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JACOBI SUMS AND NEW FAMILIES
OF IRREDUCIBLE POLYNOMIALS OF GAUSSIAN PERIODS

F. THAINE

Abstract. Let m > 2, ζm an m-th primitive root of 1, q ≡ 1 mod 2m a
prime number, s = sq a primitive root modulo q and f = fq = (q − 1)/m. We

study the Jacobi sums Ja,b = −
∑q−1
k=2 ζ

a inds(k)+b inds(1−k)
m , 0 ≤ a, b ≤ m−1,

where inds(k) is the least nonnegative integer such that s inds(k) ≡ k mod q.
We exhibit a set of properties that characterize these sums, some congruences
they satisfy, and a MAPLE program to calculate them. Then we use those
results to show how one can construct families Pq(x), q ∈ P, of irreducible

polynomials of Gaussian periods, ηi =
∑f−1
j=0 ζ

si+mj
q , of degree m, where P is

a suitable set of primes ≡ 1 mod 2m. We exhibit examples of such families for
several small values of m, and give a MAPLE program to construct more of
them.

Introduction

Let m > 2 be an integer and ζm an m-th primitive root of 1. For each prime
q ≡ 1 mod 2m let ζq be a q-th primitive root of 1, s = sq a primitive root modulo
q and f = fq = (q − 1)/m (we will assume that f is even for simplicity). Let S
be the set of all primes q ≡ 1 mod 2m. Given q ∈ S, define the Jacobi sums Ja,b,
0 ≤ a, b ≤ m−1, and the Gaussian periods ηi, 0 ≤ i ≤ m−1, of degree m in Q(ζq),
by

Ja,b = −
q−1∑
k=2

ζ a inds(k)+b inds(1−k)
m ,

where inds(k) is the least nonnegative integer such that s inds(k) ≡ k mod q, and

ηi =
f−1∑
j=0

ζs
i+mj

q .

Define Pq(x) =
∏m−1
i=0 (x−ηi), the irreducible polynomial, over Q, of the periods ηi.

In this article we study the numbers Ja,b, and use them to construct large families
of polynomials Pq(x), q ∈ P , where P is a subset of S. In principle the method
shown here would allow us to construct a finite number of such families, whose
indices put together include all the primes in S.

This research originated from a problem indicated to me by René Schoof. The
first part of the problem was to find, for m = 7, or m = 9, or m = 12, families of
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irreducible polynomials of real Gaussian periods of degree m. The second part was
to find families of irreducible polynomials of units of the number fields generated by
those periods. I think we give here a complete answer to the first part (for arbitrary
m). The second part seems to be an open problem, and a very interesting one in
light of Schoof and Washington’s work in [7].

For an account of previous work in this and related subjects see [1], [6] and [7].
The path that leads directly to this article is the following. For m = 5, H.W. Lloyd
Tanner obtained, in [9], an expression for the family of polynomials Pq(x), q ∈ S,
in terms of coefficients of certain divisors of q in Q(ζ5). This result was used by
Emma Lehmer, in [5], who gave a new expression for that family. In [6] Lehmer
exhibited a family of polynomials of degree 5, which is obtained by a translation of
a family of polynomials Pq(x), and such that the roots of the polynomials in the
family are units. This result has been used by Schoof and Washington in [7] to find
some real cyclotomic fields with large class numbers. In [12], Section 1, we work
with m = p, an odd prime, and show how to construct certain families of irreducible
polynomials of Gaussian periods of degree p. In that article we were able to obtain,
for general p, only some of the families our present method allows us to construct.
We could give all the families only when Z[ζp] was a principal ideal domain. In this
article we work with general m > 2 and find all the families, thereby extending, in
more than one way, the results of [12].

In Section 1 we use the well-known relations between Jacobi sums, Gauss sums,
Gaussian periods and cyclotomic numbers to obtain a set of properties that char-
acterize the numbers Ja,b (Propositions 2 and 3). We write these numbers in the
form

Ja,b =
m−1∑
k=0

da,b,kζ
k
m, with da,b,k ∈ Z,

in such a way that we can give natural formulas for the coefficients da,b,k (Propo-
sitions 1 and 4). This allows us to calculate Jacobi sums efficiently. We prove
some congruences that the numbers da,b,k satisfy (formula (13)) which allow us to
distinguish the Jacobi sums Ja,b among the other generators of the ideals (Ja,b)
(a useful result when we apply the method of Section 2 to find families of polyno-
mials Pq(x)). This generalizes some results of [11], where we considered only the
case m = p, an odd prime number. We end Section 1 with a MAPLE program to
calculate the Jacobi sums Ja,b.

In Section 2 we show how to construct families of irreducible polynomials of
Gaussian periods in a very general situation. Let R be an ideal of Z[ζm] relatively
prime with m. Suppose that we can calculate (for example using the MAPLE
program of Section 1) the Jacobi sums corresponding to the prime ideals dividing
R (see formula (18)). Then we show a way to construct a family Pq(x), q ∈ P , of
irreducible polynomials of Gaussian periods of degree m, where the elements q of
P are such that q ∈ S and one of the prime ideals Q of Z[ζm] above q is in the
inverse of the ideal class of R. We give examples for m = 7, m = 9, m = 12 and
(partially) m = 23; in them the sets P of indices are chosen so that there are simple
descriptions of the families of polynomials Pq(x). Examples 1-4 correspond to the
case R = (1) (for m = 7, m = 7, m = 9 and m = 12, respectively). Examples 5
and 6 illustrate the use of the method in a general situation. A MAPLE program
to carry out the calculations for our examples, and to search for more examples, is
given at the end of the section.
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1. Jacobi sums in Q(ζm)

Let m > 2 be an integer and q = mf + 1 a prime number. For simplicity we
assume that f is even. Let s be a primitive root modulo q, ζq a q-th primitive root
of 1, and η0, . . . , ηm−1 the Gaussian periods of degree m in Q(ζq) defined by

ηi =
f−1∑
j=0

ζs
i+mj

q .(1)

The set {η0, . . . , ηm−1} is a normal integral basis of Q(η0)/Q. Let ci,j , 0 ≤ i, j ≤
m− 1, be the rational integers such that

η0ηi =
m−1∑
j=0

ci,jηj .(2)

Define C = [ci,j ]0≤i,j≤m−1. It follows from (2) that the characteristic polynomial of
the matrix C is the irreducible polynomial Pq(x) of the Gaussian periods ηi; that
is,

Pq(x) =
m−1∏
i=0

(x− ηi) = det(xI − C),(3)

where I is the m×m identity matrix (see [2], formula 9, or [10], formula 19).
For 0 ≤ i, j ≤ m − 1, we denote by (i, j) the cyclotomic numbers of order

m. Recall that (i, j) is defined as the number of ordered pairs of integers 〈k, l〉,
0 ≤ k, l ≤ f − 1, such that 1 + skm+i ≡ slm+j mod q (see, for example, [1], §2.2,
[2], or [8]). Define ηi+km = ηi, ci+km,j+lm = ci,j , and (i + km, j + lm) = (i, j), for
0 ≤ i, j ≤ m− 1 and k, l ∈ Z.

We use the following version of Kronecker’s delta:

δi,j =

{
1 if i ≡ j mod m,

0 if i 6≡ j mod m.

The cyclotomic numbers (i, j) are very close to the numbers ci,j ; we have

ci,j = (i, j)− fδ0,i,(4)

for i, j ∈ Z (see [2], formula 6).
Let G(x) =

∑q−2
k=0 x

kζs
k

q , where x is an indeterminate. We have that G(x) ≡∑m−1
k=0 ηkx

k mod xm − 1 and that G(1) = −1. Let ζm be an m-th primitive root
of 1. If m - k, then G(ζkm) is a Gauss sum which satisfies G(ζkm)G(ζ−km ) = q (recall
that since f is even the Gaussian periods ηi are real numbers).

For a, b ∈ Z, define the Jacobi sums Ja,b by

Ja,b = −
q−1∑
k=2

ζ a inds(k)+b inds(1−k)
m ,(5)

where inds(k) is the least nonnegative integer such that s inds(k) ≡ k mod q. It
follows directly from the definition that, for all a, b ∈ Z,

Ja+m,b = Ja,b+m = Ja,b, Ja,b = Jb,a, and Ja,b = J−a−b,b.(6)
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For example,

J−a−b,b = −
q−1∑
k=2

ζ (−a−b) inds(k)+b inds(1−k)
m

= −
q−1∑
k=2

ζ −a inds(k)+b inds(k
−1−1)

m

= −
q−1∑
k=2

ζ a inds(k)+b inds(k−1)
m

= −
q−1∑
k=2

ζ a inds(k)+b inds(1−k)
m = Ja,b,

since f is even.
Suppose that 0 ≤ a, b ≤ m− 1. If a+ b 6≡ 0 mod m, then

Ja,b = −G(ζam)G(ζbm)
G(ζa+b

m )
;(7)

also

J0,0 = −(q − 2), and Ja,b = 1 if a+ b ≡ 0 mod m but a 6= 0(8)

(see, for example, [13], Lemma 6.2, or [4], page 4).
We show now a way to represent Jacobi sums as linear combinations, over Z, of

powers of ζm, which is very convenient for our purposes. For a and b nonnegative
integers let fa,b(x) be the polynomial

fa,b(x) = −
q−1∑
k=2

xa inds(k)+b inds(1−k) +
xq−1 − 1
x− 1

.

Define Ja,b(x) =
∑m−1

j=0 da,b,jx
j ∈ Z[x] as the remainder of the division of fa,b(x)

by xm − 1; that is,

Ja,b(x) =
m−1∑
j=0

da,b,jx
j ≡ fa,b(x) mod xm − 1.(9)

Clearly, for a, b ≥ 0, we have

Ja,b = Ja,b(ζm) =
m−1∑
j=0

da,b,jζ
j
m,(10)

Ja,b(1) =
m−1∑
j=0

da,b,j = 1,(11)

and, for k ≥ 0 such that k 6≡ 0 mod m,

Ja,b(ζkm) = Jka,kb(ζm) = Jka,kb.(12)

We also have

J ′a,b(1) =
m−1∑
j=1

jda,b,j ≡ 0 mod m.(13)
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In fact, by (9),

Ja,b(x) = −
q−1∑
k=2

xa inds(k)+b inds(1−k) + (xq−1 − 1)/(x− 1) + (xm − 1)g(x),

for some g(x) ∈ Z[x]. Taking derivatives, we get

J ′a,b(x) = −
q−1∑
k=2

(a inds(k) + b inds(1− k))xa inds(k)+b inds(1−k)−1

+ (1 + 2x+ · · ·+ (q − 2)xq−3) + (xm − 1)g′(x) +mxm−1g(x).

Therefore

J ′a,b(1) = −a
q−1∑
k=2

inds(k)− b
q−1∑
k=2

inds(1− k) +m(f/2)(q − 2) +mg(1) ≡ 0 modm.

The following result will be useful in calculating Jacobi sums. We denote by
α the complex conjugate of the number α. Observe that, if we denote the Jacobi
sums in (5) by Ja,b,m and c = g.c.d.(a, b,m), then Ja,b,m = Ja/c,b/c,m/c, with
g.c.d.(a/c, b/c,m/c) = 1 (assume c < m and choose ζm/c = ζcm).

Proposition 1. Let a and b be integers, 1 ≤ a, b ≤ m−1, such that g.c.d.(a, b,m) =
1. Let v = g.c.d.(a+ b,m) and u = m/v. For l ∈ Z let

ε(l) =

{
1 if v|l,
0 if v - l.

Then, for 0 ≤ l ≤ m− 1, we have

da,b,l =
1
m

(
1 +

m−1∑
k=1

ζklmJka,kb

)
=

1
u
ε(l) +

1
m

u−1∑
i=1

ζilm

v−1∑
k=0

ζuklm J (i+uk)a,(i+uk)b.

Proof. Let dl = da,b,l. For 0 ≤ l ≤ m− 1, we have
m−1∑
k=0

ζ−klm Ja,b(ζkm) =
m−1∑
k=0

ζ−klm

m−1∑
j=0

djζ
kj
m =

m−1∑
j=0

dj

m−1∑
k=0

ζ(j−l)k
m = mdl;

so

dl =
1
m

m−1∑
k=0

ζklmJa,b(ζkm) =
1
m

(
1 +

m−1∑
k=1

ζklmJka,kb
)
,

by (11) and (12). Therefore

dl =
1
m

(
1 +

∑
1≤k≤m−1

u|k

ζklmJka,kb

)
+

1
m

( ∑
1≤k≤m−1

u-k

ζklmJka,kb

)

=
1
m

(
1 +

v−1∑
k=1

ζuklm

)
+

1
m

(u−1∑
i=1

v−1∑
k=0

ζ(i+uk)l
m J (i+uk)a,(i+uk)b

)
=

1
u
ε(l) +

1
m

(u−1∑
i=1

ζilm

v−1∑
k=0

ζuklm J (i+uk)a,(i+uk)b

)
,

by (8), as we wanted to prove.
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We can express the Jacobi sums Ja,b in terms of the cyclotomic numbers (i, j),
and vice versa, as follows:

For a, b ∈ Z,

Ja,b = −
m−1∑
h=0

m−1∑
k=0

ζah+bk
m (h, k).(14)

In fact, for example, by [2], formula 26 (for the case where m - a, m - b and
m - (a+ b)), and a straightforward calculation using [2], formulas 14 and 17 (when
m | a or m | b or m | (a+ b)), we have

Ja,b = −
m−1∑
h=0

m−1∑
k=0

ζbk−(a+b)h
m (k, h).

So, by (6), and [2], formula 14,

−
m−1∑
h=0

m−1∑
k=0

ζah+bk
m (h, k) = −

m−1∑
h=0

m−1∑
k=0

ζah+bk
m (k, h) = J−a−b,b = Ja,b.

For i, j ∈ Z,

(i, j) = − 1
m2

m−1∑
a=0

m−1∑
b=0

ζ−ia−jbm Ja,b

= − 1
m2

(
mδ0,i +mδ0,j +mδi,j − q − 1 +

∑
1≤a,b≤m−1
a+b6=m

ζ−ia−jbm Ja,b

)(15)

(see, for example, [1], §2.5, or [12], Proposition 3, or formula (16) below).
Let P be the matrix [ζijm]0≤i,j≤m−1. We have that P−1 = P/m, and (14) is

equivalent to

[J−a,b]0≤a,b≤m−1 = −mP−1[(i, j)]0≤i,j≤m−1P.(16)

In the next proposition we give a list of properties of the Jacobi sums Ja,b that
actually characterize these numbers, as will be proved later (see Proposition 3).

Proposition 2. For a, b ∈ Z, the Jacobi sums Ja,b are elements of Z[ζm] which
satisfy the following conditions:

1. Ja+m,b = Ja,b+m = Ja,b.
2. Ja,b = Jb,a.
3. Ja,b = J−a−b,b.
4. J0,0 = −(q − 2), and J0,b = 1, if m - b.
5. Ja,bJ−a,−b = q, if m - a, m - b and m - (a+ b).
6. Ja,bJ−a,−c = J−(a+b+c),bJa+b+c,−c, if m - (a + b), m - (a + c), m - a and
m - (a+ b+ c).
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7. For i, j ∈ Z, the numbers

hi,j =− 1
m2

m−1∑
a=0

m−1∑
b=0

ζ−ai−bjm

(
Ja,b + (q − 1)δ0,b

)
=− fδ0,i −

1
m2

m−1∑
a=0

m−1∑
b=0

ζ−ai−bjm Ja,b

are rational integers. (Note that, by (4) and (15), the hi,j are in fact the
numbers ci,j.)

8. The characteristic polynomial of the matrix [J−a,b + (q − 1)δ0,b]0≤a,b≤m−1

(which, by 7, is equal to the characteristic polynomial of [−mhi,j]0≤i,j≤m−1)
is irreducible over Q.

Proof. Properties 1-3 were shown in (6). Property 4 follows from (7) and (8).
Property 5 follows from (7) and from the fact that G(ζkm)G(ζ−km ) = q, if m - k.

Suppose that m - (a+ b), m - (a+ c), m - a and m - (a+ b+ c). Then, by (7),

Ja,bJ−a,−c =
(
G(ζam)G(ζbm)/G(ζa+b

m )
)(
G(ζ−am )G(ζ−cm )/G(ζ−a−cm )

)
=
(
G(ζ−a−b−cm )G(ζbm)/G(ζ−a−cm )

)(
G(ζa+b+c

m )G(ζ−cm )/G(ζa+b
m )

)
= J−(a+b+c),bJa+b+c,−c,

since G(ζam)G(ζ−am ) = q = G(ζ−a−b−cm )G(ζa+b+c
m ). This proves property 6.

By (15) we have

hi,j + fδ0,i = − 1
m2

m−1∑
a=0

m−1∑
b=0

ζ−ia−jbm Ja,b = (i, j).

So, hi,j = (i, j)− fδ0,i = ci,j ∈ Z. This proves property 7.
To prove property 8, observe that, by (4), (16) and property 7, we have

[J−a,b + (q − 1)δ0,b]a,b = P−1[−mhi,j]i,jP = P−1[−mci,j ]i,jP.

So, the characteristic polynomial of the matrix [J−a,b + (q − 1)δ0,b]0≤a,b≤m−1 is
equal to the characteristic polynomial of the matrix [−mci,j]0≤i,j≤m−1, which is
irreducible over Q by (3).

Proposition 3. For a, b ∈ Z, let Ja,b be elements in Z[ζm] which satisfy conditions
1-8 of Proposition 2. Then, for some choice of the primitive root s modulo q, the
Ja,b are the Jacobi sums Ja,b defined in (5).

Observation. This proposition generalizes [11], Proposition 2, where we only con-
sidered the case m = p, a prime, and denoted J1,n by Jn.

Proof. Let Ja,b, a, b ∈ Z, be elements of Z[ζm] satisfying conditions 1-8 of Propo-
sition 2. We will prove that the integers hi,j of condition 7 are, for some choice of
the primitive root s modulo q, the numbers ci,j = (i, j) − fδ0,i. This will end the
proof, since we can express the Jacobi sums Ja,b in terms of the ci,j using (4) and
(14), and, by condition 7, that expression must also give the numbers Ja,b.
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We showed in [10], Theorem 1 and the observation that follows it, that the
numbers ci,j , i, j ∈ Z, are characterized (up to some reordering due to the choice of
s) by the following conditions: The ci,j are integers such that ci+m,j = ci,j+m = ci,j
and

i)
∑m−1

k=0 ci,k = f − qδ0,i,
ii)
∑m−1

k=0 ck,j = −δ0,j,
iii) ci,j = c−i,j−i,
iv)

∑m−1
k=0 ci,kck−j,l−j =

∑m−1
k=0 cj,kck−i,l−i,

v) the characteristic polynomial of the matrix [ci,j ]0≤i,j≤m−1 is irreducible over
Q.

(See also [12], Proposition 2.)
We are going to prove that the integers

hi,j = −fδ0,i −
1
m2

m−1∑
a=0

m−1∑
b=0

ζ−ai−bjm Ja,b

satisfy the above conditions (with ci,j replaced by hi,j). Clearly hi+m,j = hi,j+m =
hi,j , and condition 8 implies (v).

Define

[i, j] = hi,j + fδ0,i = − 1
m2

m−1∑
a=0

m−1∑
b=0

ζ−ai−bjm Ja,b.

By condition 2 we have [i, j] = [j, i]. By condition 4,

m−1∑
k=0

[i, k] = − 1
m2

m−1∑
a=0

m−1∑
b=0

ζ−aim Ja,b
m−1∑
k=0

ζ−bkm

= − 1
m

m−1∑
a=0

ζ−aim Ja,0

= − 1
m

(
−(q − 2) +

m−1∑
a=1

ζ−aim

)
= f − δ0,i.

Now (i) and (ii) follow at once.
By condition 3 we have

[−i, j − i] = − 1
m2

m−1∑
a=0

m−1∑
b=0

ζai+b(i−j)m Ja,b

= − 1
m2

m−1∑
a=0

m−1∑
b=0

ζ(a+b)i−bj
m Ja,b

= − 1
m2

m−1∑
a=0

m−1∑
b=0

ζ−ai−bjm J−a−b,b

= − 1
m2

m−1∑
a=0

m−1∑
b=0

ζ−ai−bjm Ja,b = [i, j].

Therefore h−i,j−i = [−i, j − i]− fδ0,i = [i, j]− fδ0,i = hi,j . This proves (iii).
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Proof of (iv). It remains to prove that
∑m−1

k=0 hi,khk−j,l−j =
∑m−1
k=0 hj,khk−i,l−i.

Since this proof requires a long calculation, to simplify matters we are going to
use the following notation: If we have two expressions U(i, j, l) and V (i, j, l), we
write U(i, j, l) ∼ V (i, j, l) if the difference W (i, j, l) = U(i, j, l) − V (i, j, l) satisfies
W (i, j, l) = W (j, i, l). Define H(i, j, l) =

∑m−1
k=0 hi,khk−j,l−j . We must prove that

H(i, j, l) ∼ 0.

We have

H(i, j, l) =
m−1∑
k=0

(
[i, k]− fδ0,i

)(
[k − j, l − j]− fδk,j

)
=

m−1∑
k=0

[i, k][k − j, l − j]− fδ0,i
m−1∑
k=0

[k − j, l − j]

− f
m−1∑
k=0

[i, k]δk,j + f2δ0,i

m−1∑
k=0

δk,j

=
m−1∑
k=0

[i, k][k − j, l − j]− fδ0,i(f − δl,j)− f [i, j] + f2δ0,i.

So,

H(i, j, l) ∼ fδ0,iδl,j +
m−1∑
k=0

[i, k][k − j, l − j].(∗)

Now, using conditions 2 and 3, we get

m−1∑
k=0

[i, k][k − j, l − j] =
1
m4

m−1∑
a=0

m−1∑
b=0

m−1∑
t=0

m−1∑
w=0

m−1∑
k=0

ζ−ia−kb−(k−j)t−(l−j)w
m Ja,bJt,w

=
1
m4

m−1∑
a=0

m−1∑
b=0

m−1∑
t=0

m−1∑
w=0

ζ−ia+jt−(l−j)w
m Ja,bJt,w

m−1∑
k=0

ζ−k(b+t)
m

=
1
m3

m−1∑
a=0

m−1∑
b=0

m−1∑
w=0

ζ−ia−jb−(l−j)w
m Ja,bJ−b,w

=
1
m3

m−1∑
a=0

m−1∑
b=0

m−1∑
w=0

ζ−ia−j(b−w)−lw
m Ja,bJ−b,w

=
1
m3

m−1∑
a=0

m−1∑
b=0

m−1∑
w=0

ζ−ia−jw−l(b−w)
m Ja,bJ−b,b−w

=
1
m3

m−1∑
a=0

m−1∑
b=0

m−1∑
w=0

ζ−ia−jw−l(b−w)
m Ja,bJ−b,w

=
1
m3

m−1∑
a=0

m−1∑
b=0

m−1∑
w=0

ζ−ib+jw−l(a+w)
m Ja,bJ−a,−w.
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Now define

F (i, j, l) = m2(q − 1)δ0,iδl,j

+
m−1∑
a=0

m−1∑
b=0

m−1∑
w=0

ζ−ib+jw−l(a+w)
m Ja,bJ−a,−w.

By (∗), in order to prove (iv), it is enough to prove that F (i, j, l) = F (j, i, l), i.e.
that F (i, j, l) ∼ 0. Define

A(i, j, l) =
∑

0≤a,b,w≤m−1
m-(a+b),(a+w),a,(a+b+w)

ζ−ib+jw−l(a+w)
m Ja,bJ−a,−w

and

B(i, j, l) = m2(q − 1)δ0,iδl,j

+
∑

0≤a,b,w≤m−1
m|(a+b) or (a+w) or a or (a+b+w)

ζ−ib+jw−l(a+w)
m Ja,bJ−a,−w.

Since F (i, j, l) = A(i, j, l) + B(i, j, l), it is enough to prove that A(i, j, l) ∼ 0 ∼
B(i, j, l). By condition 6, we have

A(i, j, l) =
∑

0≤a,b,w≤m−1
m-(a+b),(a+w),a,(a+b+w)

ζ−ib+jw−l(a+w)
m J−(a+b+w),bJa+b+w,−w.

Changing variables, a→ −(a+ b+ w), we get

A(i, j, l) =
∑

0≤a,b,w≤m−1
m-(a+b),(a+w),a,(a+b+w)

ζ−ib+jw+l(a+b)
m Ja,bJ−a,−w

=
∑

0≤a,b,w≤m−1
m-(a+b),(a+w),a,(a+b+w)

ζ−jw+ib−l(a+b)
m Ja,wJ−a,−b

=
∑

0≤a,b,w≤m−1
m-(a+b),(a+w),a,(a+b+w)

ζ−jb+iw−l(a+w)
m Ja,bJ−a,−w

= A(j, i, l).

So, A(i, j, l) ∼ 0.
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It remains to prove that B(i, j, l) ∼ 0. Write

B(i, j, l) = m2(q − 1)δ0,iδl,j + C(i, j, l) +D(i, j, l),

where

C(i, j, l) =
m−1∑
b=0

m−1∑
w=0

ζ−ib+jw−lwm J0,bJ0,−w,

D(i, j, l) =
∑

1≤a≤m−1
0≤b,w≤m−1

m|(a+b) or (a+w) or (a+b+w)

ζ−ib+jw−l(a+w)
m Ja,bJ−a,−w.

By condition 4,

C(i, j, l) =
m−1∑
b=0

m−1∑
w=0

ζ−ib+(j−l)w
m

(
−(q − 1)δ0,b + 1

)(
−(q − 1)δ0,w + 1

)
= (q − 1)2 − (q − 1)

m−1∑
w=0

ζ(j−l)w
m − (q − 1)

m−1∑
b=0

ζ−ibm +
m−1∑
b=0

ζ−ibm

m−1∑
w=0

ζ(j−l)w
m

= (q − 1)2 −m(q − 1)δj,l −m(q − 1)δ0,i +m2δ0,iδj,l.

So,

C(i, j, l) ∼ −m(q − 1)δj,l −m(q − 1)δ0,i +m2δ0,iδj,l.

Finally, write D(i, j, l) = X(i, j, l) + Y (i, j, l), where

X(i, j, l) =
m−1∑
a=1

m−1∑
b=0

ζ−ib−jam Ja,bJ−a,a,

Y (i, j, l) =
∑

1≤a≤m−1
0≤b,w≤m−1
w 6≡−a modm

m|(a+b) or (a+b+w)

ζ−ib+jw−l(a+w)
m Ja,bJ−a,−w.

If m - a, by conditions 3 and 4, we have J−a,a = J0,a = 1. Therefore, by condition
2,

X(i, j, l) =
m−1∑
a=1

m−1∑
b=0

ζ−ib−jam Ja,b = −
m−1∑
b=0

ζ−ibm J0,b −m2[i, j]

= (q − 2)−
m−1∑
b=1

ζ−ibm −m2[i, j] = (q − 1)−mδ0,i −m2[i, j].
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So, X(i, j, l) ∼ −mδ0,i. Also, by conditions 2, 3 and 5,

Y (i, j, l) =
m−1∑
a=1

∑
0≤w≤m−1
w 6≡−a modm

ζia+jw−l(a+w)
m Ja,−aJ−a,−w

+
∑

1≤a≤m−1
0≤b,w≤m−1

b6≡−a, w 6≡−a modm
m|a+b+w

ζ−ib+jw−l(a+w)
m Ja,bJ−a,−w

=
m−1∑
a=1

∑
0≤w≤m−1
w 6≡−a modm

ζia+jw−l(a+w)
m J−a,−w

+
m−1∑
a=1

∑
1≤b≤m−1
b6≡−a modm

ζ−ib−j(a+b)+lb
m Ja,bJ−a,a+b

=
m−1∑
a=1

∑
0≤w≤m−1
w 6≡−a modm

ζ−(i−l)a−(j−l)w
m Ja,w

+
m−1∑
a=1

∑
1≤b≤m−1
b6≡−a modm

ζ−ib−j(a+b)+lb
m Ja,bJ−a,−b

= −m2[i− l, j − l]−
m−1∑
w=1

ζ−(j−l)w
m J0,w −

m−1∑
a=0

ζ−(i−j)a
m Ja,−a

+ q

m−1∑
a=1

ζ−jam

m−1∑
b=1

ζ(l−i−j)b
m − q

m−1∑
a=1

ζ−ja−(l−i−j)a
m

= −m2[i− l, j − l]−mδj,l + 1 + 1 + (1 − 2)− (q − 2)−mδi,j + 1

+ q(mδ0,j − 1)(mδl,i+j − 1)− q(mδl,i − 1).

So, Y (i, j, l) ∼ −qmδ0,j − qmδl,i −mδj,l + qm2δ0,jδl,i+j . Therefore,

B(i, j, l) = m2(q − 1)δ0,iδl,j + C(i, j, l) +X(i, j, l) + Y (i, j, l)

∼ m2(q − 1)δ0,iδl,j −m(q − 1)δj,l −m(q − 1)δ0,i

+m2δ0,iδj,l −mδ0,i − qmδ0,j − qmδl,i −mδj,l + qm2δ0,jδl,i+j

= m2qδ0,iδl,j +m2qδ0,jδl,i −mqδl,i −mqδl,j −mqδ0,i −mqδ0,j .

Therefore B(i, j, l) ∼ 0. This ends the proof of (iv), and of Proposition 3.

Let Q be the prime ideal of Z[ζm] above q such that sf ≡ ζm mod Q. If k ∈ Z
we denote by |k|m the least nonnegative integer such that |k|m ≡ k mod m. We
showed in [12], formula (27), that, for 0 ≤ a, b ≤ m− 1 with a+ b 6≡ 0 mod m,

Ja,b ≡
(
f |a+ b|m

fa

)
mod Q.(17)

This fact is a simple consequence of (7), and [4], Chapter 1, Theorem 2.1.
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The MAPLE program to calculate Jacobi sums that ends this section is based
on the following proposition.

Proposition 4. Let a, b be integers, 1 ≤ a, b ≤ m−1, such that g.c.d.(a, b,m) = 1,
and let 0 ≤ l ≤ m− 1. Let u, v and ε(l) be as in Proposition 1. Then

da,b,l ≡
1
u
ε(l) +

1
m

u−1∑
i=1

v−1∑
k=0

sf(i+uk)l

(
f |i(a+ b)|m
f |(i+ uk)a|m

)
mod q,

and |da,b,l| <
√
q < q/2.

Proof. The first assertion follows directly from Proposition 1 and (17). The sec-
ond assertion follows from Proposition 1, the triangle inequality, and the fact that
|Ja,b| =

√
q if m - a, m - b and m - (a+ b).

In the following program enter the values of m > 2, q a prime ≡ 1 mod 2m, s a
primitive root modulo q (the command: s :=primroot(q); will give to s the value of
the smallest positive primitive root modulo q), a and b integers, 1 ≤ a, b ≤ m− 1,
such that m - a+ b, and such that g.c.d.(a, b,m) = 1 (see the observation preceding
Proposition 1). The resulting matrix A is the row matrix [da,b,0, da,b,1, . . . , da,b,m−1].
The expression F (x) is the Jacobi sum Ja,b =

∑m−1
j=0 da,b,jζ

j
m, if one replaces x by

ζm. The expressionG(x), a polynomial of degree< ϕ(m), is also equal to the Jacobi
sum Ja,b, if one replaces x by ζm. The last two lines are to check that Ja,b(1) = 1
and that Ja,bJa,b = q.

A MAPLE program to calculate the Jacobi sums Ja,b given m, q and s
with(linalg): with(numtheory):
m:=12; q:=73; s:=primroot(q); a:=2; b:=5;
f:=(q-1)/m: v:=igcd(a+b,m): u:=m/v:
for i from 0 to m-1 do;
ep(i):=floor(1-i/v+floor(i/v)); od:
C:=array(1..u,1..v):
for j1 from 1 to u do; for k1 from 1 to v do;
C[j1,k1]:=modp(binomial(f∗modp((j1-1)∗(a+b),m), f∗modp(((j1-1)+u∗(k1-1))∗a,m)),q);
od: od:
A:=array(1..1,1..m):
for l from 1 to m do;
A[1,l]:=mods(ep(l-1)/u+(1/m)∗sum(sum(sˆ ((f∗(j-1)+f∗ u∗(k-1))∗(l-1))∗C[j,k],j=2..u),
k=1..v),q); od:
A:=evalm(A);
R:=cyclotomic(m,x);
F:=x−>sum(A[1,t]∗xˆ (t-1),t=1..m):
F(x):=F(x); G:=rem(F(x),R,x);
# check:
F(1);

rem(F(x)∗F(xˆ (m-1)),R,x);

2. Families of irreducible polynomials

of Gaussian periods of degree m

As in Section 1, let m > 2 be an integer and ζm an m-th primitive root of 1. Let
S be the set of all prime numbers q ≡ 1 mod 2m. If q ∈ S, s is a primitive root
modulo q, and Q is the prime ideal of Z[ζm] above q such that s(q−1)/m ≡ ζm mod
Q, we write Ja,b = Ja,b[Q] for the Jacobi sums defined in (5). In this section we
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show how to construct families of irreducible polynomials of Gaussian periods of
degree m. We first show how one can make this construction in a general situation,
and then work out several examples with m small.

The first step in our method is to construct families (Ja,b[Q]), 0 ≤ a, b ≤ m− 1,
Q ∈ I, of sets of principal ideals generated by Jacobi sums of the type studied in
Section 1, where I is a set of prime ideals of Z[ζm] above rational primes in S.

Let ν be a positive integer and, for 1 ≤ i ≤ ν, let ri be prime numbers (not
necessarily distinct) not dividing m. Let fi be the smallest positive integer such
that rfii ≡ 1 mod m, Ri a prime ideal of Z[ζm] above ri, si ∈ Z[ζm] a generator of

Z[ζm]/Ri ∼= F
r
fi
i

(the field with rfii elements) such that s(r
fi
i −1)/m

i ≡ ζm mod Ri.
For 1 ≤ i ≤ ν and 0 ≤ a, b ≤ m− 1, let Ji,a,b be the Jacobi sum

Ji,a,b = −
∑

γ∈Z[ζm]/Ri
γ 6=0,1

ζ
a indsi (γ)+b indsi (1−γ)
m ,(18)

where indsi(γ) is the least nonnegative integer such that s indsi (γ)

i ≡ γ mod Ri. We
assume that the numbers Ji,a,b are known (i.e. that they have been calculated).

If c is an integer relatively prime with m, denote by σc the automorphism of
Q(ζm) such that σc(ζm) = ζcm. If a+ b 6≡ 0 mod m, the prime ideal factorization of
the ideal (Ji,a,b) of Z[ζm] is given by

(Ji,a,b) =
∏

1≤c≤m−1
g.c.d.(c,m)=1

σ−1
c (Ri)[

(a+b)c
m ]−[ acm ]−[ bcm ],(19)

where the bar denotes complex conjugation, and [ρ] denotes the integral part of a
real number ρ (see [4], page 13, Fac 3).

Define r =
∏ν
i=1 ri and r′ =

∏ν
i=1 r

fi
i . Let

C = {α ∈ Z[ζm] : (α) = R1 . . . RνQ, with NQ(ζm)/Q(Q) = q ∈ S},

A a nonempty subset of C, and I = {Q = (α)(R1 . . . Rν)−1 : α ∈ A} (a set of prime
ideals of Z[ζm] above primes in S). For 0 ≤ a, b ≤ m − 1 such that m - a + b, set
Ja,b =

∏ν
i=1 Ji,a,b, and for α ∈ A, set

Ka,b[α] =
∏

1≤c≤m−1
g.c.d.(c,m)=1

σ−1
c (α)[

(a+b)c
m ]−[ acm ]−[ bcm ].(20)

Then, for α ∈ A, we have (Ka,b[α]/Ja,b) = (Ja,b[Q]) (equality of ideals of Z[ζm]),
with Ja,b = Ja,b[Q] as in (5), where Q ∈ I is the prime ideal (α)(R1 . . . Rν)−1. To
prove this equality just check, using (19), that both sides have the same prime ideal
factorization.

The choice of the set A will determine whether our family of polynomials has a
nice description. One way to make this choice is the following. Take α0, α1 ∈ Z[ζm]
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such that (α0, α1) = R1 . . . Rν and define A = A1, where

A1 =

α = α0 + α1β : β =
ϕ(m)−1∑
i=0

biζ
i
m ∈ Z[ζm]

and NQ(ζm)/Q(α) = r′q, with q ∈ S

 .

The parameters of the family we construct will then be the coefficients bi of β. In
the examples we work with the simpler sets

A2 = {α = α0 + α1n : n ∈ Z and NQ(ζm)/Q(α) = r′q, with q ∈ S}.
The second step is to identify the Jacobi sums Ja,b[Q], Q ∈ I, among the gener-

ators of the principal ideals (Ja,b[Q]). One way to do that is to start with a subset
A of C such that if α ∈ A the numbers Ka,b[α] are products of Jacobi sums (as
the ones defined in (18)). Then we know after Weil [14] that, using the notation
above, for α ∈ A and Q = (α)(R1 . . . Rν)−1, Ja,b[Q] = Ka,b[α]/Ja,b. Also, by [14],
we know that there is a divisor f of m2 such that any nonempty subset A of the
set Cf = {α ∈ C : α ≡ 1 mod f} has the desired property. Another way to identify
the Ja,b[Q] among the generators of the ideals (Ja,b[Q]), which works at least when
m = p is a prime and was used in [12], relies on the fact that only one of the
numbers δζkmKa,b[α]/Ja,b, δ ∈ {1,−1}, 0 ≤ k ≤ m − 1, satisfies congruence (13),
and that number is Ja,b[Q].

From the family Ja,b[Q], Q ∈ I, of sets of Jacobi sums, we construct, using (4)
and (15), a family C[Q], Q ∈ I, of matrices with entries ci,j = ci,j [Q], whose char-
acteristic polynomials form, by (3), the desired family Pq(x), q ∈ P , of irreducible
polynomials of Gaussian periods of degree m. Here P = {q = NQ(ζm)/Q(Q) :
Q ∈ I} ⊆ S. Note that ideals Q ∈ I are in the inverse ideal class of the ideal
R =

∏ν
i=1 Ri.

In what follows we give examples of this construction and a MAPLE program
to search for more examples.

Example 1. For m = 7, and primes of the form

q = 49n6 − 49n5 + 49n4 + 35n3 + 21n2 + 7n+ 1,

the irreducible polynomials of the Gaussian periods of degree m in Q(ζq) are

Pq(x) = x7 + x6 + (−21n6 + 21n5 − 21n4 − 15n3 − 9n2 − 3n)x5

+ (−21n9 + 28n8 + 7n7 − 48n6 + 36n5 + 20n4 + 12n3 + 3n2)x4

+ (91n12 − 147n11 + 252n10 − 85n9 + 73n8

+ 100n7 + 21n6 + 10n5 − 2n4 − n3)x3

+ (112n15 − 203n14 + 175n13 + 113n12 − 227n11

+ 127n10 − 23n9 − 45n8 − 25n7 − 14n6 − 2n5)x2

+ (−84n18 + 238n17 − 518n16 + 629n15 − 442n14

+ 196n12 − 8n11 − 22n10 − 26n9 − 11n8 − n7)x

− 97n21 + 357n20 − 609n19 + 434n18 + 52n17 − 282n16 + 94n15

+ 56n14 + 7n13 − 3n12 − 8n11 − 2n10.
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To obtain this result we start with the elements 1 + n(ζm − 1)2 in Z[ζm], which
have norms q = q(n) and generate prime ideals Q = (1 +n(ζm− 1)2). We calculate
the Jacobi sums Ja,b[Q] using Stickelberger’s theorem and the fact that if m = p
is a prime then Ja,b[Q] ≡ 1 mod (ζm − 1)2. We use the values of the Jacobi sums
found to calculate the matrices C = C[Q]. Finally we calculate the characteristic
polynomials of the C[Q], which are the irreducible polynomials we wanted to find.
All these calculations are performed by the program at the end of the article, where
we must enter only the values m:=7; and F:=z−>1+n∗(z-1)ˆ2;

In general the “smallest” examples I found for m prime start with the elements
α = 1 + n(ζm − ζ−1

m )3 which have norms q = q(n) that are polynomials in n2. The
coefficients of the resulting polynomials Pq(x) are also polynomials in n2. Some-
thing similar works for arbitrary m, where the right expression for α can be found
by trial and error (q(n) must be an irreducible polynomial in Z[n] and the matrix
C[(α)] must have its entries in Z[n]). This is illustrated in Examples 2, 3 and 4.

Example 2. For m = 7, and primes of the form

q = 343n6 + 833n4 + 70n2 + 1,

the irreducible polynomials of the Gaussian periods of degree m in Q(ζq) are

Pq(x) = x7 + x6 + (−147n6 − 357n4 − 30n2)x5

+ (−294n8 − 749n6 − 145n4 − 8n2)x4

+ (7203n12 + 30086n10 + 32403n8 + 3436n6 + 96n4)x3

+ (28812n14 + 128723n12 + 152306n10

+ 21199n8 + 1008n6 + 16n4)x2

+ (−117649n18− 617057n16 − 787577n14

+ 47481n12 + 45234n10 + 3104n8 + 32n6)x

− 705894n20− 3186127n18 − 3505999n16 + 213835n14

+ 39841n12 + 904n10 + 16n8.

To obtain this result we proceed in a similar way as in Example 1. Enter the values
m:=7; and F:=z−> 1+n∗(z-zˆ (m-1))ˆ 3; in the program at the end of the article.

Example 3. For m = 9, and primes of the form

q = 2187n6 + 729n4 + 54n2 + 1,
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the irreducible polynomials of the Gaussian periods of degree m in Q(ζq) are

Pq(x) = x9 + x8 + (−972n6 − 324n4 − 24n2)x7

+ (−3888n8 − 1548n6 − 180n4 − 8n2)x6

+ (196830n12 + 148716n10 + 34830n8 + 2856n6 + 80n4)x5

+ (629856n14 + 535086n12 + 148716n10 + 16830n8 + 840n6 + 16n4)x4

+ (−14880348n18− 10786284n16− 2259900n14

− 106164n12 + 7128n10 + 480n8)x3

+ (−25509168n20− 18659484n18− 6167340n16

− 1097388n14− 95652n12 − 3480n10 − 32n8)x2

+ (387420489n24 + 70150212n22− 29878794n20

− 7934436n18− 489159n16 + 3672n14 + 720n12)x

− 29229255n24− 1653372n22 + 2523798n20

+ 384156n18 + 22761n16 + 792n14 + 16n12.

To obtain this result we proceed in a similar way as in Example 1. This time
enter the values m:=9; and F:=z−> 1+3∗n∗(z-zˆ (m-1)); in the program at the end
of the article. Observe that the resulting matrix C has entries in Z[n].

Example 4. For m = 12, and primes of the form

q = 1296n4 + 72n2 + 1,

the irreducible polynomials of the Gaussian periods of degree m in Q(ζq) are

Pq(x) = x12 + x11 + (−594n4 − 33n2)x10 + (216n6 − 153n4 − 9n2)x9

+ (120771n8 + 8937n6 + 186n4)x8

+ (−116640n10 + 8586n8 + 1044n6 + 24n4)x7

+ (−9713196n12− 858762n10 − 26784n8 − 304n6)x6

+ (19840464n14 + 581742n12 − 28998n10 − 1368n8 − 16n6)x5

+ (278337303n16 + 30561138n14 + 1165428n12 + 18144n10 + 96n8)x4

+ (−1055008800n18− 84367899n16

− 1851660n14 + 1512n12 + 288n10)x3

+ (−806018850n20− 210194757n18

− 14311728n16− 377136n14 − 3456n12)x2

+ (7971615000n22 + 1069672635n20

+ 52743879n18 + 1137240n16 + 9072n14)x

− 8968066875n24− 1102740075n22

− 50585310n20− 1026432n18− 7776n16.

To obtain this result we proceed in a similar way as in Example 1. This time
enter the values m:=12; and F=z−> 1+6∗n∗(z-zˆ (m-1)); in the program at the
end of the article. Observe that the resulting matrix C has entries in Z[n].



1634 F. THAINE

Example 5. Let m = 7 and w = ζ7 a 7-th primitive root of 1. Take r1 = 2. Set
R1 = (w5 − 2w4 + 3w3 −w2 + 2, 2(w− 1)2) = (1 +w +w3). We have (2) = R1R1.
The element s1 = 1+w3 is a generator of Z[w]/R1

∼= F8 (the field with 8 elements),
such that s1 = s

(8−1)/7
1 ≡ w mod R1. Let

A3 = {α = w5 − 2w4 + 3w3 − w2 + 2 + 2(w − 1)2n

n ∈ Z and NQ(w)/Q(α) = 8q, with q ∈ S},
and

I = {Q = (α)R−1
1 : α ∈ A3}.

Observation. Since Z[w] is a principal ideal domain, we could simplify our exam-
ple by dividing the elements of A3 by a generator of R1. That, however, would not
illustrate how the method works in the general situation. The first cases in which
we really need to work with auxiliary Jacobi sums Ji,a,b occur when m = 23, which
is too large for a complete example, in paper, of a family of irreducible polynomials
of Gaussian periods (but see Example 6).

If α = w5 − 2w4 + 3w3 − w2 + 2 + 2(w − 1)2n ∈ A3, then

NQ(w)/Q(α) = 8(392n6 + 98n4 + 161n3 + 14n2 − 35n+ 113).

So we are searching for the irreducible polynomials of the Gaussian periods of degree
7 corresponding to the primes q of the form

q = 392n6 + 98n4 + 161n3 + 14n2 − 35n+ 113.

Set Ja,b = J1,a,b, the Jacobi sums corresponding to s1 and R1. By (18) we have

J1,1 = J1,5 = −2(w + w2 + w4),

J1,2 = J1,4 = −(3 + w3 + w5 + w6),

J1,3 = J1,1 = −2(w3 + w5 + w6).

For Q ∈ I and α ∈ A3 such that (α) = R1Q, define Ka,b[α] as in (20). We have

K1,1[α] = (24n2 − 12n− 6)w5 + (−36n2 − 18n− 6)w4

+ (−56n3 − 12n2 + 32n− 4)w3 + (12n2 + 6n− 24)w2

+ (−48n2 − 18n+ 12)w − 24n2 + 24n+ 6,

K1,2[α] = (6n− 21)w4 + (6n− 21)w2 + (6n− 21)w − 56n3 − 4n− 22,

K1,3[α] = (−48n2 − 24n+ 18)w5 + (−12n2 − 6n+ 24)w4

+ (−60n2 − 24n+ 36)w3 + (−56n3 − 24n2 + 26n+ 20)w2

+ (12n2 − 18n+ 18)w − 36n2 + 18n+ 30,

K1,4[α] = (6n− 21)w4 + (6n− 21)w2 + (6n− 21)w − 56n3 − 4n− 22,

K1,5[α] = (24n2 − 12n− 6)w5 + (−36n2 − 18n− 6)w4

+ (−56n3 − 12n2 + 32n− 4)w3 + (12n2 + 6n− 24)w2

+ (−48n2 − 18n+ 12)w − 24n2 + 24n+ 6.
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Using the formula (Ja,b[Q]) = (Ka,b[α]/Ja,b), and the fact that Ja,b[Q] ≡ 1 mod
(w − 1)2, we get

J1,1[Q] = −w3K1,1[α]/J1,1

= (−14n3 − 3n2 + 5n− 1)w5 + (−14n3 + 15n2 + 8n− 7)w4

+ (−9n2 − 6n− 3)w3 + (−14n3 − 12n2 + 11n+ 5)w2

+ (6n2 + 9n− 3)w + 3n2 − 6n+ 3,

J1,2[Q] = −w3
K1,2[α]/J1,2

= (−7n3 + n− 8)w4 + (−7n3 + n− 8)w2

+ (−7n3 + n− 8)w − 21n3 − 3n− 3,

J1,3[Q] = −w2K1,3[α]/J1,3

= (27n2 − 3n− 12)w5 + (14n3 + 12n2 − 11n− 5)w4

+ (14n3 + 18n2 − 2n− 8)w3 + (14n3 + 3n2 − 17n− 8)w2

+ (9n2 − 6n− 6)w + 14n3 + 15n2 − 17n− 2,

J1,4[Q] = −w3K1,4[α]/J1,4

= (−7n3 + n− 8)w4 + (−7n3 + n− 8)w2

+ (−7n3 + n− 8)w − 21n3 − 3n− 3,

J1,5[Q] = −w3K1,5[α]/J1,5

= (−14n3 − 3n2 + 5n− 1)w5 + (−14n3 + 15n2 + 8n− 7)w4

+ (−9n2 − 6n− 3)w3 + (−14n3 − 12n2 + 11n+ 5)w2

− 6n+ (6n2 + 9n− 3)w + 3n2 + 3.

For 1 ≤ i ≤ 5 write

Ju = J1,u[Q] =
6∑

k=0

du,kζ
k
p , with du,k ∈ Z[n] such that

6∑
k=0

du,k = 1.

Denote by A the matrix [du,k]1≤u≤5
0≤k≤6

. From the results above we obtain

At =


4−9n+3n2+6n3 1−3n−15n3 4−9n+3n2+6n3 1−3n−15n3 4−9n+3n2+6n3

−2+6n+6n2+6n3 −4+n−n3 2n−3n2−8n3 −4+n−n3 −2+6n+6n2+6n3

6+8n−12n2−8n3 −4+n−n3 −2−9n−9n2+6n3 −4+n−n3 6+8n−12n2−8n3

−2−9n−9n2+6n3 4+6n3 −2+6n+6n2+6n3 4+6n3 −2−9n−9n2+6n3

−6+5n+15n2−8n3 −4+n−n3 1−3n+6n3 −4+n−n3 −6+5n+15n2−8n3

2n−3n2−8n3 4+6n3 −6+5n+15n2−8n3 4+6n3 2n−3n2−8n3

1−3n+6n3 4+6n3 6+8n−12n2−8n3 4+6n3 1−3n+6n3

 .
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Formula (15) is, in the case m = p prime, equivalent to the following:

(i, j) = −1
p

(
δ0,i + δ0,j + δi,j − f − 1 +

p−2∑
u=1

du,i+ju

)
,

where f = (q − 1)/p (see, for example, [11], formula 7). Using this and (4), we
calculate the matrix C = [ci,j ]. We have

C =



X0 − f X1 − f X2 − f X3 − f X4 − f X5 − f X6 − f
X1 X6 X7 X8 X9 X10 X7

X2 X7 X5 X10 X11 X11 X8

X3 X8 X10 X4 X9 X11 X9

X4 X9 X11 X9 X3 X8 X10

X5 X10 X11 X11 X8 X2 X7

X6 X7 X8 X9 X10 X7 X1


,

where f = 56n6 + 14n4 + 23n3 + 2n2 − 5n+ 16 and

X0 = 8n6 + 2n4 + 5n3 − n2 + 4n,

X1 = 4 + 8n6 + 2n4 + 3n3 − n2 − 3n,

X2 = 8n6 + 2n4 + 5n3 + 5n2 − 2n+ 2,

X3 = 8n6 + 2n4 − n3 + 2n2 + n+ 2,

X4 = 8n6 + 2n4 + 5n3 − 4n2 − 2n+ 5,

X5 = 8n6 + 2n4 + 5n3 − n2 − 2n+ 2,

X6 = 8n6 + 2n4 + n3 + 2n2 − n,

X7 = 8n6 + 2n4 + 2n3 − n2 + n+ 3,

X8 = 8n6 + 2n4 + 6n3 − n2 − 3n+ 2,

X9 = 8n6 + 2n4 + 4n3 + 2n2 − n+ 1,

X10 = 8n6 + 2n4 + 5n3 + 2n2 + n+ 3,

X11 = 8n6 + 2n4 − n2 + 2.

Therefore, by (3), for all primes of the form

q = 392n6 + 98n4 + 161n3 + 14n2 − 35n+ 113,



JACOBI SUMS 1637

the irreducible polynomials of the Gaussian periods of degree 7 in Q(ζq) are

Pq(x) = det(xI − C) = x7 + x6 + (−168n6 − 42n4 − 69n3 − 6n2 + 15n− 48)x5

+ (−224n9 + 168n8 − 672n7 + 78n6 − 93n5

− 195n4 − 49n3 + 108n2 − 189n+ 37)x4

+ (6608n12 + 2856n11 + 28n10 + 6140n9

+ 1251n8 + 1395n7 + 3850n6 + 1635n5

+ 338n4 + 1271n3 − 57n2 + 443n+ 312)x3

+ (14784n15 + 12768n14 + 23856n13 + 8184n12

+ 8100n11 + 26226n10 + 4935n9 + 4377n8

+ 16176n7 + 1200n6 − 2373n5

+ 6063n4 + 792n3 − 501n2 + 573n− 12)x2

+ (−36736n18 + 41664n17 + 64176n16 − 122352n15

− 30492n14 + 16518n13 − 146848n12

− 50097n11 + 22722n10 − 82665n9 − 46842n8

+ 3279n7 − 29398n6 − 16158n5 + 1698n4

− 4317n3 − 4050n2 − 894n− 49)x

− 33664n21 + 146496n20 + 24640n19 − 276528n18

− 158904n17 − 275688n16 − 447508n15− 216771n14

− 185387n13 − 290411n12 − 179430n11− 127792n10

− 130448n9 − 65166n8 − 28901n7 − 26116n6

− 18399n5 − 9110n4 − 2993n3 − 519n2 − 39n− 1.

Example 6. Let m = 23, r1 = 47 and R1 = (1 + ζ2
23 − ζ3

23, 47) (a nonprincipal
prime ideal of Z[ζ23]; see, for example, [3], page 104). Set

A4 = {α = 1 + ζ2
23 − ζ3

23 + 47n : n ∈ Z and NQ(ζ23)/Q(α) = 47q, with q ∈ S},

and

I = {Q = (α)R−1
1 : α ∈ A4}.

With notation as in (18), put Ja,b = J1,a,b, and s1 = −2, which is a primitive root
modulo 47 such that s(47−1)/23

1 = (−2)2 ≡ ζ23 mod R1. Using the MAPLE program
at the end of Section 1, with m = 23, q = 47 and s = −2, we find that

J1,1 = 2− 2ζ2
23 + 2ζ8

23 − 2ζ9
23 + 2ζ12

23 + 2ζ13
23

+ 2ζ14
23 − 2ζ15

23 + 2ζ16
23 − 2ζ18

23 − 2ζ20
23 − ζ21

23 .

For α ∈ A4, let

K1,1[α] =
22∏
c=1

σ−1
c (α)[

2c
23 ].
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We can obtain the family of Jacobi sums J1,1[Q], Q ∈ I, using the formula

J1,1[Q] =
(
n+ 1

23

)
ζ−k23 K1,1[α]/J1,1 =

(
n+ 1

23

)
ζ−k23 K1,1[α]J1,1/47,

where (α) = R1Q, α ∈ A4,
(

23

)
is the Legendre symbol, and

k ≡ 11
(
n+ 1

23

)
(n+ 1)10 mod 23.

To prove this equality, check that the numbers on both sides generate the same
ideals in Z[ζ23], and that the right hand side is ≡ 1 mod (ζ23 − 1)2. We do not
write the expanded expression of J1,1[Q] in Z[ζ23, n], since it occupies more than
one page.

Proceeding in a similar way we can find all the families of Jacobi sums J1,1[Q], . . . ,
J1,21[Q], Q ∈ I. With these families we can construct, using (3), (4), and (15)
(or better [11], formulas (6) and (7), as in Example 4), the family of irreducible
polynomials Pq(x) ∈ Z[n, x], of Gaussian periods of degree 23, corresponding to the
primes of the form

q = q(n) = 130033429462229783044185156533092847n22

+ 60866711663171387807916456249532822n21

+ 13597882392836161106023889162129673n20

+ 1928777644373923561138140306685060n19

+ 194929655548428445008641839505405n18

+ 14930782127113668128321502600414n17

+ 900082610499760135395267887259n16

+ 43773014492389550657520626736n15

+ 1746389479019419656026933311n14

+ 57795967528053201788638220n13 + 1594119954503408569331187n12

+ 36397389727152969816873n11 + 666486961951621859180n10

+ 8874252237258368851n9 + 54335329669656750n8

− 992442355341030n7− 37699732250660n6− 646801716550n5

− 6475959625n4− 5641786n3 + 1224820n2 + 22033n+ 139.

These primes are norms of the prime ideals in I. Note that the prime ideals in
Q[ζ23] above primes of the form q(n) are not principal.

In the following program enter the values of m, an integer > 2, and F , a
polynomial function in z, with coefficients depending on one or more parameters
n1, . . . , nk, which, when z is replaced by ζm and the ni by integers, gives elements of
Z[ζm] that are either ≡ 1 mod m2, or ≡ 1 modulo a smaller divisor of m2, provided
that the resulting matrix C still has its entries in Z[n1, . . . , nk] (these entries are
always in Q[n1, . . . , nk]). The smallest such divisor of m2 for which the program
works is, likely, the conductor of the Hecke character defined in Weil’s article [14],
which we called f in the discussion above. The resulting value of q must be irre-
ducible in Z[n1, . . . , nk]. (With the help of a computer it is easy to check that in fact
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the matrix C = [ci,j ] satisfies the conditions of [12], Proposition 2, or, equivalently,
that the matrix H , whose entry in row a and column b is equal to the Jacobi sum
Ja,b when m - a+ b, satisfies the conditions of Propositions 2 and 3.) The resulting
polynomial P gives, for all values of the parameters such that q = q(n1, . . . , nk) is
a prime, the irreducible polynomials of the Gaussian periods of degree m in Q(ζq).

A MAPLE program to find families of irreducible polynomials of
Gaussian periods of degree m for arbitrary m > 2

with(numtheory): with(linalg):
m:=10; F:=z−>1+n∗10∗(z-zˆ (m-1));
R:=cyclotomic(m,z);
for i0 from 0 to m-1 do;
T[i0]:=modp(i0ˆ (phi(m)-1),m); od:
for i1 from 0 to m-1 do;
if igcd(i1,m)=1 then t[i1]:=1;
else t[i1]:=0; fi; od;
q:=rem(expand(product(F(zˆc)ˆ t[c],c=0..m-1)),R,z);
factor(q);
f:=(q-1)/m; A:=array(1..m-1,1..m-1,1..m):
for i2 from 1 to m-1 do;
for j2 from 1 to m-1 do;
for k2 from 1 to m do;
A[i2,j2,k2]:=(floor((i2+j2)∗(k2-1)/m)-floor(i2∗(k2-1)/m)- floor(j2∗(k2-1)/m))∗t[k2-1];
od: od: od: B:=array(1..m-1,1..m-1):
for i3 from 1 to m-1 do;
for j3 from 1 to m-1 do;
B[i3,j3]:=expand(product(F(zˆ (m-T[k3-1]))ˆ A[i3,j3,k3], k3=1..m),z); od: od:
H:=array(1..m-1,1..m-1):
for i4 from 1 to m-1 do;
for j4 from 1 to m-1 do;
H[i4,j4]:=sort(collect(rem(B[i4,j4],R,z),z)); od: od:
evalm(H);
Id:=array(identity,1..m,1..m):
C:=array(1..m,1..m):
for i5 from 1 to m do;
for j5 from 1 to m do;
C[i5,j5]:=rem(-f∗Id[1,i5]+(-1/mˆ 2)∗(m∗Id[1,i5]+m∗Id[1,j5]+m∗Id[i5,j5]-q-1+
sum(sum(zˆ ((m-i5+1)∗a+(m-j5+1)∗b)∗H[a,b],a=1..m-1), b=1..m-1)-
sum(zˆ ((m-i5+j5)∗l)∗H[l,m-l],l=1..m-1)),R,z); od: od:
evalm(C);

P:=sort(collect(charpoly(C,x),x),x);
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