krasner [10], who proved that $q \leq 3^{c/4}$ for every prime divisor q of W_c such that $2^c \not\equiv 1 \pmod{q}$ and q = 1 + cp, where p is a prime. The author [14] improved upon Krasner's result by proving that $q \leq 3 + (2.618 \dots)^{c/4}$, under the same conditions. In the same paper, it was also proved that $q \leq 2.459^{c/4}$ under the additional condition

that q does not divide the numbers $1 + (-1)^{c/2} \pm L_{c/2}$. The results in [10] and [14] were not formulated explicitly as results concerning the resultant W_c , but rather, as results concerning the first case of Fermat's Last Theorem.

We generalize and improve all these previous results as follows.

Theorem 2. Let $c \geq 2$ be an even integer such that (3, c) = 1. If a prime divisor q of W_c satisfies the inequality

(4)
$$q > \theta^{c/4}$$
, where $\theta = 2.2487338$,

then at least one of the following is true: (i) c=20 and q=61; (ii) q is a divisor of 2^c-1 ; (iii) $c\equiv 2\pmod 4$ and q is a divisor of $L_{c/2}$.

The proof of Theorem 2 will be given in Section 3.

In case $c \equiv 0 \pmod{4}$ the number $2^c - 1$ admits the obvious factorization

$$2^{c} - 1 = (2^{c/4} - 1)(2^{c/4} + 1)(2^{c/2} + 1),$$

while in case $c \not\equiv 0 \pmod 8$, it can be factored further (Aurifeuillian factorization) as follows:

$$2^{c} - 1 = (2^{c/4} - 1)(2^{c/4} + 1)(2^{c/4} - 2^{(c+4)/8} + 1)(2^{c/4} + 2^{(c+4)/8} + 1).$$

In view of these factorizations, Theorem 2 can be written in the following sharper form.

Theorem 3. Let $c \geq 2$ be an even integer such that (3, c) = 1. Then, among the prime divisors q of W_c , only those which divide either

$$2^c - 1$$
 or $L_{c/2}$, in case $c \equiv 2 \pmod{4}$,

or

$$2^{c/2} + 1$$
, in case $c \equiv 0 \pmod{8}$,

can be larger than $\theta^{c/4}$, where $\theta = 2.2487338$, except when

$$(c,q) \in \{(4,3), (4,5), (20,61)\}.$$

2. Preliminaries concerning Fibonacci and Lucas numbers

The formulae

(5)
$$L_{2n} = L_n^2 - 2(-1)^n, \quad 4 + L_{2n-1}^2 = 5F_{2n-1}^2, \quad n \ge 1,$$

are immediate consequences of the standard expresssions

$$L_n = \omega_1^n + \omega_2^n, \qquad F_n = \frac{\omega_2^n - \omega_1^n}{\omega_2 - \omega_1}, \quad n \ge 1$$

for the nth Lucas and Fibonacci numbers, respectively, where $\omega_1=(1-\sqrt{5})/2$, $\omega_2=(1+\sqrt{5})/2$, are the roots of the polynomial t^2-t-1 . Define

$$u_c = R(t^2 + t - 1, t^c - 1).$$

The following lemma shows that u_c is a principal factor of W_c .

Lemma 1. Let $c \geq 2$ be an even integer such that (3, c) = 1. Then the following hold true:

- (i) The integer u_c is a divisor of W_c .
- (ii) We have

$$u_c = 2 - L_c = 2 + 2(-1)^{c/2} - L_{c/2}^2$$

$$= \begin{cases} (2 - L_{\frac{c}{4}}) (2 + L_{\frac{c}{4}}) L_{\frac{c}{4}}^2 & \text{if } c \equiv 0 \pmod{8}, \\ -5F_{\frac{c}{4}}^2 L_{\frac{c}{4}}^2 & \text{if } c \equiv 4 \pmod{8}, \\ -L_{\frac{c}{2}}^2 & \text{if } c \equiv \pm 2 \pmod{8}. \end{cases}$$

(iii) If a prime divisor $q \neq 5$ of u_c is larger than $\theta^{c/4}$, then $c \equiv 2 \pmod{4}$ and q is a divisor of $L_{c/2}$.

Proof. (i) Immediate in view of (2) and the fact that

$$u_c = \prod_{a=1}^{c} (\zeta^{2a} + \zeta^a - 1).$$

(ii) We have

$$u_c = (\omega_1^c - 1)(\omega_2^c - 1) = (\omega_1\omega_2)^c - (\omega_1^c + \omega_2^c) + 1$$

= $2 - L_c$.

Applying formulae (5) we obtain the rest of the result sought.

(iii) Immediate in view of (ii) and of the obvious bounds

$$L_n \le 1 + \omega_2^n = 1 + (1.618...)^n, \qquad F_n \le \frac{\omega_2^n + 1}{\sqrt{5}} = \frac{(1.618...)^n + 1}{\sqrt{5}},$$

where $n \geq 1$.

3. Proof of Theorem 2

First of all, Theorem 2 is true for $c \leq 20$, so we can assume that $c \geq 22$. Assume that there is a prime divisor q of W_c which satisfies the inequality (4). Assume also that q is neither a divisor of $2^c - 1$, nor a divisor of $L_{c/2}$ in case $c \equiv 2 \pmod{4}$. We shall prove that this assumption leads to a contradiction. Hypothesis (4) implies that q > c, so q does not divide c; it follows that

(6)
$$1 + \zeta^a + \zeta^b \equiv 0 \pmod{\mathbf{q}},$$

where **q** is a prime ideal divisor of q in $\mathcal{Q}(\zeta)$, and a, b are two integers such that

$$a \not\equiv 0, \quad b \not\equiv 0, \quad a \not\equiv b \pmod{c}$$

(the last three relations are immediate consequences of the hypothesis $2^c \not\equiv 1 \pmod{q}$).

Since $\zeta^{c/2} + 1 = 0$, the resultant R(a, b) of the polynomials $1 + t^a + t^b$, $t^{c/2} + 1$ satisfies the congruence

(7)
$$R(a,b) \equiv 0 \pmod{q}.$$

We can assume that $q \equiv 1 \pmod{c}$; otherwise would have $R(a, b) \equiv 0 \pmod{q^2}$, and in consequence $q < 3^{c/8}$, which would contradict hypothesis (4).

The integer R(a, b) admits the following representation:

$$R(a,b) = \prod_{i=1}^{c/2} \left[1 + \zeta^{(2i-1)a} + \zeta^{(2i-1)b} \right]$$

$$= \prod_{i=1}^{c_1} \left[3 + 2\cos\frac{2\pi a}{c}(2i-1) + 2\cos\frac{2\pi(a-b)}{c}(2i-1) \right] d,$$

where

$$c_1 = \begin{cases} \frac{c}{4} & \text{if } c \equiv 0 \pmod{4}, \\ \frac{c}{4} - \frac{1}{2} & \text{if } c \not\equiv 0 \pmod{4}, \end{cases}$$

and

$$d = \begin{cases} 1 & \text{if } c \equiv 0 \pmod{4}, \\ 1 + (-1)^a + (-1)^b & \text{if } c \not\equiv 0 \pmod{4}. \end{cases}$$

We have $R(a,b) \neq 0$ because of the relation (3,c) = 1. Introducing the abbreviation

$$A_i = \cos \frac{2\pi a}{c} (2i - 1) + \cos \frac{2\pi b}{c} (2i - 1) + \cos \frac{2\pi (a - b)}{c} (2i - 1),$$

we obtain

$$\log |R(a,b)| = \sum_{i=1}^{c_1} \log (3 + 2A_i) + \log |d|,$$

where evidently $-1.5 < A_i \le 3$. We have

$$\log(3+2z) < \sum_{j=0}^{4} \alpha_j z^j$$
, for $-1.5 < z \le 3$,

where $\alpha_0=1.166985006, \alpha_1=0.76146, \alpha_2=-0.295509605, \alpha_3=0.0523446, \alpha_4=0.0014453.$ This implies that

(8)
$$\log |R(a,b)| < \sum_{i=1}^{c_1} \sum_{j=0}^4 \alpha_j A_i^j + \log |d| = \sum_{j=0}^4 \alpha_j \sum_{i=1}^{c_1} A_i^j + \log |d|.$$

Given two variables x, y, consider the function

$$[\cos x + \cos y + \cos (x - y)]^n, \quad n > 0.$$

and its Fourier expansion

$$[\cos x + \cos y + \cos (x - y)]^n = \sum_{r=0}^{\infty} \sum_{s=-\infty}^{\infty} c_{r,s}^{(n)} \cos (rx + sy);$$

the set

$$\mathcal{A}_n = \left\{ (r, s) \in \mathbb{Z} \times \mathbb{Z}; c_{r, s}^{(n)} \neq 0 \right\}$$

is finite. We have trivially $A_0 = \{(0,0)\}$ and $c_{0,0}^{(0)} = 1$. It is easily seen that

$$\mathcal{A}_n \subset \mathcal{A}_{n+1}$$
, for $n = 1, 2, 3, \dots$

We can write

$$[\cos x + \cos y + \cos (x - y)]^n = \sum_{(r,s) \in \mathcal{A}_n} c_{r,s}^{(n)} \cos (rx + sy),$$

or more simply

$$[\cos x + \cos y + \cos (x - y)]^n = \sum_{r,s} c_{r,s}^{(n)} \cos (rx + sy).$$

Estimate (8) then takes the form

(9)
$$\log |R(a,b)| < \sum_{j=0}^{4} \alpha_j \sum_{r,s} c_{r,s}^{(j)} \sum_{i=1}^{c_1} \cos \frac{2\pi (ra+sb)}{c} (2i-1) + \log |d|.$$

We also have

(10)

$$\sum_{i=1}^{c_1} \cos \frac{2\pi (ra+sb)}{c} (2i-1) = \begin{cases} c_1(-1)^{2(ra+sb)/c} & \text{if } ra+sb \equiv 0 \pmod{\frac{c}{2}}; \\ 0 & \text{if } ra+sb \not\equiv 0 \pmod{\frac{c}{2}}; \\ & \text{and } c \equiv 0 \pmod{4}; \\ -\frac{1}{2} \cos (ra+sb)\pi & \text{if } ra+sb \not\equiv 0 \pmod{\frac{c}{2}}; \\ & \text{and } c \not\equiv 0 \pmod{4}. \end{cases}$$

The next lemma guarantees that $ra + sb \not\equiv 0 \pmod{\frac{c}{2}}$ for all $(r, s) \in \mathcal{A}_4$ with at most two exceptions. We denote by (a, b) any solution of the congruence

(11)
$$1 + \zeta^A + \zeta^B \equiv 0 \pmod{\mathbf{q}}, \ A \not\equiv 0, \ B \not\equiv 0, \ A \not\equiv B \pmod{c};$$

the numbers a, b are determined mod c. Relation (6) says that the set of the solutions to (11) is nonempty by hypothesis.

Lemma 2. Let $A = \{(2, -4), (4, -2), (2, 2)\}$. Then the following hold true:

- (I) The pairs (b, a), (-a, b a) are also solutions of (11).
- (II) The congruence

(12)
$$ra + sb \equiv 0 \pmod{\frac{c}{2}}$$

is impossible for $(r,s) \in \mathcal{A}_4 - \mathcal{A} - \{(0,0)\}.$

(III) If $c \not\equiv 0 \pmod{4}$, then congruence (12) is impossible for $(r, s) \in \mathcal{A}_4 - \{(0, 0)\}$, while if $c \equiv 0 \pmod{4}$, then congruence (12) can be satisfied by at most one $(r, s) \in \mathcal{A}$ and in this case 2(ra + sb)/c is odd.

Proof. The first assertion of the lemma is obvious.

(II) We have
$$A_1 = \{(1, -1), (1, 0), (0, 1)\}$$
 and

$$A_2 = A_1 \cup \{(0,0), (1,-2), (2,-2), (2,-1), (2,0), (1,1), (0,2)\},\$$

$$A_3 = A_2 \cup \{(1, -3), (2, -3), (3, -3), (3, -2), (3, -1), (3, 0), (2, 1), (1, 2), (0, 3)\},$$

$$\mathcal{A}_4 = \mathcal{A}_3 \cup \{(1, -4), (2, -4), (3, -4), (4, -4), (4, -3), (4, -4), (4, -3), (4, -4), (4, -4), (4, -3), (4, -4),$$

$$(4,-2), (4,-1), (4,0), (3,1), (2,2), (1,3), (0,4)$$
.

Obviously, the set $A_4 - A - \{(0,0)\}$ consists of 27 elements.

Consider the transformations τ_0, τ_1, τ_2 defined by

$$\tau_0(a,b) = (a,b), \quad \tau_1(a,b) = (b,a), \quad \tau_2(a,b) = (-a,b-a).$$

All these transformations are of the form

(13)
$$\tau_i(a,b) = \left(a_{11}^{(i)}a + a_{12}^{(i)}b, a_{21}^{(i)}a + a_{22}^{(i)}b\right), \quad i = 0, 1, 2,$$

or in matrix notation

$$\tau_i(a,b)^T = \begin{pmatrix} a_{11}^{(i)} & a_{12}^{(i)} \\ a_{21}^{(i)} & a_{22}^{(i)} \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix}, \quad a_{kl} \in \mathbb{Z}.$$

The image $\tau_i(a, b)$ is also a solution of (11) for i = 0, 1, 2 because of the part (I) of the lemma. For this reason, if

(14)
$$r_1 a + s_1 a \not\equiv 0 \pmod{\frac{c}{2}},$$

for some $(r_1, s_1) \in \mathcal{A}_4 - \mathcal{A} - \{(0, 0)\}$ and for every solution (a, b) of (11), then also

(15)
$$r_1\left(a_{11}^{(i)}a + a_{12}^{(i)}b\right) + s_1\left(a_{21}^{(i)}a + a_{22}^{(i)}b\right) \not\equiv 0 \pmod{\frac{c}{2}}$$

for every i = 0, 1, 2, 3. Since the left member of (15) is equal to

$$\left(r_1 a_{11}^{(i)} + s_1 a_{21}^{(i)}\right) a + \left(r_1 a_{12}^{(i)} + s_1 a_{22}^{(i)}\right) b,$$

it follows that if (14) is true for some $(r_1, s_1) \in \mathcal{A}_4 - \mathcal{A} - \{(0, 0)\}$ and for every solution (a, b), then the relation $ra + sb \not\equiv 0 \pmod{c/2}$ is also true for the pair (r, s), where

(16)
$$\begin{pmatrix} r \\ s \end{pmatrix} = \begin{pmatrix} a_{11}^{(i)} & a_{21}^{(i)} \\ a_{12}^{(i)} & a_{22}^{(i)} \end{pmatrix} \begin{pmatrix} r_1 \\ s_1 \end{pmatrix}, \quad i = 0, 1, 2.$$

A subset \mathcal{B} of $\mathcal{A}_4 - \mathcal{A} - \{(0,0)\}$ is called *fundamental*, if, for every pair $(r,s) \in \mathcal{A}_4 - \mathcal{A} - \{(0,0)\}$, the equality

$$\left(\begin{array}{c} r \\ s \end{array}\right) = \pm T \left(\begin{array}{c} r_1 \\ s_1 \end{array}\right)$$

holds true for some $(r_1, s_1) \in \mathcal{B}$ and for some transformation T composed of the transformations (16).

The final conclusion of the above discussion is the following: To prove part (II) of Lemma 2, it suffices to prove that the congruence (12) is impossible for all $(r, s) \in \mathcal{B}$, where \mathcal{B} is a fundamental subset of $\mathcal{A}_4 - \mathcal{A} - \{(0, 0)\}$. A simple calculation shows that a fundamental subset of $\mathcal{A}_4 - \mathcal{A} - \{(0, 0)\}$ is the following

$$\mathcal{B} = \{(1,0), (2,0), (3,0), (4,0), (1,1), (1,-3), (1,-4)\}.$$

We distinguish two cases (A), (B).

(A)
$$(r,s) \in \{(1,0),(2,0),(3,0),(4,0)\};$$
 we have to prove that

$$a \not\equiv 0, 2a \not\equiv 0, 2^2 a \not\equiv 0, 3a \not\equiv 0 \pmod{\frac{c}{2}}.$$

We prove the first three relations by induction on the exponents of the powers $1, 2, 2^2$. The first relation is true by hypothesis. Assuming that $2^j a \not\equiv 0 \pmod{c/2}$, let us prove that $2^{j+1}a \not\equiv 0 \pmod{c/2}$. Indeed, the contrary hypothesis $2^{j+1}a \equiv 0 \pmod{c/2}$ implies that $2^{j+1}a = k(c/2)$, where k is an integer. The number k is odd, because if k were even, then this fact would vitiate the induction hypothesis;

in consequence, c is divisible by 4 and so $a = k(c/2^{j+2})$. Then $\zeta^a = \xi$, where ξ is a primitive 2^{j+2} -th root of unity, and congruence (6) becomes

(17)
$$1 + \xi \equiv -\zeta^b \pmod{\mathbf{q}}.$$

Congruence (17) implies then $(1+\xi)^c \equiv 1 \pmod{\mathbf{q}}$ and taking norms we conclude that $2^c \equiv 1 \pmod{q}$, which is impossible by hypothesis.

It remains to prove that $3a \not\equiv 0 \pmod{c/2}$; indeed, if were $3a \equiv 0 \pmod{c/2}$ this would imply (since (3,c)=1) that $a \equiv 0 \pmod{c/2}$, which is impossible by hypothesis.

(B) $(r,s) \in \{(1,1),(1,-3),(1,-4)\}$; assume that the congruence (12) holds true for such a pair (r,s). We shall prove that this leads to a contradiction. We have by hypothesis

(18)
$$\zeta^{ra} \equiv \pm \zeta^{-sb} \pmod{\mathbf{q}}, \quad 1 + \zeta^a + \zeta^b \equiv 0 \pmod{\mathbf{q}}.$$

It follows that at least one of the polynomials

(19)
$$f_{r,s}^{\pm}(t) = \begin{cases} (1+t)^r \pm t^{-s} & \text{if } s < 0, \\ t^s (1+t)^r \pm 1 & \text{if } s > 0, \end{cases}$$

has a common root mod q with the polynomial $t^c - 1 = (t^{c/2} - 1)(t^{c/2} + 1)$. This implies that at least one of the congruences

(20)
$$R\left(f_{r,s}^{\pm}(t), t^{c/2} + (-1)^n\right) \equiv 0 \pmod{q}$$

holds true for every $n \in \{1, 2\}$. If $d_{r,s}^{\pm}$ are the degrees of the polynomials (19) and $\rho_1^{\pm}, \rho_2^{\pm}, \ldots$, their roots, then

$$R\left(f_{r,s}^{\pm}(t), t^{c/2} + (-1)^n\right) = \prod_{i=1}^{d_{r,s}^{\pm}} \left[\rho_i^{c/2} + (-1)^n\right].$$

We have to distinguish between two cases (a) and (b):

(a) (r, s) = (1, 1); we have

$$f_{1,1}^{\pm}(t) = t^2 + t \pm 1,$$

(21)
$$0 < \left| R\left(t^2 + t + 1, t^{c/2} + (-1)^n\right) \right| \le 4,$$

$$R\left(t^{2}+t-1, t^{c/2}+(-1)^{n}\right) = \left[\left(-\omega_{1}\right)^{\frac{c}{2}}+(-1)^{n}\right] \cdot \left[\left(-\omega_{2}\right)^{\frac{c}{2}}+(-1)^{n}\right]$$

$$= 1+(-1)^{c/2}+(-1)^{n+\frac{c}{2}}L_{c/2} \neq 0.$$
(22)

Relation (21) contradicts hypothesis (4). Each of the numbers (22) divides by part (ii) of Lemma 1 the number u_c for n = 1, 2. Congruence (20) leads then, in view of part (iii) of Lemma 1, to a contradiction.

(b) $(r,s) \in \{(1,-3),(1,-4)\}$; we have

$$f_{1,-3}(t) = \pm t^3 + t + 1$$
 and $f_{1,-4}(t) = \pm t^4 + t + 1$.

For $c \geq 22$, a simple calculation shows that

$$0 < \left| R\left(f_{r,s}^{\pm}(t), t^{c/2} + (-1)^n \right) \right| < \theta^{c/4}$$

for $(r,s) \in \{(1,-3),(1,-4)\}$, which contradicts, in view of (20), hypothesis (4).

(III) If two of the congruences

(23)
$$2a - 4b \equiv 0, \ 4a - 2b \equiv 0, \ 2a + 2b \equiv 0 \pmod{\frac{c}{2}},$$

were true, then for these two congruences, say for the first and for the second, we would have

$$0 \equiv (2a - 4b) + (4a - 2b) \equiv 6a - 6b \pmod{\frac{c}{2}} \Rightarrow 6a - 6b = k\frac{c}{2}$$
$$\Rightarrow 2a - 2b = k_1\frac{c}{2} \pmod{3}$$
$$\Rightarrow 2a - 2b \equiv 0 \pmod{\frac{c}{2}},$$

which is absurd, since $(2,-2) \in \mathcal{A}_4 - \mathcal{A} - \{(0,0)\}$. If one of the congruences (23) is true, this means that

$$2a - 4b \equiv 0$$
 or $4a - 2b \equiv 0$ or $2a + 2b \equiv 0 \pmod{\frac{c}{2}}$,

or equivalently

(24)
$$2a - 4b = k_1 \frac{c}{2} \text{ or } 4a - 2b = k_2 \frac{c}{2} \text{ or } 2a + 2b = k_3 \frac{c}{2}.$$

The integers k_1, k_2, k_3 cannot be even; otherwise this would imply that

$$a - 2b \equiv 0$$
 or $2a - b \equiv 0$ or $a + b \equiv 0 \pmod{\frac{c}{2}}$,

which is absurd, because $(1, -2), (2, -1), (1, 1) \in \mathcal{A}_4 - \mathcal{A} - \{(0, 0)\}$. In case $c \not\equiv 0 \pmod{4}$ the equalities (24) are all impossible because the right members are odd numbers.

We then turn to the proof of theorem. We distinguish two cases (A) and (B). (A) $c \equiv 0 \pmod{4}$; then $c_1 = \frac{c}{4}$ and d = 1. In case the congruence $ra + sb \equiv 0 \pmod{\frac{c}{2}}$ holds true for one (and only one) $(r, s) \in \mathcal{A}$, it follows by Lemma 2 and relations (9), (10) that

$$\log |R(a,b)| < \left[\alpha_0 c_{0,0}^{(0)} + \alpha_1 c_{0,0}^{(1)} + \alpha_2 c_{0,0}^{(2)} + \alpha_3 c_{0,0}^{(3)} + \alpha_4 (c_{0,0}^{(4)} - c_{r,s}^{(4)})\right] \frac{c}{4}.$$

Since

$$c_{0,0}^{(0)}=1, c_{0,0}^{(1)}=0, c_{0,0}^{(2)}=\frac{3}{2}, c_{0,0}^{(3)}=\frac{3}{2}, c_{0,0}^{(4)}=\frac{45}{8},$$

and

$$c_{r,s}^{(4)} = \frac{3}{4} \text{ for } (r,s) \in \mathcal{A},$$

we obtain the estimate

(25)
$$\log |R(a,b)| < (0.809283336...) \frac{c}{4} < \frac{c}{4} \log \theta.$$

In case the congruence $ra + sb \equiv 0 \pmod{\frac{c}{2}}$ is impossible for all $(r, s) \in \mathcal{A}$, Lemma 2, together with the relations (9), (10), imply the estimate

(26)
$$\log |R(a,b)| < \left[\sum_{j=0}^{4} \alpha_j c_{0,0}^{(j)} \right] \frac{c}{4} = \frac{c}{4} \log \theta.$$

Both estimates (25) and (26) contradict, by (7), hypothesis (4).

(B) $c \not\equiv 0 \pmod{4}$; then $c_1 = \frac{c}{4} - \frac{1}{2}$, $d = 1 + (-1)^a + (-1)^b$, and it follows by Lemma 2 and relations (9), (10) that

$$\begin{split} \log |R(a,b)| &< \sum_{j=0}^4 \alpha_j \left[\frac{c_1}{4} c_{0,0}^{(j)} - \frac{1}{2} \sum_{\substack{r,s \\ (r,s) \neq (0,0)}} c_{r,s}^{(j)} \cos{(ra+sb)\pi} \right] + \log |d| \\ &= \sum_{j=0}^4 \alpha_j \left[\frac{c}{4} c_{0,0}^{(j)} - \frac{1}{2} \sum_{r,s} c_{r,s}^{(j)} \cos{(ra+sb)\pi} \right] + \log |d| \\ &= \left[\sum_{j=0}^4 \alpha_j c_{0,0}^{(j)} \right] \frac{c}{4} - \frac{1}{2} \sum_{j=0}^4 \alpha_j \left[(-1)^a + (-1)^b + (-1)^{a-b} \right]^j + \log |d|. \end{split}$$

Hence

$$\label{eq:resolvent} \log |R(a,b)| < \left\{ \begin{array}{l} \frac{c}{4} \log \theta + \log |d| - 0.01889 \quad \text{if } a,b \text{ are both even,} \\ \\ \frac{c}{4} \log \theta - 0.4103 \quad \text{otherwise,} \end{array} \right.$$

which by (7) contradicts hypothesis (4), since q cannot divide the integer d.

4. The large prime divisors of W_c

Let $c \geq 2$ be an integer such that (3,c) = 1. A prime divisor q of W_c is called large if $q > \theta^{c/4}$. Denote by \mathcal{P}_c the set of large prime divisors of W_c ; denote also by P_c, Q_c, U_c (or, for simplicity, by P, Q, U) the largest prime divisor of the numbers $2^{c/2} - 1$, $2^{c/2} + 1$, $L_{c/2}$, respectively. The set \mathcal{P}_c is empty in case $c \equiv 4 \pmod{8}$, except when c = 20. We can easily determine the set \mathcal{P}_c using Theorem 3 in combination with the tables in [2] and [3]. Thus, in Table 2 below we list the large prime divisors of W_c for all $c \leq 662$, such that $c \not\equiv 0 \pmod{3}$ and $c \not\equiv 4 \pmod{8}$ (the case c = 20 is also included). We did not try to extend Table 2 beyond the value c = 662, because for c > 662, in the tables in [2] and [3] appear incomplete factorizations of the numbers (3), involving composite factors whose prime factors are unknown. We found that all the numbers in Table 2 are congruent to 1 (mod c). We also found that for $c \leq 662$, and $c \in \mathcal{P}_c$, the number $c \in (q-1)/c$ is always composite except when

$$(c,q) \in \{(10,31), (20,61), (22,683)\}.$$

The verification of the last assertion has been carried out without much difficulty because in almost all cases, the numbers (q-1)/c were found to have a small prime divisor. The only difficulties arose from the numbers $P_{482}, Q_{362}, Q_{454}$. Indeed we found that the least prime divisor of the numbers $(P_{482}-1)/482$ and $(Q_{362}-1)/362$ is 21221 and 412987, respectively, while the converse of Fermat's Theorem with base 2 showed that the number

$$(Q_{454} - 1)/454 = 15\ 4145\ 7503\ 4860\ 2301\ 1302\ 1485\ 7398\ 0441\ 2137\ 3127$$

is composite (with unknown factors).

Table 2. The large prime divisors of W_c for $c \le 662$

c	\mathcal{P}_c	c	\mathcal{P}_c	c	\mathcal{P}_c	c	\mathcal{P}_c
2	Q U	166	P	334	P Q	502	${Q}$
8	Q	170	P Q	338	P	506	Ø
10	P Q U	176	Ø	344	Ø	512	\overline{Q}
14	P Q U	178	P Q U	346	Ø	514	Ø
16	\overline{Q}	182	Ø	350	Ø	518	P
20	61	184	Q	352	Q	520	Ø
22	P Q U	190	\overline{Q}	358	P Q	526	Q
26	P Q U	194	P Q	362	P Q	530	Ø
32	\overline{Q}	200	Ø	368	Ø	536	Q
34	P Q U	202	Q	370	Q	538	P Q
38	P Q U	206	P Q	374	P Q	542	P
40	Q	208	Q	376	Ø	544	Ø
46	P Q	214	P Q	382	Q	550	Q
50	Ø	218	P Q	386	Ø	554	Q
56	Q	224	Ø	392	Ø	560	Ø
58	Q	226	U	394	P	562	P Q
62	P Q U	230	Ø	398	P Q	566	P Q
64	Q	232	Q	400	Ø	568	Q
70	Ø	238	Ø	406	P	574	P
74	P Q U	242	P Q U	410	Q	578	P
80	Q	248	Ø	416	Ø	584	Q
82	P Q U	250	Ø	418	Ø	586	P U
86	Q	254	P Q	422	P	590	Q
88	Q	256	Ø	424	Ø	592	Q
94	Q U	262	P Q	430	Q	598	Q
98	P Q U	266	P Q	434	Q	602	Q
104	Ø	272	Ø	440	Ø	608	Ø
106	Q U	274	Ø	442	P Q	610	Ø
110	Ø	278	P Q	446	Q U	614	P U
112	Q	280	Q	448	Ø	616	Q
118	P	286	Ø	454	P Q	622	P Q U
122	P Q U	290	P Q	458	Q U	626	Q U
128	Q	296	Q	464	Q	632	Q
130	P	298	Q	466	P Q	634	Q
134	P Q	302	Q	470	Ø	638	P
136	Q	304	Ø	472	Q	640	Ø
142	Q U	310	Ø	478	P Q	646	P
146	P Q	314	Ø	482	P Q	650	P
152	Q	320	Q	488	Ø	656	Ø
154	P	322	Q	490	P	658	P Q
158	Q U	326	Ø	494	Q	662	P
160	Ø	328	Q	496	Q		

5. Applications to Fermat's congruence

Let p,q be odd primes. It is easy to prove that Fermat's congruence (1) has a nontrivial solution if $q \not\equiv 1 \pmod p$ or (3,c) > 1. However, the case $q \equiv 1 \pmod p$,

(3,c)=1 involves many difficult and still unsolved problems. Combining together Theorems 1 and 3 we obtain the following main result.

Theorem 4. Let p,q be odd primes such that $(p,q) \neq (3,61)$. Then Fermat's congruence

$$(27) x^p + y^p + z^p \equiv 0 \pmod{q}$$

has only trivial solutions (that is, solutions (x, y, z) such that $xyz \equiv 0 \pmod{q}$) provided that:

- (i) q = 1 + cp and (3, c) = 1;
- (ii) $2^c \not\equiv 1 \pmod{q}$, or $c \equiv 0 \pmod{4}$;
- (iii) $L_{c/2} \not\equiv 0 \pmod{q}$, or $c \equiv 0 \pmod{4}$;
- (iv) $q > \theta^{c/4}$.

The stronger condition $c \equiv 0 \pmod{4}$ in (ii) instead of $c \equiv 0 \pmod{8}$, is due to the fact that the number $2^{c/2} + 1$ does not have prime divisors of the form $q \equiv 1 \pmod{8}$; this has been proved in [14, p. 170]. Theorem 4 improves upon the previous results of Vandiver [15], Krasner [10] and the author [14].

The numerical evidence indicates that the conditions

$$2^c \not\equiv 1 \pmod{q}$$
 and $L_{c/2} \not\equiv 0 \pmod{q}$

are almost always superfluous; more precisely:

Proposition 1. Let p, q be odd primes. Then, congruence (27) has only trivial solutions for every prime exponent

$$p \le \frac{\theta^{166} - 1}{664} = (3.9769287...)10^{55},$$

provided that q = 1 + cp, (3, c) = 1, $q > \theta^{c/4}$ and that

$$(p,q) \neq (3,31), (3,61), (31,683).$$

Proof. Assume that the pair (p,q) contradicts the truth of the proposition. Then, necessarily, $q \in \mathcal{P}_c$. By the results in Section 4 (last paragraph) it follows that $c \geq 664$. In consequence

$$p > \frac{\theta^{c/4} - 1}{c} \ge \frac{\theta^{166} - 1}{664},$$

which is impossible by hypothesis.

Proposition 1 leads naturally to the following conjecture.

Conjecture 1. Let p,q be odd primes. Then, congruence (27) has only trivial solutions provided that q=1+cp, (3,c)=1, $q>\theta^{c/4}$ and that $(p,q)\neq (3,31)$, (3,61), (31,683).

It is important to note that inequality $q > \theta^{c/4}$ is equivalent to

$$q < \frac{4}{\log \theta} p \log p + \frac{4}{\log \theta} p \log g \log p$$
$$= (4.936...) p \log p + (4.936...) p \log \log p$$

(in fact, the last inequality is a bit weaker). According to a classical result of Dickson, congruence (27) has nontrivial solutions if

$$q > (p-1)^2(p-2)^2 + 6p - 2.$$

Chowla [4] conjectured that the stronger inequality $q > p^2$ holds true for sufficiently large p.

ACKNOWLEDGMENT

I would like to express my thanks to the referee for valuable suggestions.

References

- D.W. Boyd, The asymptotic behaviour of the circulant determinant, J. Math. Appl. 86 (1982), 30–38. MR 83f:10007
- [2] J. Brillhart, D.H. Lehmer, J.L. Selfridge, B. Tuckerman and S.S. Wagstaff Jr., Factorizations of $b^n\pm 1$, b=2,3,5,6,7,10,11,12 up to high powers, Contemporary Mathematics 22, American Mathematical Society, Providence, 1988. MR **90d:**11009
- [3] J. Brillhart, P.L. Montgomery and R.D. Silverman, Tables of Fibonacci and Lucas Factorizations, Math. Comp. 50 (1988), 251–260. MR 89h:11002
- [4] S. Chowla, Some conjectures in elementary number theory, Norske Vid. Selsk. Forh. (Trond-heim) 35 (1962), 13. MR 25:2995
- [5] P. Dénes, An extension of Legendre's criterion in connection with the first case of Fermat's Last Theorem, Publ. Math. Debrecen 2 (1951), 115–120. MR 13:822h
- [6] G. Fee and A. Granville, The prime factors of Wendt's binomial circulant determinant, Math. Comp. 57 (1991), 839–848. MR 92f:11183
- [7] D. Ford and V. Jha, On Wendt's Determinant and Sophie Germain's Theorem, Experimental Math. 2 (1993), 113–119. MR 95b:11029
- [8] J.S. Frame, Factors of the binomial circulant determinant, Fibonacci Quart. 18 (1980), 9–23.MR 81j:11007
- [9] C. Helou, On Wendt's determinant, Math. Comp. 66 (1997), 1341–1346. MR 97j:11014
- [10] M. Krasner, A propos du critère de Sophie Germain Furtwängler pour le premier cas du théorèm de Fermat, Mathematica Cluj. 16 (1940), 109–114. MR 1:291k
- [11] E. Lehmer, On a resultant connected with Fermat's Last Theorem, Bull. Amer. Math. Soc. 41 (1935), 864–867.
- [12] P. Ribenboim, 13 Lectures on Fermat's Last Theorem, Springer, New York, 1979. MR 81f:10023
- [13] A. Simalarides, Applications of the theory of cyclotomic field to Fermat's equation and congruence, Ph.D. Thesis, Athens University, Athens 1984.
- [14] A. Simalarides, Sophie Germain's Principle and Lucas numbers, Math. Scand. 67 (1990), 167–176. MR 92c:11026
- [15] H.S. Vandiver, Some theorems in finite field theory with applications to Fermat's Last Theorem, Proc. Nat. Acad. Sci. U.S.A. 30 (1944), 362–367. MR 6:117e
- [16] E. Wendt, Arithmetische Studien über den letzten Fermatschen Satz, welcher aussagt, dass die Gleichung $a^n = b^n + c^n$, für n > 2 in ganzen Zahlen nicht auflösbar ist, J. Reine Angew. Math. 113 (1894), 335–347.

T.E.I. of Chalcis, Psahna 34400, Euboea, Greece