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THE INDEX CALCULUS METHOD
USING NON-SMOOTH POLYNOMIALS

THEODOULOS GAREFALAKIS AND DANIEL PANARIO

Abstract. We study a generalized version of the index calculus method for
the discrete logarithm problem in Fq , when q = pn, p is a small prime and
n→∞. The database consists of the logarithms of all irreducible polynomials
of degree between given bounds; the original version of the algorithm uses lower
bound equal to one. We show theoretically that the algorithm has the same
asymptotic running time as the original version. The analysis shows that the
best upper limit for the interval coincides with the one for the original version.
The lower limit for the interval remains a free variable of the process. We
provide experimental results that indicate practical values for that bound. We
also give heuristic arguments for the running time of the Waterloo variant and
of the Coppersmith method with our generalized database.

1. Introduction

Let G denote a group written multiplicatively and 〈g〉 the cyclic subgroup gen-
erated by g ∈ G. Given g and y ∈ 〈g〉, the discrete logarithm problem for G is to
find the smallest integer x such that y = gx. The integer x is called the discrete
logarithm of y in the base g, and is written x = logg y.

The main reason for the intense current interest on the discrete logarithm prob-
lem (apart from being interesting on a purely mathematical level) is that the se-
curity of many public-key cryptosystems depends on the assumption that finding
discrete logarithms is hard, at least for certain groups. For instance, the security
of cryptographic applications such as the Diffie-Hellman key exchange scheme [5],
ElGamal’s cryptosystem [6], and pseudorandom bit generators [2, 8] depend on the
current ability (or inability) to solve the discrete logarithm problem efficiently.

Several groups have been proposed for the implementation of cryptographic sys-
tems, including the multiplicative group of finite fields, the group of points of elliptic
curves over finite fields [14], class groups of number fields [3], and function fields [15],
for instance. We focus on the discrete logarithm problem in the multiplicative group
of finite fields Fq, where q = pn, p is a small prime and n is large. Lovorn Bender
and Pomerance [13] present results when p and n both tend to infinity. Using the
isomorphism Fq ∼= Fp[x]/(f), where f is a monic irreducible polynomial over Fp of
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degree n, elements in F∗q can be represented as polynomials over Fp of degree at
most n − 1. The breakthrough in the computation of discrete logarithms in such
groups was the development of the index calculus method . The basic method has
been proven [16] to run in subexponential time of the form

exp
(

(
√

2 log p+ o(1))
√
n logn

)
.

We revise the index calculus method in Section 2. As it is shown there and
is well-known, the algorithm depends on finding polynomials with all of their ir-
reducible factors with degree not greater than a certain bound m, the so-called
smooth polynomials. In this case, the database of logarithms is formed by all irre-
ducible polynomials of degree smaller than or equal to m. In this paper, we refer to
this set of irreducible polynomials as the standard factor base or the smooth factor
base. Until now, the standard factor base was considered to be the natural choice;
see, for instance the surveys by Odlyzko [16, 17].

The goal of this work is to formalize this belief that the standard factor base is the
best possible (see [16], p. 237). In order to do that, we are interested in developing a
generalized version of the index calculus method for the discrete logarithm problem
in Fq, when q = pn, p is a small prime and n large, but considering a database
formed by the logarithms of all irreducible polynomials of degree between given
bounds. We call this the generalized factor base. We remark that the standard
factor base is a particular case of the generalized factor base. This led us to the
study of the number of polynomials over Fq with all their irreducible factors with
degree in an interval. Our companion paper [9] provides the needed estimates;
Section 3.2 summarizes the crucial results for our purposes here.

In Section 3, we analyze the basic index calculus algorithm when a generalized
factor base is considered. The results are two-fold. On the one hand, we obtain
theoretical estimations that are as good as the ones for the standard base (Theo-
rem 3). As in the smooth case, there is not much freedom for the upper limit of
the interval. However, the lower limit remains a free variable which can be chosen
(almost) at will.

On the other hand, we perform some experiments in Section 6 that suggest that
the best choice for the lower limit is one, which corresponds to the standard factor
base.

The basic version of the index calculus algorithm has been rigorously ana-
lyzed [16]. In order to improve the running time of the method, several variants
have been proposed [1, 4]. In Sections 4 and 5, we show that the heuristic argu-
ments for the running time of the Waterloo algorithm and for the Coppersmith
variant can be applied for our generalized version.

Finally, we comment that our results also hold when the factor base consists of
all monic irreducible polynomials with degree in a set T provided that T contains at
least all integers between c

√
(n logn)/(2 log p) and

√
(n logn)/(2 log p), for c < 1 a

constant.

2. The algorithm

We briefly describe the index calculus method for computing discrete logarithms
in Fq, q = pn, p is a prime, and n > 1. The elements in Fq are represented as
polynomials over Fp of degree smaller than n. Arithmetic is performed modulo a
monic irreducible polynomial f ∈ Fp[x] of degree n. First we choose a set S of
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irreducible polynomials over Fp. We call S the factor base. We are given p, n, f , a
generator g of the multiplicative group of Fq, and a polynomial h∗ ∈ Fp[x] whose
discrete logarithm we want to compute. The method consists of two stages.

Stage 1

1. Choose an integer s in [1, q−1] uniformly at random, and form the polynomial
h ≡ gs (mod f), deg h < n.

2. Check if h factors completely into irreducibles over S. If not, discard it. If it
does, say

h =
∏
v∈S

vev(h),

record the congruence

s ≡
∑
v∈S

ev(h) logg v (mod q − 1).

Repeat the above steps until “slightly more” than #S congruences are obtained.
Then solve the system to determine logg v for all v ∈ S.

Stage 2

1. Choose an integer s in [1, q − 1] uniformly at random; form the polynomial
h ≡ h∗gs (mod f), deg h < n.

2. Check if h factors completely into irreducibles over S. If not, discard it. If it
does, say

h =
∏
v∈S

vev(h),

compute the required discrete logarithm as

logg h
∗ ≡ −s+

∑
v∈S

ev(h) logg v (mod q − 1).

The method works for any factor base S. The choice of the factor base, however,
clearly affects the time complexity of the algorithm. For example, a “very large”
factor base, that would speed up the second stage, would make the first stage (and
thus the whole method) totally inefficient. Until now, it was generally assumed that
the optimal choice of a factor base was the set of all monic irreducible polynomials
of degrees smaller than or equal to m for a certain parameter m, the smooth factor
base, although no proof has been given of this fact.

We consider a more general version, when the factor base consists of all monic
irreducibles of degree between m2 and m1. Our analysis shows that the important
parameter here is m1. In the next section, we show that the asymptotic running
time of the algorithm remains the same as the basic version even if m2 is of the
same order as m1. This means that the size of the factor base could be smaller, an
interesting fact for practical purposes when space is a constraint.

3. Analysis of the index calculus method

with generalized factor base

The analysis of the algorithm in Section 2 requires the study of the size of the fac-
tor base and the probability of successfully factoring polynomials into irreducibles
over S.
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3.1. The size of the factor base. We start by estimating the size t of the factor
base.

Proposition 1. Let S be a factor base formed by irreducible polynomials over Fp
with degree between m2 and m1, m2 < m1. Then, as m1 → ∞, the size t of the
factor base S is bounded above by

e(1+o(1))m1 log p.(1)

Proof. It is well-known (see for instance [11], Theorem 3.25) that the number Ik of
monic irreducible polynomials of degree k over Fp is given by

Ik =
1
k

∑
d|k

µ(d)pk/d =
pk

k
+

∑
d|k, d>1

µ(d)pk/d.

It is easy to derive the following upper bound:∣∣∣∣Ik − pk

k

∣∣∣∣ =

∣∣∣∣∣∣
∑

d|k, d>1

µ(d)pk/d

∣∣∣∣∣∣ ≤
dk/2e∑
j=1

pj =
pdk/2e+1 − 1

p− 1
< 2pk/2.

An upper bound on the size of the factor base can be computed as m1 →∞:

t =
m1∑

k=m2+1

Ik <

m1∑
k=m2+1

(
pk

k
+ 2pk/2

)

≤ 1
m2

m1∑
k=m2+1

pk + 2
m1∑

k=m2+1

pk/2 =
1
m2

(
pm1+1

p− 1
− pm2+1

p− 1

)
+O

(
pm1/2

)
≤ pm1+1

m2
+O

(
pm1/2

)
= e(1+o(1))m1 log p.

The quantity needed for the analysis of the algorithm is the size of the system
of congruences created in the first stage. It is shown in [12] that if 4t log pn linear
congruences are computed, the probability that the system has full rank is at least
1/2.

3.2. The probability of success. We now give an estimate on the number of
repetitions needed in both stages until the polynomial h completely factors over
the factor base S.

As it will be clear below, we need an estimate for the probability that a random
monic polynomial of degree at most n − 1 factors over S, i.e., it factors into irre-
ducibles of degree greater than m2, and less than or equal to m1. The next two
theorems provide that estimate (see [9], Theorems 2 and 4). Their proofs are rather
technical and in the spirit of analytic number theory. The basic components of the
proofs are generating functions for counting the polynomials in question, and the
saddle point method for deriving asymptotic results.

The first theorem deals with the case that the lower bound m2 is a fixed constant
(independent of n). We note that the case m2 = 0 corresponds to the smooth factor
base used in the original calculus method.

Theorem 1. The number Nq(n,m1,m2) of monic polynomials of degree n over Fq
with all irreducible factors with degree between m2 and m1, m2 < m1, with m2 fixed
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and logn� m1 � n, satisfies

Nq(n,m1,m2) = qne−(1+o(1))u1 log u1 ,

where u1 = n/m1.

The second theorem extends the result to the case that both m1 and m2 tend
to infinity as functions of n.

Theorem 2. The number Nq(n,m1,m2) of monic polynomials over Fq with all
irreducible factors between m1 and m2, with m1,m2 →∞, m1e

−n/m1 � m2 ≤ cm1

for any constant c < 1, and 2(logn)2 ≤ m1 � n, satisfies

Nq(n,m1,m2) = qne−(1+o(1))u1 log u1 ,

where u1 = n/m1.

The next proposition gives an upper bound on the number of repetitions needed
in both stages until the polynomial h completely factors over the factor base S.

Proposition 2. Let S be a factor base formed by irreducible polynomials over Fp
with degree between m2 and m1, with m2 and m1 as in the hypothesis of either
Theorem 1 or Theorem 2. Then, the expected number of repetitions of Step (2) in
both Stage 1 and Stage 2 of the algorithm in Section 2 is bounded above by

e(1+o(1)) n
m1

log n
m1 .(2)

Proof. We recall that the polynomial h in the algorithm of Section 2 is a random
monic polynomial in Fp[x] of degree at most n−1, and the experiment is a sequence
of Bernoulli trials. The expected number of repetitions until we have the first
success is one over the probability of success. Thus, a lower bound on the probability
of success would provide an upper bound on the expected number of repetitions.
Then, we have

Pr(h factors over S) =
n−1∑
k=1

Pr(h factors over S| deg h = k)Pr(deg h = k)

≥ Pr(h factors over S| deg h = n− 1)Pr(deg h = n− 1).

It is easy to see that the probability of a random monic polynomial of degree at
most n− 1 having degree exactly equal to n− 1 is very close to 1. More precisely,
we have

Pr(deg h = n− 1) =
# polynomials of degree n− 1

# polynomials of degree ≤ n− 1
=

pn−1∑n−1
i=1 p

i
> 1− 1

p
.

It remains to combine this with the probability that a random monic polynomial
of degree n−1 factors over S given in Theorems 1 and 2. Choosing the parameters
m1 and m2 so that they satisfy the conditions of these theorems, we can estimate
the probability of interest as

Pr(h factors over S| deg h = n− 1) = e−(1+o(1))u1 log u1 ,

where u1 = n/m1. In fact, one should let u1 = (n − 1)/m1, but the o(1) in the
exponent “neutralizes” such small changes. Therefore, the expected number of
repetitions is bounded above by

e(1+o(1)) n
m1

log n
m1 ,

where the multiplicative term (1−1/p)−1 due to the probability that h is of degree
n− 1 is absorbed by the o(1) in the exponent.



1258 THEODOULOS GAREFALAKIS AND DANIEL PANARIO

3.3. Upper bound on the running time. We have all the quantities needed to
analyze the algorithm. In this section we will compute a precise value for m1, in
terms of n, and give an upper bound for the running time of the index calculus
method in terms of the function

L(n) = e(1+o(1))
√
n logn.

The main result (Theorem 3) shows that asymptotically our factor base is as good
as the standard base used in the basic index calculus algorithm.

As it is the case when the standard factor base is used, the running time of
the algorithm is dominated by the first stage. This is when a tradeoff takes place
regarding the size of the factor base: large #S means small number of repetitions
(until a useful congruence is found), but many such congruences are needed for the
system to be solvable. The complexity of the algorithm is proven in the following
theorem.

Theorem 3. The running time of the algorithm in Section 2 is, as n→∞,

L(n)
√

2 log p.

Proof. From Equations (1) and (2) and the fact that 4tn log p congruences have to
be generated, where t is the size of the factor base, we conclude that the time to
create the system is

4n log pe(1+o(1))
(
m1 log p+ n

m1
log n

m1

)
∼ e(1+o(1))

(
m1 log p+ n

m1
log n

m1

)
.

Furthermore, if a method for sparse linear systems is used like the method proposed
by Wiedemann [18] (see also [16]), then the time for solving the system is

(4tn log p)2 ∼ e(2+o(1))(m1 log p).

Thus, the asymptotic running time of the first stage is given by

e(1+o(1))(m1 log p+ n
m1

log n
m1

) + e(2+o(1))(m1 log p).(3)

We note here that the computation of gs (mod f) is done by repeated squaring, and
takes time polynomial in n and log p. Moreover, the factorization of the polynomials
can be done in probabilistic polynomial time (see [10] for a recent survey on the
topic). Those computations introduce a multiplicative polynomial factor in the
above estimate, which is absorbed in the o(1) of the exponent.

Let us consider now m1 = knα(logn)β , for some positive constants α, β, k to be
determined later. The first exponent in the above expression becomes

(1 + o(1))
(
knα(logn)β log p+

1
k
n1−α(log n)−β log

(
1
k
n1−α(log n)−β

))
,

while the second exponent is

(2 + o(1))knα(log n)β log p.

The expressions are minimized for α = β = 1
2 . After the substitutions, the expres-

sions become

(1 + o(1))
(
k log p+

1
2k

)√
n logn,

and

(1 + o(1))
(

2k log p
√
n logn

)
.
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We view the multiplicative constant k log p+ 1
2k as a function of k, and observe that

it achieves a minimum at k = (2 log p)−1/2. This minimum is
√

2 log p. Substituting
everything in Equation (3), we obtain an upper bound for the running time of the
first stage:

L(n)
√

2 log p = e(
√

2 log p+o(1))√n logn.

Now that the parameters have been fixed, we can easily compute an upper bound
for the second stage. This is the expected number of repetitions until the first
success. Therefore, an upper bound is

e(1+o(1))m1 log p = e(1+o(1)) log p(2 log p)−1/2√n log n

= e

(√
log p/2+o(1)

)√
n logn = L(n)

√
log p/2.

Clearly, the running time of the algorithm is dominated by the first stage, and an
upper bound for it is, as n→∞,

L(n)
√

2 log p.

Remark. The algorithm as described in Section 2 works with any factor base
S. The subsequent analysis shows that if the factor base S consists of all monic
irreducible polynomials over Fp with degree greater than m2 and less than or equal
to
√
n logn/(2 log p), for any 0 ≤ m2 ≤ c

√
n logn/(2 log p), then the algorithm has

running time L(n)
√

2 log p. Indeed, the size of the factor base and the probability of
success depend only on m1 — in fact they also depend on m2, but this dependence
is very weak, and is hidden in the o(1) in the exponent. It is clear now, that if we
choose the factor base to consist of the set of all monic irreducibles having degree
in a set T , then the running time will remain the same provided that T contains all
integers from c

√
n logn/(2 log p) to

√
n logn/(2 log p), for any constant c < 1. In

other words, T does not necessarily have to contain consecutive integers, provided
that the above condition is met. The situation is shown in Figure 1.

Figure 1. The form of the factor base
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4. The Waterloo variant

We now turn to a variant of the basic method in Section 2, that was proposed
by Blake, Fuji-Hara, Mullin, and Vanstone [1], known as the Waterloo variant. It
is one of the first variants that appeared in the literature, and attempts to improve
the running time of the method at the cost of not being able to analyze the variant
rigorously. In this section, we show that the same heuristic arguments go through
for the generalized factor base.

The basic idea of the Waterloo variant is to find two polynomials w1 and w2, of
degree at most n/2 each, such that

w1h ≡ w2 (mod f),

and try to factor them over the factor base S. Here, f and h are as in the algorithm
of Section 2. The polynomials w1 and w2 can be computed easily using the extended
Euclidean algorithm on input (h, f). More details about the method are given in
the original paper [1], and in the survey article by Odlyzko [16].

The problem for a rigorous analysis is that not much is known about the joint dis-
tribution of (w1, w2). The heuristic assumption is that w1 and w2 behave as random
independent polynomials of degree at most n/2. The probability that two random
monic independent polynomials of degree at most n/2 factor into irreducibles of
degree greater than m2 and at most m1 is

e
−2(1+o(1)) n

2m1
log n

2m1 = e
−(1+o(1)) n

m1
log n

2m1 .(4)

The size of the factor base remains the same as in the basic version; therefore an
upper bound on the running time for the first stage is

e
(1+o(1))

(
m1 log p+ n

m1
log n

2m1

)
+ e(2+o(1))m1 log p,(5)

where we consider the same algorithms and costs as in Theorem 3. Again we let
m1 = k

√
n logn, and Equation (5) becomes

e(1+o(1))(k log p+ 1
2k )√n logn + e(1+o(1))(2k log p)

√
n log n.

The above expression is minimized for k = (2 log p)−1/2, and the running time of
the first stage is bounded by

L(n)
√

2 log p.

For this choice of parameters, it is easy to see that the second stage has running
time bounded by

L(n)
√

log p/2.

Therefore, the running time of the Waterloo variant is bounded by

L(n)
√

2 log p.

Remark. The practical improvement that this variant provides is hidden in the
above analysis in the o(1) term of the exponent. To see the actual improvement
one should compare Equation (3) with Equation (5), and in particular the time to
create the system of congruences (the two systems are expected to have the same
size, and therefore the time to solve them is expected to be of the same order). The
Waterloo variant is faster by a factor of 2n/m1 , as was the case when the standard
base was used (see [16], pp. 238-243).
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5. The Coppersmith variant

In this section, we briefly consider the variant proposed by Coppersmith in [4].
It is designed to work in finite fields of even characteristic, and it relies on unproven
assumptions, which however, seem to be reasonable (at least in practice). We note
that this was the first method to be conjectured to have running time of the form

M(n) = e(c+o(1))n1/3(logn)2/3
,

where c is an effectively computable constant.
The method assumes that the monic irreducible polynomial f of degree n used to

define the field F2n is of the form f(x) = xn + f1(x), where deg f1 ≤ log2 n. Little
is known about the irreducibility of this type of polynomials; see [7] for general
computational experiments with sparse polynomials over F2 and for applications of
these polynomials. There exist some values of n with no irreducible polynomial of
this form. On the other hand, if we let deg f1 ≤ log2 n+ c1, for c1 a small positive
integer, there are irreducible polynomials of this form of degree n for all practical
values of n (see [7]).

In the first stage of the algorithm, two polynomials w1 and w2 are constructed
such that

w2 ≡ w2k

1 (mod f),(6)

where k is a parameter chosen so that 2k is on the order of n1/3(log n)−1/3. The
construction of w1 and w2 is based on algebraic manipulations that are indepen-
dent of the factor base. Next, the heuristic assumption is made that w1 and w2

behave like random independent polynomials of degree at most on the order of
n2/3(logn)1/3. The analysis follows by essentially the same arguments given in
the previous sections. The analysis of the second stage is carried out in a similar
manner. For a detailed description of the algorithm, the reader is referred to the
original paper by Coppersmith [4], and to the excellent survey by Odlyzko [16].

6. Experimental results

In this section we present some experimental results for the quantities of interest
for the analysis of the basic index calculus method. We fix the degree of the field
extension at n = 500, and consider three different values for p, namely 2, 3, and 5.
Having fixed the values for n and p, we compute the corresponding value for m1 as
determined in Section 3.3, that is,

m1 =

√
n logn
2 log p

.

We consider several possible values for m2, since this is a “free parameter”. The
value m2 = 0 corresponds to the standard method with the smooth factor base. For
each value of m2 we compute the number of polynomials of interest Np(n,m1,m2),
the probability of success computed as p−nNp(n,m1,m2), and the size #S of the
factor base.

About the finite fields of the experiments, we comment that in Table 1 the size of
the field is 2500 ≈ 10150, which is on the borderline of what is currently computable.
The finite fields in Tables 2 and 3 are of size 3500 ≈ 10239 and 5500 ≈ 10349

respectively, which is well beyond the size of the fields for which discrete logarithms
are currently computable.
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Table 1. n = 500, p = 2, m1 = 47.

m2 N(n,m1,m2) Prob #S
0 .1240e140 .1240e-10 .6125243528e13
1 .2613e139 .2613e-11 .6125243528e13
4 .1001e139 .1001e-11 .6125243528e13
8 .3755e138 .3755e-12 .6125243528e13
12 .1579e138 .1579e-12 .6125243527e13
15 .8222e137 .8222e-13 .6125243523e13
20 .2522e137 .2522e-13 .6125243417e13
23 .1116e137 .1116e-13 .6125242762e13

Table 2. n = 500, p = 3, m1 = 38.

m2 N(n,m1,m2) Prob #S
0 .1975e224 .1975e-15 .5406460513e17
1 .2471e223 .2471e-16 .5406460513e17
3 .1049e223 .1049e-16 .5406460513e17
5 .5347e222 .5347e-17 .5406460513e17
8 .2220e222 .2220e-17 .5406460513e17
15 .2742e221 .2742e-18 .5406460512e17
18 .9309e220 .9309e-19 .5406460509e17

Table 3. n = 500, p = 5, m1 = 31.

m2 N(n,m1,m2) Prob #S
0 .1297e331 .1297e-18 .1893590989e21
1 .1473e329 .1473e-20 .1893590989e21
3 .5304e328 .5304e-21 .1893590989e21
5 .2369e328 .2369e-21 .1893590989e21
8 .7794e327 .7794e-22 .1893590989e21
12 .1561e327 .1561e-22 .1893590989e21
15 .3549e326 .3549e-23 .1893590989e21

The experiments indicate that for moderately large (but quite reasonable for
practical purposes) values for n, the probability of success drops faster than the
size of the factor base. This suggests that the common belief that the smooth
factor base is “optimal” is, practically speaking, justified.

7. Conclusions

In this paper we propose a variant of the index calculus method using a fac-
tor base formed by all monic irreducible polynomials with degree in an interval
(m2,m1]. We prove that the best possible value for m1 is (2 log p)−1/2

√
n logn,

and then we have the same asymptotic result as in the standard case, that is,

L(n)
√

2 log p = exp
(

(
√

2 log p+ o(1))
√
n logn

)
.
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We also indicate, experimentally, the influence of the parameter m2. In practical
terms, there is a tradeoff associated with m2. Indeed, smaller values of m2 imply
higher probabilities of success (until a useful congruence is found in the first stage
of the algorithm) but the space used in the factor base and the system of congru-
ences to be solved are bigger. On the other hand, larger values of m2 mean lower
probabilities of success but smaller size of factor base and size of the system of
congruences to be solved.

The generalized factor base also applies to the heuristic variants described in
Sections 4 and 5. Moreover, Odlyzko’s survey [16] describes other variants that
improve upon the basic method, although not as dramatically as the variant by
Coppersmith. All those algorithms use clever algebraic manipulations to compute
polynomials of “low” degree, which are subsequently factored. The point to be
stressed here is that the computation of the above polynomials is completely inde-
pendent of the factor base. Therefore, a different factor base like the one proposed
in this paper is “compatible” with all the variants. Furthermore, since the proba-
bility that a polynomial of degree k factors into irreducibles of degree greater than
m2 and less than or equal to m1 is of the same form for a wide range of values
for m2, it follows that (at least asymptotically) the variants have the same running
time, independently of the factor base used.
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