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CONTINUED FRACTIONS IN LOCAL FIELDS, II

JERZY BROWKIN

Abstract. The present paper is a continuation of an earlier work by the
author. We propose some new definitions of p-adic continued fractions. At the
end of the paper we give numerical examples illustrating these definitions. It
turns out that for every m, 1 < m < 5000, 5 - m if

√
m ∈ Q5 \ Q, then

√
m

has a periodic continued fraction expansion. The same is not true in Qp for
some larger values of p.

1. Introduction

There are two nonequivalent definitions of continued fractions in the field Qp of
p-adic numbers: the definition of T. Schneider ([Sch], 1968) and the definition of
A.A. Ruban ([Ru], 1970) modified by the author ([Br], 1978) and rediscovered by
L.X. Wang ([Wa1], 1985).

In the first definition we consider continued fractions of the form (we assume for
simplicity that p > 2, and v(α) = 0, where v is the p-adic valuation, and α ∈ Qp)

α = b0 +
a0

b1 +
a1

b2 + · · ·
,

where bj ∈ {1, 2, . . . , p− 1}, aj = pαj , αj ≥ 1, for j ≥ 0.
In the second definition we assume that aj = 1 for j ≥ 0, and

bj ∈ Z
[

1
p

]
∩ (0, p) in [Ru], and bj ∈ Z

[
1
p

]
∩
(
−p

2
,
p

2

)
in [Br].

Moreover, v(b0) = 0 and v(bj) < 0 for j ≥ 1. The precise definition is given in
Algorithm I below. The following natural elementary questions arise:

1. Can every α ∈ Qp be written uniquely as a finite or infinite continued frac-
tion?

2. Can every rational number α ∈ Q be written as a finite continued fraction? If
not, determine those infinite continued fractions which correspond to rational
numbers.

3. Can every α ∈ Qp quadratic over Q be written as a periodic continued frac-
tion?

The answers are as follows:
1. Yes, it follows easily from both definitions.

Received by the editor August 25, 1999.
2000 Mathematics Subject Classification. Primary 11J70; Secondary 11S85.
Key words and phrases. p-adic continued fractions, periodicity.

c©2000 American Mathematical Society

1281



1282 JERZY BROWKIN

2. No, for the definitions in [Sch] and [Ru]; yes, for the definition in [Br]. Infinite
continued fractions corresponding to rational numbers have been described in
[Bu] for Schneider continued fractions, and in [La] and [Wa1] for Ruban ones.

3. No, in general. For some particular α’s the continued fraction is periodic.
There are several papers devoted to periodicity, e.g., [Beck], [Be1], [Be2], [Be3],
[Be4], [Br], [Bu], [Dea], [La], [Ti], [Wa1], [We1], [We2].

B.M.M. de Weger [We1] has modified question 3 as follows. To every α ∈ Qp, he
attached a sequence of approximation lattices, and he proved that α ∈ Qp is qua-
dratic over Q iff the corresponding sequence of approximation lattices is periodic.
He remarked (see [We1], p.70), “... it seems that a simple and satisfactory p-adic
continued fraction algorithm does not exist.”

In the present paper we propose some new definitions of p-adic continued frac-
tions. It seems that they are more satisfactory than earlier ones, since for many
α ∈ Qp, quadratic over Q, the continued fraction in the new sense is periodic. See
the numerical examples in Section 4.

2. Definitions

First we recall the definition of A.A. Ruban [Ru] and its modification [Br]. We
assume for simplicity that p is an odd prime number. Let R ⊂ Q be a set of
representatives modulo p such that 0 ∈ R. Then every α ∈ Qp can be written
uniquely in the form

α =
∞∑
n=r

anp
n,(1)

where r ∈ Z, an ∈ R, for n ≥ r and ar 6= 0 if α 6= 0. Then v(α) = r, where v is the
p-adic valuation.

We define the mapping (integral part) s : Qp −→ Q as follows. For α given by
(1) let

s(α) =
0∑

n=r

anp
n.

In particular we can takeR = {0, 1, . . . , p−1} (see [Ru]) orR =
{
− p−1

2 , . . . ,−1, 0,
1, . . . , p−1

2

}
(see [Br]). In the present paper we choose the second possibility. Then

s(Qp) = Z
[

1
p

]
∩
(
− p2 ,

p
2

)
.

Now we can proceed as in the classical definition of continued fractions in R.
Algorithm I.
For a given α ∈ Qp, we define inductively (finite or infinite) sequences (an) and

(bn) as follows.
Let a0 = α and b0 = s(α).
If b0 = a0, then a1 and b1 are not defined.
If b0 6= a0, then let a1 = (a0 − b0)−1 and b1 = s(a1).
If aj , bj are defined for j = 0, 1, . . . , k and bk = ak, then ak+1 and bk+1 are not

defined.
If bk 6= ak, then let ak+1 = (ak − bk)−1 and bk+1 = s(ak+1).
We call the sequence (bn) the p-adic continued fraction of α.
From the definition of the mapping s it follows that v(β − s(β)) > 0 for every

β ∈ Qp, and hence v(bn) < 0 for n ≥ 1.
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For an arbitrary sequence (bn), where bn ∈ s(Qp), and v(bn) < 0, for n ≥ 1, we
define the partial quotients

An
Bn

= [b0; b1, . . . , bn] (n = 0, 1, . . . )

as usual:

A0 = b0, A1 = b0b1 + 1, An = bnAn−1 + An−2, for n ≥ 2,

B0 = 1, B1 = b1, Bn = bnBn−1 +Bn−2, for n ≥ 2.

If the sequence (bn) is infinite, then the sequence (An/Bn) is convergent, and
moreover if (bn) was obtained by the above algorithm applied to α ∈ Qp, then
lim(An/Bn) = α. In this case we use the notation α = [b0; b1, . . . ].

For the proofs see [Br].

3. Some new algorithms

Now we present some new definitions of p-adic continued fractions.

Lemma 1. Let an infinite sequence (bn) satisfy
bn ∈ Z[ 1

p ], for n ≥ 0,
v(b2n) = 0, for n > 0,
v(b2n+1) < 0, for n ≥ 0,

(3)

and let An
Bn

be the n-th partial quotient corresponding to the sequence (bn).
Then the sequence An

Bn
is convergent to a p-adic number α. We have v(α) ≥ 0

provided v(b0) ≥ 0.

Proof. 1) We prove by induction that Bn 6= 0 and v(Bn) ≤ v(Bn−1), for every
n ≥ 0, and that the equality holds iff n is even.

Since B0 = 1, B1 = b1, then v(B0) = 0 > v(b1) = v(B1), by the assumption.
Consequently B1 6= 0.

Suppose that

Bn−1 6= 0 and v(Bn−1) ≤ v(Bn−2) for some n ≥ 2(4)

and that the equality holds iff n is odd.
In view of (3) and (4) we have

v(bnBn−1) = v(Bn−1) < v(Bn−2) for n even

and

v(bnBn−1) < v(Bn−1) = v(Bn−2) for n odd.

Thus in both cases v(bnBn−1) < v(Bn−2), and hence in view of Bn = bnBn−1 +
Bn−2 we get

v(Bn) = min(v(bnBn−1), v(Bn−2))

= v(bnBn−1)

{
= v(Bn−1) for n even,
< v(Bn−1) for n odd.

Consequently v(Bn) < 0, hence Bn 6= 0.
By induction the claim follows.
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2) From the first part of the proof we get limB−1
n = 0. The well-known formula

An+1

Bn+1
− An
Bn

=
(−1)n

Bn+1Bn

implies that
(
An
Bn

)
is a Cauchy sequence. Hence it is convergent in Qp.

We shall prove that every p-adic number α can be written in the form α =
[b0; b1, . . . ] for some finite or infinite sequence (bn) satisfying (3). Of course such a
representation is not unique. To get the uniqueness it is necessary to make some
further restrictions on the sequence (bn), e.g., such as stated in the algorithms
below.

For α ∈ Qp given by (1) let

s1(α) = s(α) =
0∑

n=r

anp
n and s1

′(α) = s1(α) − p · sign(s1(α)).

If α ∈ Qp \pZp, then s1(α) and s1
′(α) are representatives of αmodulo pZp belonging

to Z[ 1
p ] ∩ (−p, p). They have opposite signs. If α ∈ pZp, then s1(α) = s1

′(α) = 0.
Similarly, let

s2(α) =
−1∑
n=r

anp
n and s2

′(α) = s2(α) − sign(s2(α)).

If α ∈ Qp\Zp, then s2(α) and s2
′(α) are representatives of α modulo Zp belonging

to Z[ 1
p ] ∩ (−1, 1). They have opposite signs. If α ∈ Zp, then s2(α) = s2

′(α) = 0.
In the algorithms below there are given some rules deciding which of these two

representatives should be chosen in the definition of an appropriate continued frac-
tion.

Algorithm II.
We use the above notation. Let s1

′′ = s1 and

s2
′′(α) =

{
s2(α) if v(α− s2(α)) = 0,
s2
′(α) otherwise.

Then v(α − s2
′′(α)) = 0, provided v(α) ≤ 0.

For a p-adic number α we define finite or infinite sequences (an) and (bn) as
follows.

Step 0. a0 = α, b0 = s1
′′(a0).

Step 1. If a0 = b0, then a1 and b1 are not defined.
If a0 6= b0, then a1 = (a0 − b0)−1 and b1 = s2

′′(a1).
Step 2. If a1 = b1, then a2 and b2 are not defined.

If a1 6= b1, then a2 = (a1 − b1)−1 and b2 = s1
′′(a2), etc.

We use s1
′′ in steps of even number, and s2

′′ in steps of odd number.
Obviously the sequence (bn) satisfies (3), consequently by Lemma 1 the corre-

sponding sequence (AnBn ) is convergent to a p-adic number. In fact lim An
Bn

= α.

The proof is standard and we omit it (cf. [Br]).
Let us remark that, for n odd, we have v(an − bn) = v(an − s2

′′(an)) = 0.
Consequently v(an+1) = 0, and hence

bn+1 = s2
′′(an+1) ∈

{
±1,±2, . . . ,±p− 1

2

}
.
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We compare Algorithm II with the definition of Schneider. We use the notation

α = b0 +
a0

b1 +
a1

b2 + · · ·
=
[
b0;

a0

b1

a1

b2

· · ·
· · ·

]
,

and [b0; b1, b2, . . . ]II for the continued fraction obtained by Algorithm II.
Let us observe that, for an arbitrary r 6= 0,[

b0;
a0

b1

· · ·
· · ·

ak−1

bk

ak
bk+1

· · ·
· · ·

]
=
[
b0;

a0

b1

· · ·
· · ·

rak−1

rbk

rak
bk+1

· · ·
· · ·

]
,(5)

where the three elements indicated have been multiplied by r.
Let

α = [b0; b1, b2, . . . ]II =
[
b0; 1

b1

1
b2

· · ·
· · ·

]
,

where v(b2n) = 0 and b2n−1 = c2n−1
pαn , |c2n−1| < 1

2p
αn , for n ≥ 1.

Then in view of (5)

α =
[
b0; p

α1

c1

pα1

b2

pα2

c3

pα2

b4

· · ·
· · ·

]
.

In particular, if αn = 1 for all n, we get

[b0; b1, b2, . . . ]II =
[
b0;

p
c1

p
b2

p
c3

p
b4

· · ·
· · ·

]
,

and bj , ck ∈
{
±1,±2, . . . ,± p−1

2

}
.

Thus in this particular case we get a continued fraction of Schneider with the
set {0, 1, . . . , p− 1} of residues modulo p replaced by

{
0,±1,±2, . . . ,± p−1

2

}
.

Conversely, if the continued fraction of Schneider (with the set of residues chan-
ged as above)

α =
[
b0; p

α1

b1

pα2

b2

· · ·
· · ·

]
satisfies α2n−1 = α2n for n ≥ 1, then in view of (5) we get

α = [b0; b′1, b
′
2, . . . ]II,

where b′2n−1 = b2n−1/p
α2n−1 and b′2n = b2n for n ≥ 1.

Algorithm III (For quadratic irrationalities only).
Let m be a rational number such that

√
m ∈ Qp \Q. Then every α ∈ Q(

√
m)\Q

can be written uniquely in the form α =
√
m+P
Q with P,Q ∈ Q.

We use the above notation and proceed analogously as in Algorithm II, but we
change s1

′′ and s2
′′ as follows. Let s1

′′′(α) ∈ {s1(α), s1
′(α)} and let s1

′′′(α) have
the same sign as PQ. Next,

s2
′′′(α) =


s2(α) if v(α − s2

′(α)) > 0,
s2
′(α) if v(α− s2(α)) > 0,

s̃2(α) otherwise,

where s̃2(α) ∈ {s2(α), s2
′(α)} and s̃2(α) has the same sign as PQ. We assume here

that PQ 6= 0.
The algorithm is the same as Algorithm II but we replace s1

′′ and s2
′′ by s1

′′′

and s2
′′′, respectively.

Algorithm IV (For quadratic irrationalities only).
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In Algorithm III we replace the conditions of the form s ∈ {t, t′} and s has the
same sign as PQ by the condition s ∈ {t, t′} and |PQ − s| = min(|PQ − t|, |

P
Q − t′|),

where | · | means the ordinary absolute value in R.

4. Numerical examples

To simplify notation, we use braces { } to denote the period of continued frac-
tion, and we use the symbol ‖ if the period can be divided into some specific parts,
e.g., symmetric ones. For example, [a; b, c, d, c, e, c, d, c, e, c, d, c, e . . . ] is denoted by
[a; b, {c, d, c, ‖e}].

We use the notation [b0; b1, . . . ]N , where N = I, II, III or IV, to indicate which
algorithm has been used.

Usually we cannot prove that a continued fraction for a given quadratic irra-
tionality is not periodic. We can state only that a period was not observed until, in
the standard notation an =

√
m+Pn
Qn

, the integers Pn, Qn have many digits (usually
more than 10).

All computations have been performed using the package GP/PARI, version
1.39.

We have made the following observations concerning the periods. See also [Be1].
In most cases (especially if we use Algorithm I) the period consists of two parts

of odd lengths, which are symmetric. In some cases the period consists of two parts
of the same odd lengths, which differ slightly. There are also some periods without
any regularity.

We cannot prove any of these observations. Of course if we use one of the
Algorithms II–IV, the period length must be even by the construction provided the
period exists.

Most examples with periods of length 2 are particular cases of the following
lemma.

Lemma 2 (cf. [We2])). Let a, c,m ∈ Z, p - acm, b ∈ Z[ 1
p ], v(b) < 0, and m be not

a square in Z.
Then

√
m = [a; {b, c}]

if and only if c = 2a, b = 2a
dpk

, for some k ≥ 1, d ∈ Z, d|2a, and

m = a2 + dpk.

Proof. The sufficiency of these conditions has been observed by de Weger [We2].
To prove the necessity we note that x =

√
m satisfies

(x− a)(x − a+ c) =
c

b
.

Since the left-hand side is an algebraic integer and b = b′

pk
for some b′ ∈ Z, p - b′,

we get b′|c, c = b′d. Hence

x2 + (c− 2a)x− a(c− a)− pkd = 0.

Since
√
m is irrational, it follows that c− 2a = 0 and hence

m = x2 = a(c− a) + pkd = a2 + dpk.

Moreover b = b′

pk = 2a
dpk .
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Remark. In Lemma 2 we cannot omit the assumption that
√
m is irrational, since,

e.g.,

p+ 1
2

=
[
p− 1

2
;
{
p− 1

2p
, p− 1

}]
.

It seems however that applying Algorithm II to a rational number α we always get
a finite continued fraction, but we cannot prove this assertion.

Lemma 3. If a, b, c ∈ Z, b′ = gcd(b, 2), and p is an odd prime number satisfying

p - abc, bb′ | c+ 2a, bc+ 2p | c− 2a,(6)

then

m := a2 + p
2a(bc+ p) + pc

b(bc+ 2p)
∈ Z.(7)

Let α ∈ Qp be defined by the periodic continued fraction

α =
[
a;
{
b

p
, c,

b

p
, ‖2a

}]
.(8)

Then α2 = m, i.e.,
√
m in Qp has a periodic continued fraction expansion given by

(8). The length of the period equals 2 if c = 2a and b | 2a, and equals 4 otherwise.

Proof. 1) From (6) and (7) it follows that m ∈ Z iff b(bc+2p) divides 2a(bc+p)+pc.
We have by (6)

2a(bc+ p) + pc =

{
2a(bc+ 2p) + p(c− 2a) ≡ 0 (mod bc+ 2p),
2abc+ p(c+ 2a) ≡ 0 (mod bb′).

(9)

Since gcd(b, bc+ 2p) = gcd(b, 2) = b′, from (9) it follows that 2a(bc+ p) + pc ≡ 0
(mod b(bc+ 2p)).

2) The continued fraction in (8) is convergent in Qp by Lemma 1. In a standard
way one can find the quadratic equation satisfied by α. It is α2 = m, where m is
given by (7).

The last part of the lemma is obvious.

Taking some particular values for a, b, c satisfying (6) we get periodic continued
fractions with the period of length 4, e.g.,√

2p2 + 2p+ 1 =
[
p+ 1;

{
1
p
, 1,

1
p
, ‖2p+ 2

}]
,

√
(a+ p)2 − 2p2 =

[
a;
{

1
p
, a− p, 1

p
, ‖2a

}]
,

in particular taking the least a > (
√

2− 1)p, we get, e.g., for p = 257
√

398 =
[
107;

{
1
p
,−150,

1
p
, ‖214

}]
,

and for p = 21961
√

28322 =
[
9097;

{
1
p
,−12864,

1
p
, ‖18194

}]
.

It is not clear if for given p there are infinitely many a, b, c satisfying (6).
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We investigated continued fractions for square roots
√
m ∈ Qp, where 1 ≤ m ≤

5000, for p = 5, and 1 ≤ m ≤ 500, for p = 23, 257, and 21961. We assumed always
that gcd(m, p) = 1. Then the Legendre symbol (m/p) = 1.

The results are as follows.
The field Q5.
Algorithm I.
The following continued fractions are periodic (we correct here the mistakes for

m = 11 in [Br]). For brevity we give the results for 1 ≤ m ≤ 100 only.

√
6 =

[
1;−8

5
,

{
6

5
, ‖7

5
,−16

25
,

7

5

}]
√

11 =

[
1;−9

5
,

{
9

5
,−8

5
,

9

5
, ‖6

5
,

2

5
,

56

25
,−2

5
,

6

5
,

27

25
,−11

5
,−2

5
,

16

125
,

12

5
,−58

25
,

12

5
,

16

125
,−2

5
,−11

5
,

27

25
,

6

5
,−2

5
,

56

25
,

2

5
,

6

5

}]
√

14 =

[
2;−3

5
,

{
−9

5
,−6

5
,

166

125
,−6

5
,−9

5
, ‖ − 8

5

}]
√

21 =

[
1;

3

5
,

{
3

5
,−4

5
,

3

5
, ‖ − 7

5
,

26

25
,−7

5

}]
√

24 =

[
2;−4

5
,

{
12

5
, ‖ − 9

5

}]
√

34 =

[
2;

4

5
,

{
2

5
,−28

25
,

2

5
, ‖ − 1

5
,

56

25
,−1

5

}]
√

54 =

[
2;−23

25
,

{
−6

5
,−1

5
,

9

5
,

4

5
,−2

5
,

4

5
,

9

5
,−1

5
,−6

5
, ‖ − 48

25

}]
√

69 =

[
2;

3

5
,

{
−6

5
,−1

5
,−8

5
,−1

5
,−6

5
, ‖ − 2

5
,−2

5
,

174

125
,−2

5
,−2

5

}]
√

74 =

[
2;

6

5
,

{
−6

5
,

7

5
,

36

25
,

7

5
,−6

5
, ‖1

5
,−3

5
,−23

25
,−2

5
,

4

5
,−7

5
,

8

5
,

− 8

25
,−3

5
,

9

5
,

52

25
,−21

25
,

4

5
,

1

5
,

11

5
,−3

5
,

156

125
,−11

5
,

1

5
,

8

5
,−11

25
,

4

5
,−7

5
,−3

5
,−36

25
,−4

5
,−9

5
,

14

25
,−9

5
,

− 4

5
,−36

25
,−3

5
,−7

5
,

4

5
,−11

25
,

8

5
,

1

5
,−11

5
,

156

125
,−3

5
,

11

5
,

1

5
,

4

5
,−21

25
,

52

25
,

9

5
,−3

5
,− 8

25
,

8

5
,−7

5
,

4

5
,−2

5
,−23

25
,−3

5
,

1

5

}]
√

76 =

[
1;

34

25
,

{
−1

5
,−6

5
,−9

5
,−2

5
,−9

5
,−6

5
,−1

5
, ‖ − 16

25
,−3

5
,−9

5
,−1

5
,

12

5
,−12

5
,

2

5
,

8

5
,

9

5
,−2

5
,

9

5
,

8

5
,

2

5
,−12

5
,

12

5
,−1

5
,−9

5
,−3

5
,−16

25

}]
√

94 =

[
2;−2

5
,

{
−8

5
,

62

125
,−8

5
, ‖ − 7

5
,

3

5
,

8

5
,

1

5
,

12

5
,

1

5
,

8

5
,

3

5
,−7

5

}]
√

99 =

[
2;

11

5
,

{
−23

25
, ‖6

5
,

2

5
,

2

5
,

43

25
,

2

5
,

2

5
,

6

5

}]

For other m’s in question, i.e., for m = 19, 26, 29, 31, 39, 41, 44, 46, 51, 56, 59,
61, 66, 71, 79, 84, 86, 89, 91, 96 (20 cases) no period has been observed.
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Algorithm II gives similar results as Algorithm I. In many cases periods are
shorter. We give the results for 1 ≤ m ≤ 100 only.

√
6 =

[
1;

{
2

5
, 2

}]
√

11 =

[
1;

{
1

5
, 2

}]
√

14 =

[
2;

{
2

5
, ‖ − 1,−1

5
, 2,−1

5
,−1

}]
√

21 =

[
1;

{
−2

5
, 1,

2

5
, 2,

1

5
,−2,

2

5
,−2,

1

5
, 2,

2

5
, 1,−2

5
, ‖2
}]

√
24 =

[
2;

{
1

5
, ‖ − 1,−2

5
,−1

}]
√

26 =

[
1;

{
2

25
, 2

}]
√

29 =

[
2;

{
4

25
, ‖ − 1,

1

5
, 1,

2

5
, 2,− 3

25
,−1,− 46

125
,−1,

−3

25
, 2,

2

5
, 1,

1

5
,−1

}]
√

31 =

[
1;

{
2

5
, 1,

2

5
, 1,− 3

25
,−2,

2

5
,−2,

2

5
,−2,− 3

25
, 1,

2

5
, 1,

2

5
, ‖2
}]

√
34 =

[
2;

{
−1

5
, 1,−2

5
,−1,−28

25
, 1,−2

5
,−1,−1

5
, 1,− 6

25
,−2,−3

5
, 1,−2

5
,−1,

1

5
, 2,− 9

25
, 1,

2

5
,

−2,
2

5
,−2,

29

125
,−2,−1

5
,−1,

12

25
,−2,− 7

25
,−2,−9

5
,−2,−4

5
, 1,−2

5
,−1,

2

5
, 2,

19

25
,−1

}]
√

39 =

[
2;

{
2

5
, 2,

1

5
,−1,

2

5
, 2,

2

5
,−2,

28

25
,−1,−1

5
,−1,

6

25
, 2,−1

5
, 2,

4

5
,−1

}]
√

51 =

[
1;

{
1

25
, 2

}]
√

54 =

[
2;

{
2

25
, ‖ − 1,

1

5
,−2,−1

5
,−1,−2

5
, 1,−6

5
, 1,−2

5
,−1,−1

5
,−2,

1

5
,−1

}]
√

56 =

[
1;

{
2

5
,−1,−2

5
, 2,−1

5
, 2,−2

5
,−1,

2

5
, ‖2
}]

√
61 =

[
1;

{
1

5
,−2,−2

5
,−1,−1

5
,−2,−2

5
, 1,

2

5
, 1,−2

5
,−2,−1

5
,−1,−2

5
,−2,

1

5
, ‖2
}]

√
69 =

[
2;− 2

25
, 1,

6

5
,

{
−1,−1

5
, 1,−2

5
, 1,−1

5
,−1, ‖1

5
,−2,

1

5

}]
√

79 =

[
2;− 7

25
, 1,

2

5
, 2,−2

5
, 1,

1

5
, 2,− 4

25
, 2,

1

5
, 1,−2

5
, 2,

2

5
,

{
1,− 7

25
,−1,

1

5
, 2,

9

25
,−1− 3

5

}]
√

84 =

[
2;

{
−1

5
, 2,

1

5
,−1,

2

5
,−1,

1

5
, 2,−1

5
, ‖ − 1,− 2

25
,−1

}]
√

99 =

[
2;

{
1

5
,−2,

2

5
, 21,−2

5
,−2,−2

5
,−1,

1

5
, 1,−1

5
, 2,

32

25
,−1,

2

5
, 1,−2

5
,−1

}]

In most cases the period begins at b1, but there are exceptions: m = 69, 79, when
the period begins at b4, resp. b16. In most cases the period has some symmetry
(the exceptions are m = 34, 39, 79, 99).

No period has been observed for m = 19, 41, 44, 46, 59, 66, 71, 74, 76, 86, 89,
91, 94, 96 (14 cases).
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Algorithms III and IV give very similar results, so we present them simulta-
neously (for 1 ≤ m ≤ 50 only).

√
6 =

[
1;

{
2

5
, 2

}]
II,III,IV

√
11 =

[
1;

{
1

5
, 2

}]
II,III,IV

√
14 =

[
2;

{
2

5
, 4

}]
III,IV

√
19 =

[
2;

{
3

5
,−2,

1

5
, ‖ − 3,

2

5
,−1

}]
III,IV

√
21 =

[
1;

{
−2

5
, 1,

2

5
,−3

}]
III,IV

√
24 =

[
2;

{
1

5
, 4

}]
III,IV

√
26 =

[
1;

{
2

25
, 2

}]
III,IV

√
29 =

[
2;

{
4

25
, 4

}]
III,IV

The first case where the Algorithms III and IV give distinct results is m = 31:

√
31 =

[
1;

{
2

5
,−4,−1

5
,−4,

2

5
, ‖2
}]

III

√
31 =

[
1;

{
2

5
,−4,−1

5
, 1,

3

5
,−2,

4

5
, 1,−1

5
,−3

}]
IV

√
34 =

[
2;

{
−1

5
, 1,

3

5
, 2,

3

5
,−4,

6

25
, 1, ‖1

5
,−1,−3

5
,−2,−3

5
, 4,− 6

25
,−1

}]
III,IV

√
39 =

[
2;

{
2

5
,−3,

3

5
, 2

}]
III,IV

For m = 41, 44, 46 the results of Algorithms III and IV differ.

√
41 =

[
1;

{
4

5
,−4,−4

5
, 1,−3

5
,−3,

13

25
,−2,

2

5
,−1,−3

5
,−1,

2

5
, 4,

− 3

25
,−1,−1

5
, 3,−2

5
, 1,

3

5
, 1,

2

5
,−4,−3

5
, 2,− 8

25
,−3

}]
III

√
41 =

[
1;

{
−1

5
, 3,

3

5
,−1,

2

5
,−1,

3

5
,−2,

8

25
, 3, ‖1

5
,−3,−3

5
, 1,−2

5
, 1,−3

5
, 2,− 8

25
,−3

}]
IV

√
44 =

[
2;

{
3

5
,−4,

3

5
, ‖4
}]

III

√
44 =

[
2;

{
−2

5
, 3,

1

5
, ‖2,−3

5
,−1

}]
IV

√
46 =

[
1;

3

5
,−3,

4

5
,

{
−4, ‖ − 1

5
, 4,−22

25
, 4,−1

5

}]
III

√
46 =

[
1;−2

5
, 4,−3

5
, 1,

{
−1

5
,−1,−4

5
,−1,−1

5
, ‖ − 4

}]
IV

We have verified that Algorithm IV applied to
√
m gives periodic continued frac-

tions for every m, 2 ≤ m ≤ 5000. For example, for m = 3994 the period begins
with b61 and has 160 terms.
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The field Q23.
We have applied Algorithm I to

√
m, for 1 ≤ m ≤ 200 and the period has been

observed in three cases only.
√

75 =

[
11;−34

23
,

{
38

23
,−57

23

}]
I

√
98 =

[
11;−45

23
,

{
34

23
,−68

23

}]
I

√
167 =

[
11;−12

23
,

{
70

23
,−35

23

}]
I

On the other hand applying Algorithm IV for 2 ≤ m ≤ 500 we get periods
in most cases. The only exceptions for m ≤ 200 where the period has not been
observed are m = 93, 101, 117, 119, 133, 141, 154, 163, 186. We have the following
examples.

√
2 =

[
5;

{
−10

23
, 10

}]
IV

√
3 =

[
7;

{
− 7

23
, 14

}]
IV

√
6 =

[
11;− 9

23
,−7,

1

23
, 15,

{
12

23
,−8

}]
IV

√
29 =

[
11;

{
6

23
, 7,−13

23
, 13,−10

23
, 3,−22

23
, 10,−113

529
, . . . , 7,

6

23
, 22

}]
IV

The period has length 94 and no symmetry has been observed.
The longest period of 112 terms has

√
462.

√
462 =

[
5;

9
23
,

{
8,

7
23
, . . . ,−14

23

}]
IV

The field Q257.
We have applied Algorithm IV. For 1 ≤ m ≤ 500, the continued fractions were

periodic in 59 cases. The length of the period was 2 (for m = 15, 32, 62, 67, ...), 4 or
10. In the case of length 2 (resp. 4) the continued fraction has the form described
in Lemma 2 (resp. in Lemma 3).

We write down all the examples with period lenghts 4 and 10.
√

50 =

[
43;

{
− 49

257
, 12,− 49

257
, ‖86

}]
IV

√
120 =

[
67;

{
− 23

257
, 27,− 23

257
, ‖134

}]
IV

√
241 =

[
64;

{
60

257
,−8,

60

257
, ‖128

}]
IV

√
392 =

[
69;

{
7

257
,−47,

7

257
, ‖138

}]
IV

√
396 =

[
41;

{
35

257
,−12,

35

257
, ‖82

}]
IV

√
398 =

[
107;

{
1

257
,−150,

1

257
, ‖214

}]
IV

√
454 =

[
35;

{
−109

257
, 24,

26

257
, 1,−17032

66049
, 1,

26

257
, 24,−109

257
, ‖70

}]
IV

The field Q21961.
We have applied Algorithm IV to

√
m for 1 ≤ m ≤ 500, and continued fractions

were periodic only for m = 3, 57, 178, 228, 240, and 363. The continued fraction
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always has the form described in Lemma 2:√
a2 + dp = [a; {2a/dp, 2a}],

where p = 21961 and the integers a, d satisfy d | 2a, and m = a2 + dp. Namely,

m a 2a/d
3 363 −121
57 646 −68
178 2120 −210
228 1292 −34
240 149 −298
363 3993 −11

In other cases the period has not been observed.
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