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PROVING THE DETERMINISTIC PERIOD BREAKING
OF LINEAR CONGRUENTIAL GENERATORS

USING TWO TILE QUASICRYSTALS

LOUIS-SÉBASTIEN GUIMOND AND JIŘÍ PATERA

Abstract. We describe the design of a family of aperiodic PRNGs (APRNGs).
We show how a one-dimensional two tile cut and project quasicrystal (2TQC)
used in conjunction with LCGs in an APRNG generates an infinite aperiodic
pseudorandom sequence. In the suggested design, any 2TQC corresponding
to unitary quadratic Pisot number combined with either one or two different
LCGs can be used.

Introduction

For the past decade, a lot of efforts have been made to build statistically ro-
bust pseudorandom number generators (PRNGs) with huge period. Indeed, known
PRNGs are periodic and the requirements of today’s simulations and Monte Carlo
methods motivate the need for PRNGs with extremely large period.

APRNGs are a family of aperiodic PRNGs and were introduced in [3]. Their
novelty consists in using quasicrystals to combine several PRNGs. One-dimensional
two tile quasicrystals (2TQCs) are geometrically aperiodic infinite point sets on the
real line from which an aperiodic binary sequence can be generated. Unfortunately,
this binary sequence has bad statistics since, for instance, it has many more ones
than zeroes. In the suggested design, the aperiodic sequence is used to combine two
suitable chosen LCGs and form an infinite aperiodic sequence with good statistical
behaviour. Indeed, the aperiodic binary sequence is used to break the periodicity of
LCGs while LCGs are used to eliminate the nonuniformity of the binary sequence.
Implementation and statistical study of APRNGs are not treated here and may be
found in [4].

The prime motivation for this research was the use of quasicrystal generation in
cryptographic systems [6]. The design and study of the APRNG is a first step in
the building of such cryptographic systems.

The paper is organised as follows. In Section 1 we give some basic facts con-
cerning quasicrystals. In Section 2 we describe the suggested design of APRNGs
and we state the result from which follows the aperiodicity of a class of APRNGs.
Finally, the proofs of our results are given in Section 3. In conclusion, we address
some remarks concerning parallelisation and also suggest research avenues.

Received by the editor October 15, 1999 and, in revised form, March 14, 2000.
2000 Mathematics Subject Classification. Primary 65C10, 82D99; Secondary 68U99.
Key words and phrases. Aperiodic pseudorandom number generator, Monte Carlo method,

linear congruential generator, pseudorandom number generator, quasicrystal, simulation.
This work was supported by NSERC of Canada and FCAR of Québec.
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Figure 1. One-dimensional quasicrystal with β′ < 0.

1. Quasicrystals

Good introductions to the mathematics of quasicrystals can be found in [1, 2, 11]
while the web page [12] provides an introduction to the physics of quasicrystals.
This section is a brief summary of the first chapter of Jan Patera’s Diploma Thesis
[9] on quasicrystals and their computer generation.

In 1984, Schechtman et al. [10] discovered a metallic alloy of aluminium and
manganese which had an aperiodic crystalline configuration: the alloy consisted,
unlike crystals, in an aperiodic arrangement of atoms. Physicists later found that
there were many such alloys which arise from rapid cooling of melted metals. Even
though the diffraction patterns of these materials are not periodic in the stronger
sense [8], they have a common peculiar structure and are referred to as generalised
crystals, aperiodic crystals or quasicrystals in the literature.

To describe the structure of these diffraction patterns, several mathematical
models were introduced. In this paper we consider the cut and project scheme
model which is illustrated in Figure 1. We will only consider one-dimensional qua-
sicrystals1 obtained from a two-dimensional lattice even though the cut and project
scheme can be generalised to any finite-dimension lattices. Multidimensional qua-
sicrystals will be briefly discussed in the conclusion.

Geometrically, a quasicrystal is the projection of a set of points S0 from a two-
dimensional lattice (e.g., Z2) on a straight line L through the origin of irrational
slope β with respect to the orientation of the lattice. The results we obtain in
this paper are valid when β is a unitary quadratic Pisot number, i.e., when there
exists a pair (m,n) ∈ Z × {−1, 1} such that x2 = mx + n has two real solutions
the greater of which is β. If β′ is the second solution2 of x2 = mx + n, then
0 < |β′| < 1 < β = m− β′.

1Unless specified otherwise, throughout the paper we refer to quasicrystals as cut and project
quasicrystals.

2The solutions β and β′ are said to be the algebraic conjugates.
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The set S0 is defined as follows. Let L′ be the line of slope β′ passing through
the origin; let Ω = [c, d) be a segment of L′. S0 is the set of points of the lattice
included in the strip Ω×L (see Figure 1). For a given β (or equivalently a given line
L), Ω is called the acceptance window of the quasicrystal Σ(β,Ω). The algebraic
descriptions of the sets S0 and Σ(β,Ω) are the following:

S0 =
{
X = (a, b) ∈ Z2

∣∣ a+ bβ′ ∈ Ω
}

and

Σ(β,Ω) =
{
a+ bβ

∣∣ (a, b) ∈ Z2 and a+ bβ′ ∈ Ω
}
.

Let us introduce the following notation:

Z[β] =
{
a+ bβ

∣∣ a, b ∈ Z},
and, if x = a+ bβ ∈ Z[β],

g(x) = a+ bβ′.

g(x) is called the Galois conjugate3 of x and is noted g(x) = x′.

Proposition 1.1 ([1]). Let Σ(β,Ω) be a quasicrystal. Σ(β,Ω) has the following
properties:

1. Shifting property: Σ(β,Ω + λ′) = Σ(β,Ω) + λ, for any λ ∈ Z[β];
2. Scaling property: Σ(β, βiΩ) = (β′)iΣ(β,Ω), for any i ∈ Z.

Corollary 1.2. Let Σ(β,Ω) be a quasicrystal. Up to shifting and scaling, we can
assume 0 ∈ Ω = [c, d) with 1 ≤ d− c < β, c, d ∈ R.

(Note: in cases where n = 1, the scalings for odd i not only scale the quasicrystal
but also flip the direction of the quasicrystal.)

Proposition 1.3 ([7]). Let β a unitary quadratic Pisot number associated to
(m,n), and Σ(β,Ω) a quasicrystal with Ω = [c, d), 1 ≤ d − c < β. Generically,
there exist three possible distances between any two adjacent points in Σ(β,Ω).
These distances are 1, L(β) − 1 and L(β). When n = 1 (resp. n = −1), there
exist m (resp. m− 1) limit cases with only two possible distances.

The expression of L(β) is given in [7] (and stated below) along with the limit
cases conditions: d− c = 1 and d− c = β − j for j = 1, 2, · · · ,m− 1 when n = 1,
and j = 1, 2, · · · ,m− 2 when n = −1. The two possible distances in the limit cases
are given below in Corollary 1.7.

Let us use the following notation: Σ(β,Ω) = {xi}i∈Z (Σ(β,Ω) is a countable
ordered point set). The distances between adjacent points in a quasicrystal are
often referred to as tiles. Indeed, if S(β) < M(β) < L(β) are the ordered distances,
the set

{
[xi, xi+1)

}+∞
i=−∞ defines a covering of the real line having three types of

tiles noted S, M and L (for Short, Medium and Long) of length S(β), M(β) and
L(β) respectively.

Definition 1.4. Quasicrystals for which there exist exactly three tile types are
called three tile quasicrystals while the other ones are called two tile quasicrystals
(2TQCs).

3 Q[β] is a Galois extension of the field Q and g(·) is an automorphism of Q[β] mapping β
(resp. β′) to its algebraic conjugate β′ (resp. β). For more details see, for instance, [5].
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Let, when n = 1,

φj(β) =

{
β − j for j = 0, 1, · · · ,m− 1,
1 for j = m

and, when n = −1,

φj(β) =

{
β − j + 1 for j = 1, 2, · · · ,m− 1,
1 for j = m.

Then φj+1(β) < φj(β) and⋃
j<m

[
φj+1(β), φj(β)

)
= [1, β).

Each φj(β) corresponds to one of the limit cases conditions referred to in Proposi-
tion 1.3, except for φ0(β) when n = 1 and φ1(β) when n = −1.

Definition 1.5. We say that a quasicrystal is of type I if d−c ∈
[
φm(β), φm−1(β)

)
=
[
1, φm−1(β)

)
. Otherwise, we say it is of type II.

Proposition 1.6. Let c, d ∈ R, 1 ≤ d − c < β. Define Σ1, ΣL−1 and ΣL as the
following sets:

Σ1 =
{
xi ∈ Σ(β,Ω) | xi+1 − xi = 1

}
,

ΣL−1 =
{
xi ∈ Σ(β,Ω) | xi+1 − xi = L(β)− 1

}
,

ΣL =
{
xi ∈ Σ(β,Ω) | xi+1 − xi = L(β)

}
.

If d− c is such that φj+1(β) ≤ d− c < φj(β), the following equalities hold:

Σ1 =
{
x ∈ Z[β] | x′ ∈ Ω1 =

[
c, d− 1

)}
,

ΣL−1 =
{
x ∈ Z[β] | x′ ∈ ΩL−1 =

[
c+ 1− L′(β), d

)}
,

ΣL =
{
x ∈ Z[β] | x′ ∈ ΩL =

[
d− 1, c+ 1− L′(β)

)}
.

Proof. From the remark preceding Proposition 1.6, there exists a unique j such
that φj+1(β) ≤ d − c < φj(β). Moreover, L′(β) = 2 − φj(β) (follows from [7,
Propositions 3.4 and 3.5]).

Let S(β) < M(β) < L(β) be the three ordered tile lengths.4 The generation of
point xi+1 ∈ Σ(β,Ω), the right neighbour of xi ∈ Σ(β,Ω), can be done as follows:

Step 1: If x′i + S′(β) ∈ Ω, then xi+1 = xi + S(β).
Step 2: If x′i + S′(β) 6∈ Ω and x′i +M ′(β) ∈ Ω, then xi+1 = xi +M(β).
Step 3: Otherwise, xi+1 = xi + L(β).

We need only consider the following cases.
I. Let xi ∈ Σ1; then

c ≤ x′i = x′i+1 − 1 < d− 1,

i.e., x′i ∈
[
c, d− 1

)
.

Conversely, let x′i ∈
[
c, d− 1

)
; then

x′i + 1 ∈
[
c+ 1, d

)
⊆ Ω

4If n = −1 and j = 1, S(β) = L(β) − 1, M(β) = 1; otherwise S(β) = 1 and M(β) = L(β) − 1
(see [7, Propositions 3.4 and 3.5]).
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and xi ∈ Σ1. Indeed, either S(β) = 1 in which case the result follows from
step 1, or j = 1 = −n, S(β) = L(β)− 1 and

x′i + S′(β) = x′i + L′(β)− 1 < d− 2 + L′(β) = d− φ1(β) < d+ c− d = c,

i.e., x′i + S′(β) 6∈ Ω and the result follows from step 2.
II. Let xi ∈ ΣL−1; then

c+ 1− L′(β) ≤ x′i = x′i+1 + 1− L′(β) < d,

i.e., x′i ∈
[
c+ 1− L′(β), d

)
.

Conversely, let x′i ∈
[
c+ 1− L′(β), d

)
; then

x′i − 1 + L′(β) ∈
[
c, d− 1 + L′(β)

)
and xi ∈ ΣL−1. Indeed, either S(β) = L(β) − 1, in which case the result
follows from step 1, or S(β) = 1 and

x′i + 1 ≥ c+ 2− L′(β) = c+ φj(β) > c+ d− c = d,

i.e., x′i + 1 6∈ Ω and the result follows from step 2.

Corollary 1.7. Let Σ(β,Ω) be a 2TQC.
1. If Σ(β,Ω) is of type I, then Σ1 = ∅: the possible tile lengths are L(β)−1 and
L(β).

2. If Σ(β,Ω) is of type II, then ΣL−1 = ∅: the possible tile lengths are 1 and
L(β).

Definition 1.8. Let Σ(β,Ω) be a quasicrystal such that 1 ≤ d − c < β. The
stepping function f : Ω → Ω is a function such that, for all i ∈ Z, if xi ∈ Σ(β,Ω),
then x′i+1 = f(x′i).

The function f is called the “stepping function” since it walks (in the acceptance
window Ω) from the Galois conjugate x′i of a quasicrystal point xi to the Galois
conjugate x′i+1 of the adjacent quasicrystal point to the right of xi (see Figure 2).

Corollary 1.9. Let Σ(β,Ω) be a quasicrystal such that 1 ≤ d − c < β. Then the
stepping function f : Ω→ Ω is given by

f(x′) :=


x′ + 1 for x′ ∈ Ω1,

x′ + L′(β) − 1 for x′ ∈ ΩL−1,

x′ + L′(β) for x′ ∈ ΩL.
(1.1)

Figure 2. Stepping function f for a two tile quasicrystal Σ(β,Ω)
of type I.
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2. Design of APRNGs

We describe the present design of APRNGs based on one 2TQC and two LCGs.
The aperiodicity of the generated sequence is stated in Theorem 2.1 which is proven
in Section 3.

The construction of the aperiodic sequence {ni}∞i=0 of pseudorandom numbers
in [0, 1) uses an aperiodic binary sequence S(β,Ω) (obtained from a subset of the
2TQC Σ(β,Ω)) to combine two (possibly identical) LCGs, LCG1 and LCG2.
• Let Σ(β,Ω) be a two tile quasicrystal with tile lengths O(β) and L(β).5 The

aperiodic binary sequence S(β,Ω) is constructed from the tiling generated by
Σ(β,Ω) on the right of a seed point x0:

S(β,Ω) =
{
si
}∞
i=0

,(2.1)

where the elements si are defined, for i ≥ 0, by the recursive relation:

si =

{
0 if xi+1 − xi = O(β),
1 if xi+1 − xi = L(β),

with xi+1 the right neighbour of xi in Σ(β,Ω).
• For j = 1, 2, let (aj , cj ,mj , k

(j)
0 ) be the parameters of LCGj , where aj is the

multiplier, cj the increment, mj the modulus and k
(j)
0 the seed point. Let

K(j) be the set of positive integers generated by LCGj :

K(j) =
{
k

(j)
i

}∞
i=0

,

where the elements k(j)
i are defined by the recursive relation:

k
(j)
i = ajk

(j)
i−1 + cj (mod mj) i ≥ 1.

The incrementation of the LCGs is done in the following way. Using the binary
sequence S(β,Ω) and starting at i = 0, the state of LCG1 (resp. LCG2) is incre-
mented by one at step i if si = 1 (resp. si = 0). Therefore, the state of LCGj
is given, at any level ` in S(β,Ω), by the number of 1’s that occur in the finite
sequence {si}`i=0. This number is denoted ρ`(β,Ω):

ρ`(β,Ω) =
∣∣{si ∈ S(β,Ω) | i = 0, 1, · · · , ` and si = 1}

∣∣.
The pseudorandom numbers ni ∈ [0, 1) are defined as follows (see Figure 3):

ni =


k

(1)
ρi

m1
if si = 1,

k
(2)
i−ρi
m2

if si = 0.

(2.2)

Figure 3. The structure of an APRNG.

The following results are valid when the LCG moduli are bigger than 1 and the
other parameters are such that the LCGs generate at least two distinct values.

5The value of O(β) is L(β) − 1 if Σ(β,Ω) is of type I and 1 otherwise.
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Theorem 2.1. Let Σ(β,Ω) be a two tile quasicrystal (i.e., with d − c = φj+1(β)
for some j = 0, 1, · · · ,m − 1), S(β,Ω) a binary sequence constructed as described
in equation (2.1), and the sequence {ni}∞i=0 with ni defined as in (2.2). For any
given i, P ∈ N>0, there exists N ∈ N>0 such that

ni+NP 6= ni+(N−1)P .

Corollary 2.2. The sequence {ni}∞i=0 is aperiodic in the strongest sense: it has no
periodic subset. This property is independent of the seed point x0 from which the
binary sequence is generated.

3. Proof of Theorem 2.1

The proof of Theorem 2.1 is done in two main steps: we first prove that the
sequence S(β,Ω) is aperiodic in the strongest sense (Proposition 3.1), and then we
show that some specific patterns must occur if the sequence {ni}∞i=0 has a periodic
subset (Proposition 3.2). These specific patterns occur if and only if the sequence
S(β,Ω) has a periodic subset, and therefore the result in Theorem 2.1 follows from
a contradiction.

Assume the following two propositions hold (the proofs are given below in Sec-
tions 3.1 and 3.2 respectively).

Proposition 3.1. For any si in S(β,Ω) and P ∈ N>0, there exists J ∈ N such
that si 6= si+JP : S(β,Ω) has no periodic subset.

Proposition 3.2. Let P ∈ N>0. Under the hypothesis of Theorem 2.1, if there
exist integers i0 and P such that ni0+kP = ni0 for all k ∈ N, then both the patterns
00 and 11 occur in the sequence {si0+kP }∞k=0. Moreover, there exist only two possible
distances D1 and D2 (D′1 < 0 < D′2) between any two quasicrystal points xi+(k+1)P

and xi+kP , where k is any positive integer:

xi+(n+1)P − xi+nP =

{
D1 if xi+(n+1)P ∈ ΣL,
D2 if xi+(n+1)P ∈ ΣL−1

(3.1)

if Σ(β,Ω) is of type I; otherwise

xi+(n+1)P − xi+nP =

{
D1 if xi+(n+1)P ∈ Σ1,

D2 if xi+(n+1)P ∈ ΣL.
(3.2)

Proof of Theorem 2.1. The proof is obtained by contradiction. Let i0 and P be
positive integers such that ni0+kP = ni0 for all k ∈ N.

From Proposition 3.2, there exist k1, k2, n1, n2 ∈ N with k2, n2 ≥ 2 such that

si0+k1P = si0+(k1+k2+1)P = si0+(n1+n)P = 0 for n = 1, 2, · · · , n2;
si0+n1P = si0+(n1+n2+1)P = si0+(k1+k)P = 1 for k = 1, 2, · · · , k2.

In other words, patterns 0 1 · · · 1︸ ︷︷ ︸
k2 ones

0 and 1 0 · · · 0︸ ︷︷ ︸
n2 zeroes

1 occur.

1. Let Σ(β,Ω) be of type I. From equation (3.1), 0 1 · · · 1︸ ︷︷ ︸
k2 ones

0 occurs and

x′i0+k1P
≥ c+ L′(β)− 1, x′i0+k1P

+ k2D
′
1 +D′2 ≥ c+ L′(β) − 1, and

x′i0+k1P
+ kD′1 < c+ L′(β) − 1 for all 1 ≤ k ≤ k2,

(3.3)
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and also, since 1 0 · · · 0︸ ︷︷ ︸
n2 zeroes

1 occurs we have

x′i0+n1P
< c+ L′(β) − 1, x′i0+n1P

+ n2D
′
2 +D′1 < c+ L′(β) − 1, and

x′i0+n1P
+ nD′2 ≥ c+ L′(β)− 1 for all 1 ≤ n ≤ n2.

(3.4)

This is a contradiction since from equation (3.3) D′2 > −(k2 − 1)D′1 ≥ −D′1,
and from equation (3.4) −D′1 > (n2 − 1)D′2 ≥ D′2.

2. Let Σ(β,Ω) be of type II. From equation (3.2), 1 0 · · · 0︸ ︷︷ ︸
n2 zeroes

1 occurs and

x′i0+k1P
< d− 1, x′i0+k1P

+ k2D
′
2 +D′1 < d− 1, and

x′i0+k1P
+ kD′2 ≥ d− 1 for all 1 ≤ k ≤ k2,

(3.5)

and also since 0 1 · · · 1︸ ︷︷ ︸
k2 ones

0 occurs we have

x′i0+n1P
≥ d− 1, x′i0+n1P

+ n2D
′
1 +D′2 ≥ d− 1, and

x′i0+n1P
+ nD′1 < d− 1 for all 1 ≤ n ≤ n2.

(3.6)

This again is a contradiction since from equation (3.5) −D′1 > (k2 − 1)D′2 ≥
D′2, and from equation (3.6) D′2 > −(n2 − 1)D′1 ≥ −D′1.

3.1. Proof of Proposition 3.1. The proof follows from the next 4 lemmas. The
three first lemmas are used to prove that for any nth-iterate of the stepping function
f , there exists a positive integer k

(
resp. k

)
such that f (kn)

(
resp. f (kn)

)
is strictly

increasing (resp. decreasing) on [c, c+ g1)
(
resp. [c+ g1, d)

)
; see Lemma 3.6.

Lemma 3.3. Let Σ(β,Ω) be a 2TQC with stepping function f . If n ∈ N, then

f (n)(x′) =

{
x′ + gn if x′ ∈

[
c, c+ gn

)
,

x′ − gn if x′ ∈
[
c+ gn, d

)
,

(3.7)

with c+ gn = d− gn, gn and gn are positive constants which depend on β.

Proof. The proof is done by induction on n. Let the stepping function f

f(x′) :=

{
x′ + g1 for x′ ∈

[
c, c+ g1

)
,

x′ − g1 for x′ ∈
[
c+ g1, d

)
,

where g1 and g1 are positive constants which depend on β. We have that c+ g1 =
d − g1 . Indeed, either Σ(β,Ω) is of type I (c ≤ 0, d = c + 1 > 0) and from
equation (1.1)

f(x′) :=

{
x′ + L′(β) for x′ ∈

[
c, c+ 1− L′(β)

)
,

x′ + L′(β)− 1 for x′ ∈
[
c+ 1− L′(β), c+ 1

)
,

(3.8)

either Σ(β,Ω) is of type II and from equation (1.1)

f(x′) :=

{
x′ + 1 for x′ ∈ [c, d− 1),
x′ + L′(β) for x′ ∈ [d− 1, d),

(3.9)

i.e., g1 = 1 and −g1 = L′(β) = 2− φi(β) = 1− d+ c and

c+ g1 = d− 1 = d− g1.
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Assume equation (3.7) holds for n = N . Then

f (N)
(
[c, c+ gN )

)
= [c+ gN , d),

f (N)
(
[c+ gN , d)

)
= [c, d− gN) = [c, c+ gN).

Indeed, we have the following two cases.
• If g1 < gN , then c+ g1 < c+ gN and thus [c+ gN , d) ⊂ [c+ g1, d) and

f (N+1)(x′) =


x′ + gN − g1, x′ ∈ [c, c+ gN ),
x′ − gN + g1, x′ ∈ [c+ gN , c+ gN + g1),
x′ − gN − g1, x′ ∈ [c+ gN + g1, d),

(3.10)

where g1−gN = d−c−g1−(d−c−gN) = gN −g1 > 0. Thus gN+1 = gN −g1

and gN+1 = gN + g1.
• If g1 > gN , then c+ g1 > c+ gN and thus [c, c+ gN ) ⊂ [c, c+ g1) and

f (N+1)(x′) =


x′ + gN + g1, x′ ∈ [c, c+ g1 − gN ),
x′ + gN − g1, x′ ∈ [c+ g1 − gN , c+ gN ),
x′ − gN + g1, x′ ∈ [c+ gN , d).

(3.11)

Thus gN+1 = gN + g1 and gN+1 = g1 − gN .
Note that for any positive integer N , g1 6= gN . Indeed, from equations (3.9) and
(3.8), g1 6= g1, and since L′(β) is irrational, k1g1−k2g1 = g1 with ki ∈ Z if and only
if k1 = 0, k2 = −1. Moreover, from the previous arguments, there exist two positive
integers αN > 0 and αN such that gN = αNg1 − αNg1; therefore gN 6= g1.

Lemma 3.4. Let Σ(β,Ω) be a 2TQC with stepping function f and n ∈ N. Then
for any k ∈ N:

1. If gkn < gn,

f ((k+1)n)(x′) =

{
x′ + gkn + gn if x′ ∈ [c, c+ gn − gkn),
x′ + gkn − gn if x′ ∈ [c+ gn − gkn, d);

(3.12)

2. If gkn > gn,

f ((k+1)n)(x′) =

{
x′ + gkn − gn if x′ ∈ [c, c+ gkn + gn),
x′ − (gkn + gn) if x′ ∈ [c+ gkn + gn, d).

(3.13)

Proof. The proof is a simple generalisation of equations (3.10) and (3.11) in the
proof of Lemma 3.3.

1. Case gkn < gn. From Lemma 3.3,

f ((k+1)n)(x′) =

{
f (kn)(x′) + gn if f (kn)(x′) ∈

[
c, c+ gn

)
,

f (kn)(x′)− gn if f (kn)(x′) ∈
[
c+ gn, d

)
=


f (kn)(x′) + gn if x′ ∈ [c+ gkn, d),
f (kn)(x′) + gn if x′ ∈ [c, c+ gkn − gn),
f (kn)(x′)− gn if x′ ∈∈ [c+ gkn − gn, c+ gkn)

=


x′ − gkn + gn if x′ ∈ [c+ gkn, d),
x′ + gkn + gn if x′ ∈ [c, c+ gkn − gn),
x′ + gkn − gn if x′ ∈ [c+ gkn − gn, c+ gkn).
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Equation (3.12) follows using d − c = gkn + gkn = gn + gn, i.e., gkn − gn =
gn − gkn.

2. Case gkn > gn. From Lemma 3.3

f ((k+1)n)(x′) =


f (kn)(x′) + gn if x′ ∈ [c+ gkn, c+ gkn + gn),
f (kn)(x′)− gn if x′ ∈ [c+ gkn + gn, d),
f (kn)(x′)− gn if x′ ∈ [c, c+ gkn)

=


x′ − gkn + gn if x′ ∈ [c+ gkn, c+ gkn + gn),
x′ − gkn − gn if x′ ∈ [c+ gkn + gn, d),
x′ + gkn − gn if x′ ∈ [c, c+ gkn).

Again the result follows using d− c = gkn + gkn = gn + gn.

Lemma 3.5. For all positive integers n, there exist two positive integers k and k
such that

0 < gkn ≤ g1 ≤ gkn < d− c.

Proof. We show that if gn < g1, then there exists K ∈ N such that gKn ≥ g1. (The
converse statement is proven similarly.)

Let gkn < g1 for all k ∈ N; then gkn < g1 for all k ∈ N. Indeed, if there exists k
such that gkn ≥ g1 > gkn, then there exists j ∈ N such that

(j + 1)gkn ≥ gkn > jgkn,

and using Lemma 3.4 j times (k → 1, n→ kn in Lemma 3.4),

gjkn = gkn − (j − 1)gkn,

g(j+1)kn = (j + 1)gkn ≥ gkn > g1, g(j+1)kn = gkn − jgkn.
Moreover, gkn−j < g1 for all j ≤ k, i.e., gN < g1 for all N ∈ N. Indeed, let

k, j ∈ N and such that j is the smallest number (if it exists) such that gkn−j−1 > g1;
then by Lemma 3.4

gkn−j = gkn−j−1 + g1 > g1

which contradicts the fact that j is the smallest such number.
Finally, if gN < g1 for all N ∈ N, then from Lemma 3.4

gj = jg1(3.14)

for all j ∈ N. This is again a contradiction since gj ≤ d − c. It follows that there
exists K ∈ N such that gKn ≥ g1.

Lemma 3.4 follows by setting k = 1 and k = K.
(In the proof of the converse statement, equation (3.14) becomes gj = jg1.)

Lemma 3.6. Let Σ(β,Ω) be a two tile quasicrystal with tile lengths O(β) and L(β);
let f be its stepping function. For each n ∈ N, there exist two positive integers k
and k such that

f (kn)(x′) = x′ + gkn, x′ ∈
[
c, c+ g1

)
,

f (kn)(x′) = x′ − gkn, x′ ∈
[
c+ g1, d

)
,

with either k = 1 or k = 1, and gkn and gkn are positive constants which depend
on β with gkn + gkn = d− c.



PROVING THE PERIOD BREAKING OF LCGS USING 2TQCS 329

Proof. Consider equation (3.7) of Lemma 3.3. From Lemma 3.5, there exists a
positive integer k such that

f (kn)(x′) = x+ gkn for x ∈
[
c, c+ g1

)
⊂
[
c, c+ gkn

)
.

Similarly, from Lemma 3.5, there exists a positive integer k such that

f (kn)(x′) = x− gkn for x ∈
[
c+ g1, d

)
⊂ [c+ gkn, d).

Proof of Proposition 3.1. We show that Ω cannot be bounded if f (kn)
(
resp. f (kn)

)
is strictly increasing (resp. decreasing).

Assume si = 0, i.e. x′i ∈ ΩO. From Lemma 3.5, there exists k such that

f (kP )(x′) = x′ ± gkP .
Let P be such that si+kP = 0 for all k ∈ N and consider the sequence {yj}∞j=0 with

yj = f (jkP )(x′i).

If P > 0, then for a sufficiently large J

|yJ − y0| = |x′JkP+i − x′i| = JgkP ≥ d− c.
This is a contradiction; therefore P = 0.

Similarly, if x′i ∈ ΩL, one obtains that if P > 0, then for sufficiently large J

|y0 − yJ | = JgkP ≥ d− c.

3.2. Proof of Proposition 3.2. This proof follows from the next lemma. We use
the notation

xi0+kP = LkPL(β) +OkPO(β) + xi0 .(3.15)

Lemma 3.7. Let P ∈ N>0. Under the hypothesis of Theorem 2.1, there exist two
possible distances D1 and D2 (D′1 < 0 < D′2) between any two quasicrystal points
xi0+kP and xi0+(k+1)P , where k is any positive integer.

Proof. Let d − c = φj+1(β) and xi0+(k+1)P − xi0+kP = lkPL(β) + okPO(β) with
P = lkP + okP . There exists j with 0 ≤ j ≤ m− 1 and such that

0 < |x′i0+(k+1)P − x′i0+kP | =
∣∣lkPL′(β) + okPO

′(β)
∣∣ < φj+1(β).

Therefore,

− φj+1(β) < lkPL
′(β) + okPO

′(β) < φj+1(β)

=⇒ −φj+1(β)− PO′(β) < lkP
(
L′(β)−O′(β)

)
< φj+1(β) − PO′(β)

=⇒ PO′(β)
φj+1(β)

− 1 < lkP
O′(β) − L′(β)

φj+1(β)
< 1 +

PO′(β)
φj+1(β)

.(3.16)

Since L′(β) = 2− φj(β), when O(β) = 1, then j = m− i and

L′(β) −O′(β) + φj+1(β) = 0,

and when j = m− 1, then L′(β) = O′(β) + 1 and

L′(β) −O′(β)− φm(β) = 0.
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In all cases |L′(β)−O′(β)| = φj+1(β), and equation (3.16) has two integer solutions
La(β) and Lb(β) = La(β) + 1. To insure D′1 < 0, let(

L1(β), L2(β)
)

=

{(
La(β), Lb(β)

)
if j = m− 1,(

Lb(β), La(β)
)

if j 6= m− 1.

The possible distances are then

D1 = L1(β)L(β) +
(
P − L1(β)

)
O(β),

D2 = L2(β)L(β) +
(
P − L2(β)

)
O(β),

with D′1 < 0 < D′2.

Proof of Proposition 3.2. The proof is made by contradiction. The set {si0si0+P }
is not periodic (from Proposition 3.1); thus there exists k1 such that

{si0+k1P si0+(k1+1)P }
is either {11} or {00}.

1. Let Σ(β,Ω) be of type I. If {11} occurs, then L(k1+1)P = Lk1P + L1(β) and
since ni0 = ni0+kP , then L1(β) = 0 (mod m1). Similarly, if {00} occurs, then
P − L2(β) = 0 (mod m2).
Consider the case where {11} occurs and {00} never occurs. For any k1 such
that si0+k1P = 0, then si0+(k1±1)P = 1. Thus using notation (3.15)

L(k1+1)P = L(k1−1)P + L2(β) + L1(β) (mod m1)(3.17)

= L2(β) (mod m1)

= 0 (mod m1).

This is a contradiction since L2(β) = L1(β) + 1 = 1 (mod m1) (we assume
mi > 1); therefore {00} occurs.
Moreover, let xi0+(k+1)P ∈ ΣL and xi0+(k+1)P − xi0+kP = D2. Since D′2 > 0,
xi0+kP ∈ ΣL. Again, since ni0 = ni0+kP , then

L(k+1)P = LkP + L2(β) (mod m1)

= 0 (mod m1).

This is the same contradiction as above and the result follows.
Similarly, if {00} occurs and {11} never occurs, we obtain that P − L1(β) =
0 (mod m2) and therefore {11} occurs. Moreover, if xi0+(k+1)P ∈ Σ1 and
xi0+(k+1)P − xi0+kP = D1, since D′1 < 0, xi0+kP ∈ ΣL−1 and we must have
P − L2(β) = 0 (mod m2) which is a contradiction and from which the result
follows.

2. Let Σ(β,Ω) be of type II. The argument follows as in the previous case
interchanging 00 with 11 and L2(β) with L1(β).

Conclusion

We showed how two tile quasicrystals can be used with two LCGs to produce
aperiodic PRNGs. Any pair of LCGs can be used to produce an APRNG (provided
the modulus is greater than 1). However the choice of LCGs influences the statistics
of the APRNGs: for example, choosing the two LCGs having bad statistical prop-
erties would produce an APRNG with “bad” statistical properties (the dependency
of the statistical properties of the APRNG on the choice of the LCGs is treated in
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[4]). The actual design of the APRNG could be easily modified to combine any two
periodic PRNGs. Less trivial modifications can also be performed: for instance,
the combination of more than two PRNGs (see [3]).

The results we have obtained are given for 2TQCs defined by unitary quadratic
Pisot numbers. It is believed by the authors that three tile quasicrystals (3TQCs)
defined by unitary quadratic Pisot numbers can be used as well to break the pe-
riodicity of PRNGs, but the proofs presented here do not easily generalise to such
quasicrystals. Indeed, the number of discontinuities of the iterates fN (x) of the
stepping function f(x) can become very large as each iteration can introduce as
many as two additional discontinuities. Therefore the function fN cannot be writ-
ten in a form as nice as equation (3.7). The proof of the result for 3TQCs requires
a different approach, and the authors are presently working on this problem. The
use of 3TQCs may not offer great improvements on the statistics of APRNGs,
but it could improve their cryptographic security. Z. Masáková, J. Patera and E.
Pelantová are presently working on the properties of quasicrystals defined by irra-
tionalities of higher degree. It is also believed by the authors that such quasicrystals
could be used to construct APRNGs.

As mentioned in [3], the quasicrystal generation can be made much faster using
parallelism since any quasicrystal can be generated simultaneously from several
(many) seed points. The APRNG is then easily amenable to parallelism generation
if the state of each LCG at all seed points is given.

The APRNG design is also amenable to multidimensional PRNGs construction.
Indeed, as mentioned in Section 1, the cut and project quasicrystal model can
be generalised to any finite dimension N thus generating N -dimensional aperiodic
point sets. Generalising the design of APRNGs using these multidimensional point
sets gives multidimensional PRNGs. Even though the generalisation of the design
is simple, obtaining the properties of these multidimensional PRNGs is a very hard
task since virtually nothing is known about the properties of N -dimensional cut
and project quasicrystals.
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