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APPROXIMATION ORDERS FOR NATURAL SPLINES
IN ARBITRARY DIMENSIONS

TIM GUTZMER AND JENS MARKUS MELENK

Abstract. Based on variational properties, we generalize the approximation
properties of the univariate natural cubic spline to splines in arbitrary dimen-
sions.

In one dimension, the solution of the variational problem{
given a = x1 < · · · < xN = b and values f(x1), . . . , f(xN ) in R,
find a function s with s(xi)=f(xi), i=1, . . . ,N , that minimizes ‖s′′‖L2([a,b])

is given by the natural univariate cubic spline and can be written as (cf. [9])

s(x) =
N∑
i=1

λi|x− xi|3 + p(x),

where p(x) is a linear polynomial and the coefficients λi, i = 1, . . . , N , satisfy the
additional constraints

N∑
i=1

λi = 0,
N∑
i=1

λi xi = 0.

As shown by Duchon [5] and Meinguet [7], this result can be generalized in a
natural way to the n-dimensional space Rn. This is done in the framework of the
Beppo Levi spaces

BLm(Ω) =
{
f ∈ C(Ω), ∂αf ∈ L2(Ω) for |α| = m

}
equipped with the inner product

〈f, g〉BLm(Ω) =
∫
Ω

∑
|α|=m

m!
α!
∂αf(x)∂αg(x) dx,

where Ω ⊂ Rn is open and m ∈ N. Here and in the following, α = (α1, . . . , αn) ∈ Nn0
denote multi-indices and |α| = α1+· · ·+αn. The inner product induces a semi-norm
on BLm(Ω) via ‖g‖2BLm(Ω) = 〈g, g〉BLm(Ω) with polynomial kernel

Pnm−1 = span{xα, |α| ≤ m− 1},
which is a vector space of dimension

M =
(
n+m− 1

n

)
.
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Assume that m > n/2 and that X = {x1, . . . , xN} ⊂ Rn, N ≥ M , is a col-
lection of interpolation points that has a Pnm−1-unisolvent subset, i.e., there are
{xi1 , . . . , xiM } ⊂ X such that p(xij ) = 0, j = 1, . . . ,M for p ∈ Pnm−1 im-
plies p = 0. The minimal norm interpolant sf on BLm(Rn) under the constraints
sf (xi) = f(xi), i = 1, . . . , N , is given by the solution of the variational problem{

find a function sf ∈ BLm(Rn) that minimizes ‖sf‖BLm(Rn) and
interpolates sf (xi) = f(xi), i = 1, . . . , N.

(1)

It can be written in the form ([5, 7])

sf (x) =
N∑
i=1

λiE(x− xi) + p(x),(2)

where p ∈ Pnm−1 and the coefficients λi, i = 1, . . . , N , satisfy the constraint
N∑
i=1

λiq(xi) = 0 for all q ∈ Pnm−1.

The function E is the fundamental solution of the iterated Laplacian ∆m given by

E(x) =


(−1)n/2+1

22m−1πn/2(m−1)!(m−n/2)!
‖x‖2m−n2 log ‖x‖2, if 2m ≥ n and n is even,

(−1)mΓ(n/2−m)
22mπn/2(m−1)!

‖x‖2m−n2 , else.

Remark 1. If Ω 6= Rn is a domain, one might think of generalizing the one dimen-
sional result mentioned at the outset by replacing Rn with Ω in (1). Then, however,
one gets representations of the form (2) in which the corresponding function E is
the solution of a boundary value problem on Ω and therefore depends on the ge-
ometry of Ω (cf. Atteia [2]). This is an essential difference to the one dimensional
setting.

It is well known [6] that for functions f ∈ BLm(Ω) the minimal norm interpolant
sf satisfies

‖f − sf‖L∞(Ω) ≤ Ch
m−n/2‖f‖BLm(Ω), h = sup

x∈Ω
inf
xi∈X
‖x− xi‖2,(3)

where the constant C is independent of h and f . The purpose of the present paper
is to improve this approximation order by m for functions f from the space

BL2m
0 (Ω) :=

{
f ∈ BL2m(Ω), ∂αf = 0 on ∂Ω for |α| = m, . . . , 2m− 1

}
.

We remark that the boundary conditions are well defined by the trace theorem and
the fact that BL2m(Ω) = H2m(Ω) algebraically for Ω open and bounded according
to Deny and Lions in [4, Theorem 2.1].

Our result is the following theorem.

Theorem 2. Let Ω ⊂ Rn be a bounded domain with Lipschitz boundary. Let m,
k ∈ N0, p ∈ [2,∞] with m > n/2 such that the embedding Hm(Ω) ⊂W k,p(Ω) holds.
Then there are C, h0 > 0 depending only on Ω, m, k, and p with the following
property.

For any collection X = {x1, . . . , xN} ⊂ Ω of interpolation points containing a
Pnm−1-unisolvent subset and satisfying

h = sup
x∈Ω

inf
xi∈X

‖x− xi‖2 ≤ h0
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and all f ∈ BL2m
0 (Ω), the minimal norm interpolant sf given by (1) satisfies∑
|α|=k

‖∂α(f − sf )‖Lp(Ω) ≤ Ch
2m−k−n/2+n/p‖f‖BL2m(Ω).

Remark 3. For Lipschitz domains Ω, the embedding Hm(Ω) ⊂ W k,p(Ω) holds if
(cf. Theorem 5.4 of [1]) the parameters n, m ∈ N, k ∈ N0, and p ∈ [2,∞] satisfy

m− k − n

2
+
n

p
≥ 0

except if n is even, in which case the combination p = ∞ and k = m − n/2 is
excluded.

Remark 4. In one dimension, Theorem 2 recovers the result of [9] for natural cubic
splines where the order 7/2 for pointwise estimates is proven.

Remark 5. If one seeks to improve the error bound given by (3) it is not sufficient to
increase the regularity of the function f. The numerical results in [8] for thin plate
spline interpolation in two dimensions (n = m = 2) show that even for analytic
functions f the order of accuracy is between one and two. It is boundary effects that
prevent achievement of higher orders. These boundary effects can be suppressed
by imposing boundary conditions on the functions to be approximated as we have
done by considering the space BL2m

0 (Ω).
A different approach to imposing boundary conditions is taken by Schaback in

[10]. He uses Fourier techniques and obtains an implicit description of the boundary
conditions via a pseudo-differential operator on abstract spaces of functions.

In order to prove Theorem 2, we start with the observation that the minimal
norm extensions of elements of BL2m

0 (Ω) are polynomials outside Ω.

Lemma 6. Let Ω ⊂ Rn be a bounded Lipschitz domain, O1, . . . ,Oν be the compo-
nents of connectedness of Rn \ Ω, and f ∈ BL2m

0 (Ω) with m > n/2. Let f ′ be the
solution of the problem

minimize ‖u‖BLm(Rn) under the constraint u|Ω = f.(4)

Then there are polynomials P1, . . . , Pν ∈ Pnm−1 such that f ′|Oi = Pi, i = 1, . . . , ν.
Furthermore, f ′ ∈ BL2m(Rn) ∩ BLm(Rn) and there holds for all v ∈ BLm(Rn)

〈f ′, v〉BLm(Rn) = 〈f, v〉BLm(Ω) .(5)

Proof. We start by constructing polynomials Pi ∈ Pnm−1, i = 1, . . . , ν, such that
f |∂Oi = Pi|∂Oi . As f ∈ H2m(Ω) and Ω is a bounded Lipschitz domain, there is an
extension (again denoted f) to Rn with f ∈ H2m(Rn). By Sobolev’s embedding
theorem (cf. [1, Theorem 5.4]) in fact f ∈ Cm(Rn).

Next, the boundaries ∂Oi are components of connectedness of ∂Ω. For each ∂Oi
fix one xi ∈ ∂Oi and define the polynomials Pi as Taylor series of order m of f
about the point xi

Pi(x) :=
∑

|α|≤m−1

1
α!
∂αf(xi)(x− xi)α ∈ Pnm−1.

We claim f(x) = Pi(x) for all x ∈ ∂Oi. This follows easily by induction on the
differentiation order. By construction there holds

∂αPi(xi) = ∂αf(xi) ∀|α| ≤ m.(6)
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The induction hypothesis is

∂αPi(x) = ∂αf(x) ∀x ∈ ∂Oi, ∀j ≤ |α| ≤ m.(7)

Equation (6) together with ∂αf(x) = 0 for x ∈ ∂Oi and |α| = m shows that the
induction hypothesis holds for j = m. Supposing that (7) holds for some j ≥ 1,
we conclude that it holds for j − 1 as follows. Let α with |α| = j − 1. Then, for
x ∈ ∂Oi and an integration path Γ ⊂ ∂Oi, we compute

∂αf(x) = ∂αf(xi) +
∫

Γ

∇∂αf(y) · dy = ∂αPi(xi) +
∫

Γ

∇∂αPi(y) · dy = ∂αPi(x),

where we made use of (6) and the induction hypothesis; (7) therefore holds for
j = 0.

Define f ′ on Rn by f ′|Ω = f , f ′|Oi = Pi. Hypothesis (7) implies that f ′ ∈
Cm(Rn). As ‖f ′‖BLm(Rn) = ‖f‖BLm(Ω), we conclude f ′ is the solution of (4).
Equation (5) is now obvious.

It remains to see that f ′ ∈ BL2m(Rn). By the form of f ′ on Rn \ Ω, it suffices
to see that f ′ ∈ H2m

loc (Rn). This follows easily from ∂αf = 0 on ∂Ω for m ≤ |α| ≤
2m− 1.

Proof of Theorem 2. Let f ′ be the extension of f to Rn given by Lemma 6. By
Lemma 6 and an integration by parts (which can be justified by a regularization
argument as in [3, Theorems 1.3.4 and 1.6.6]) we obtain using the homogeneous
boundary conditions

〈f ′, f ′ − sf〉BLm(Rn) =
∫
Ω

 ∑
|α|=m

m!
α!
∂2αf(x)

 (f(x)− sf (x)) dx.

An application of the Cauchy-Schwarz inequality then gives∣∣〈f ′, f ′ − sf 〉BLm(Rn)

∣∣ ≤ C‖f‖BL2m(Ω)‖f − sf‖L2(Ω),(8)

where C depends only on n and m.
Next, from [6, Proposition 3] with k = 0 and p = 2, we have

‖f − sf‖L2(Ω) ≤ Ch
m‖f ′ − sf‖BLm(Rn)

for some C > 0 independent of h and f . Inserting this in (8), we obtain with the
orthogonality condition 〈f ′ − sf , sf 〉BLm(Rn) = 0

‖f ′ − sf‖2BLm(Rn) = 〈f ′, f ′ − sf 〉BLm(Rn)

≤ C‖f‖BL2m(Ω)‖f − sf‖L2(Ω)

≤ Chm‖f‖BL2m(Ω)‖f ′ − sf‖BLm(Rn);

whence we get

‖f ′ − sf‖BLm(Rn) ≤ Ch
m‖f‖BL2m(Ω).

Finally, combining this with [6, Proposition 3], we get∑
|α|=k

‖∂α(f − sf )‖Lp(Ω) ≤ Chm−k−n/2+n/p‖f ′ − sf‖BLm(Rn)

≤ Ch2m−k−n/2+n/p‖f‖BL2m(Ω).
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