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SOME COMPUTATIONS
ON THE SPECTRA OF PISOT AND SALEM NUMBERS

PETER BORWEIN AND KEVIN G. HARE

Abstract. Properties of Pisot numbers have long been of interest. One line
of questioning, initiated by Erdős, Joó and Komornik in 1990, is the determi-
nation of l(q) for Pisot numbers q, where

l(q) = inf(|y| : y = ε0 + ε1q
1 + · · ·+ εnq

n, εi ∈ {±1, 0}, y 6= 0).

Although the quantity l(q) is known for some Pisot numbers q, there has been
no general method for computing l(q). This paper gives such an algorithm.
With this algorithm, some properties of l(q) and its generalizations are inves-
tigated.

A related question concerns the analogy of l(q), denoted a(q), where the
coefficients are restricted to ±1; in particular, for which non-Pisot numbers
is a(q) nonzero? This paper finds an infinite class of Salem numbers where
a(q) 6= 0.

1. Introduction

We begin by recalling the definition of a Pisot number:

Definition 1. A Pisot number is a positive real algebraic integer, all of whose
conjugates are of modulus strictly less than 1. A Pisot polynomial is the minimal
polynomial of a Pisot number.

The main question we address is what happens when particular classes of poly-
nomials with restricted coefficients are evaluated at a real number. More formally:

Definition 2. Let S be a finite set of integers and q a real number. Define the
spectrum of q with respect to S as

ΛS(q) := {ε0 + ε1q
1 + · · ·+ εnq

n : εi ∈ S}.
For convenience let Λm(q) := Λ{−m,−m+1,... ,m−1,m}(q), Λ(q) := Λ1(q), and A(q) :=
Λ{±1}(q).

One issue with respect to these spectra is to find the the minimal nonzero value.

Definition 3. Define

lS(q) := inf(|y| : y ∈ ΛS(q), y 6= 0),

and let lm(q) := l{−m,−m+1,... ,m−1,m}(q), l(q) := l1(q) and a(q) := l{±1}(q).
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Here and throughout q ∈ (1, 2), which is the only domain of interest for such
questions.

A spectrum Λ is discrete if, for any finite interval [a, b] of the real line, Λ ∩ [a, b]
has only a finite number of elements. A spectrum is uniformly discrete if there
exists an ε greater than zero such that for any two distinct values in the spectrum,
these values are at least ε apart. Similarly, a spectrum is nonuniformly discrete if
it is discrete, but it is not uniformly discrete.

It is clear that A(q) ⊂ Λ(q), so a number of the results known for Λ(q) follow
for A(q). Results known for A(q) specifically are due to Peres and Solomyak [18].
They show that A(q) is dense in R for a.e. q ∈ (

√
2, 2). Further, if q ∈ (1,

√
2) and

q2 is not the root of a height 1 polynomial, then A(q) is dense. Also if q is a Pisot
number, then A(q) is uniformly discrete.

This paper answers some questions concerningA(q). It gives necessary conditions
for A(q) to be discrete. As well it gives some examples of q that are not Pisot, but
where the A(q) are discrete. The existence of such a q is somewhat surprising,
because Λ(q) is thought to be discrete if and only if q is Pisot. Further, until now
the only known examples for A(q) being discrete were for Pisot numbers.

If q is a Pisot number, then much is known about lm(q). In general lm(q) is known
to be strictly positive for all Pisot numbers q and for all m [3, 8]. Specifically,

l(q) ≥ (1 + q)−1q(log(d−1) log(1+q) log(1−Q))/ log(Q) > 0,

where d is the degree of the minimal polynomial satisfied by q, and Q the modulus
of q’s largest conjugate [10]. For general m, it is known that

lm(q) ≥ (1− |q2|) · · · (1− |qn|)
mn−1

> 0,

where q2, . . . , qn are the conjugates of q [3, 11]. The stronger result that lm(q) > 0
for all m if and only if q is Pisot is given in [3]. An even stronger result, shown in
[6] on a more restricted set, is that if q < 1+

√
5

2 , then l2(q) > 0 if and only if q is
Pisot. However it is still unknown if there exists a q ∈ (1, 2) that is not Pisot with
l(q) > 0.

When q is not a Pisot number, then the following results are known. If q does
not satisfy a polynomial of height 1, then l(q) = 0 by a pigeonhole argument [3, 10].
Some other results of Erdős and Komornik [8] include:

1. If q is not Pisot and m ≥ q−q−1, then Λm(q) has a finite accumulation point.
2. If q is not Pisot, then lm(q) = 0 for all m ≥ dq − q−1e+ dq − 1e.
3. If 1 < q ≤ 21/4 and if q2 is not the first or second Pisot number, then
lm(q) = 0 for all m.

Specific values of lm(q) have been calculated for some Pisot numbers q. If q is
the Pisot number that satisfies q3− q2 − 1, then l(q) = q2 − 2 [14]. If q is the Pisot
number satisfying qn − qn−1 − · · · − 1, then l(q) = 1

q [7]. If q is the Golden ratio
(the greater root of x2 − x − 1), then l2(q) = 2 − q [3]. For general m, and q the
Golden ratio, all lm(q) are known: if Fk is the kth Fibonacci number (F0 = 0, F1 =
1, Fn = Fn−1 + Fn−2) and qk−2 < m ≤ qk−1, then lm(q) = |Fkq − Fk+1| [14].

This paper gives an algorithm where lm(q) can be calculated for any Pisot num-
ber q and any integer m, limited only by the memory of the computer.

An algorithm to determine Λ(q)∩
[
−1
q−1 ,

1
q−1

]
is given by Ka-Sing Lau in [15]. In

Lau’s paper the values of the size of the spectra in this range are determined for
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the Pisot roots of the polynomials x3 − x2 − x − 1, x3 − 2x2 + x − 1, x2 − x − 1,
x3 − x2 − 1, x4 − x3 − 1 and x3 − x− 1. This algorithm is generalized in Section 2
to answer some of the questions concerning l(q) and a(q) above.

Another question that can be examined with this algorithm asks which Pisot
numbers q satisfy a polynomial with ±1 coefficients. Surprisingly there exist Pisot
numbers that do not satisfy such a polynomial. For the Pisot numbers that do
satisfy a ±1 polynomial, it is often possible to use LLL to find this polynomial. In
fact, LLL can sometimes be used for other algebraic numbers for this purpose, as
will be demonstrated in Section 6. For a good review of LLL, see [4, 16, 17].

2. The algorithm

This section gives an algorithm to find the spectrum of a number in a particular
range (i.e., determine ΛS(q) ∩ [a, b] for a number q and a finite range [a, b]). This
section shows that when this number is a Pisot number, then this algorithm termi-
nates, and further if this algorithm terminates, then the spectrum is discrete over
the entire real line. In the case of Λ(q), this algorithm is very similar to that given
by Ka-Sing Lau, [15]. First the following obvious lemma is needed:

Lemma 1. Let S be a finite set of integers. Let p(x) be a degree n polynomial
with coefficients in S. Let sl ≤ S ≤ su be lower and upper bounds for the integers
in S, and let q > 1. Denote αu := −sl

q−1 and αl := −su
q−1 . If p(q) 6∈ [αl, αu], then

q × p(q) + s 6∈ [αl, αu] for all s ∈ S.

From this it follows that, if p(q) 6∈ [αl, αu], the polynomial q × p(q) + s need
not be looked at, as it cannot contribute to the spectrum in this range. Further if
α∗l ≤ αl and α∗u ≥ αu, then the same result follows for the range [α∗l , α

∗
u].

The next lemma will ensure that an exhaustive search for all elements in a finite
range for a given spectrum will terminate if q is a Pisot number.

Lemma 2. If q is a Pisot number, and S is a finite set of integers, then
|ΛS(q) ∩ [a, b]| is finite.

Proof. Let r = max{|s| : s ∈ S}. Let y1, y2 ∈ ΛS(q), y1 6= y2. Then y1−y2 ∈ Λ2r(q);
hence, |y1 − y2| ≥ l2r(q) > 0, where the last inequality comes from [3, 8, 9]. Thus
|ΛS(q) ∩ [a, b]| ≤ b−a

l2r(q) <∞.

Algorithm 1 is one way to write an exhaustive search to determine ΛS(q)∩[αl, αu].

As the spectrum of the Pisot numbers is uniformly discrete (this follows from
[8, 11]), then |ΛS(q) ∩ [αl, αu]| <∞ for q Pisot. The converse to this is

Theorem 2.1. If |ΛS(q) ∩ [αl, αu]| <∞, then ΛS(q) is discrete.

Note that, in Theorem 2.1, q is not assumed to be Pisot. It is worth noting
that only discreteness is shown, and not uniform discreteness. In fact, there exist
examples of spectra, described later in Section 5, which have provably nonuniformly
discrete spectra.
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Spec(S, q)
alpha[u] := -min(s:s in S)/(q-1);
alpha[l] := -max(s:s in S)/(q-1);
L[0] := S;
d := 0;
repeat

L[d+1] := L[d];
for p in L[d], s in S do

if q * p + s in [alpha[l], alpha[u]] then
L[d+1] = L[d+1] union {q p + s}

end if
end do
d := d + 1;

until L[d+1] = L[d];
RETURN(L[d]);

end;

Algorithm 1: Finding the Spectrum of a Pisot number q.

Proof. Let sl and su be lower and upper bounds for S, and αl and αu be as defined
in Lemma 1. Define λ1 := ΛS(q) ∩ [αl, αu]. Define

αu,1 := min{qβ + s > αu : β ∈ λ1, s ∈ S},

and define αl,1 similarly to be the first element in the spectrum less than αl. From
this, define αu,n := q × αu,n−1 + sl and αl,n := q × αl,n−1 + sl. Further define
λn := [αl,n−1, αu,n−1] ∩ ΛS(q).

Clearly, αu,n → ∞ and αl,n → −∞ as n → ∞. By assumption λ1 has only a
finite number of elements. Noticing that

λn = λn−1 ∪ {{qβ + s : β ∈ λn−1, s ∈ S} ∩ [αl,n−1, αu,n−1]}

gives by induction that λn has only a finite number of elements. Thus ΛS(q) is
discrete, as required.

3. Programming tricks

The algorithm described in Section 2 was implemented in C++. This section
will summarize some of the techniques used to improve the efficiency of this code.

When calculating ΛS(q) a list of all polynomials examined must be kept. As the
degree of these polynomials can be quite large, this list of polynomials can take up a
large amount of memory. To reduce the space requirements, the actual code stored
the remainders of the polynomials when divided by the minimal polynomial of q.
This is advantageous as the degree is bounded above; and through experimentation
it is noted that the height of these polynomials being stored do not grow larger
than a “short int” in C++.

This has a second advantage; if p1(q) = p2(q) where p1 and p2 are polynomials,
then the remainders of p1 and p2 when divided by the minimal polynomial of q are
equal. Thus duplication within the spectrum is easily recognized.
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These polynomials are stored in a Red-Black tree with a lexigraphical order on
the coefficients, but any height regulating tree with any order would give similar
results for time comparisons of duplication recognition. For more information on
Red-Black trees, see [5].

The next observation to be made is that if S is symmetric (i.e., s ∈ S implies
that −s ∈ S), then ΛS(q) is symmetric. Utilizing this symmetry eliminates half of
the calculations needed.

Lastly, a technique that was considered, but decided not necessary for this pre-
liminary investigation, allowed the problem to be partitioned up into an arbitrarily
large number of subproblems. This would allow the constraining factor on the cal-
culations to be disk space instead of RAM. Further, with a careful implementation,
this technique could also be utilized to parallelize the calculation.

This technique to partition the problem up is described most easily by means of
an example. Let S = {±1} and let P (x) = x3 − x− 1 be the first Pisot polynomial
(with approximate root 1.324717957). Let m = 2 (here m could be chosen to
be any integer). Divide the set of polynomials in the spectrum into |P (m)| = 5
residues, depending upon their evaluation at m. Consider the set of polynomials
with coefficients in S known at some point in the calculation which evaluates at m
to 2 (mod 5). Then these polynomials, when extended, will evaluate at m to either
3, or 0 (mod 5) (as 2×2+1 ≡ 0 (mod 5) and 2×2−1 ≡ 3 (mod 5)). Thus, when
the polynomials which evaluate to 2 (mod 5) at m are being examined, the set of
polynomials of residue 1 or 4 need not be in memory. In general, at most |S|+1

p(m) (a
fraction tending to 0 as m tends to infinity) of the polynomials need be in memory
at any given time.

Naive methods failed to calculate Λ(q) for 16 examples, all of degree 10. Thus it
was decided that the overhead needed to implement this technique was not justified.

4. Some questions of Λ(q) and A(q) for Pisot numbers q

Algorithm 1 has been used to calculate l(q) for all Pisot numbers up to and
including degree 9, and a(q) for Pisot numbers up to and including degree 10.
(Recall, l(q) = l{±1,0}(q) and a(q) = l{±1}(q).) To determine the Pisot numbers up
to and including degree 10, the methods of David Boyd were used [1]. There are
232 Pisot numbers of degree less than or equal to 10 (between 1 and 2 inclusive)
and thus we do not include all of the results here. However all these results, as well
as the code used to determine them, can be found at [12].

In the calculations of a(q) and l(q), there were only a few cases where these values
coincided. Some of these are enumerated in Table 1. The polynomials associated
with l(q) in this table are the ±1 polynomial modulo the Pisot polynomial which
gives ±l(q).

The number of Pisot numbers of degree less than or equal to 10 where a(q) = l(q)
is fairly small, and it would be interesting to know if the set of Pisot numbers with
this property is finite.

The next question of interest is which Pisot numbers q satisfy a ±1 polynomial.
This is equivalent to asking if 0 ∈ A(q). This was answered in the affirmative for
most Pisot numbers. The first failure is of degree 6. It is interesting to note that
all of the examples found where 0 6∈ A(q) are such that this root q is greater than
1.95. It would be interesting to know if this must always be the case. These results
are summarized in Table 2.
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Table 1. Pisot numbers where l(q) = a(q).

Pisot polynomial q l(q) Polynomial associated
with l(q)

x2 − x− 1 1.618034 0.618034 x− 1
x3 − 2x2 + x− 1 1.754878 0.245122 x− 2
x3 − x2 − x− 1 1.839286 0.543689 x2 − x− 1
x4 − x3 − 1 1.380278 0.008993 x3 − 4x2 + 5
x4 − 2x3 + x− 1 1.866760 0.13324 x− 2
x4 − x3 − 2x2 + 1 1.905166 0.068706 x3 − 3x2 + x+ 2
x4 − x3 − x2 − x− 1 1.927562 0.518790 x3 − x2 − x− 1
x5 − x4 − x3 + x2 − 1 1.443269 0.002292 4x2 − 3x− 4
x5 − x3 − x2 − x− 1 1.534158 0.002155 2x4 − 3x3 + x2 − 3x+ 2
x5 − x4 − x2 − 1 1.570147 0.006992 x4 − 2x2 − 2x+ 2
x5 − 2x4 + x3 − x2 + x− 1 1.673649 0.009705 x4 − x3 − x2 − 2x+ 3
x5 − x4 − x3 − 1 1.704903 0.030844 2x3 − 3x3 − 2
x5 − x4 − x3 − x2 − x− 1 1.965948 0.508660 x4 − x3 − x2 − x− 1
x6 − x5 − x4 + x2 − 1 1.501595 0.0003491 x5 + 2x4 − 4x3 − 3x2 + 3x− 2
x6 − 2x5 + x− 1 1.967168 0.032831 x− 2
x6 − x5 − x4 − x3 1.983583 0.504138 x5 − x4 − x3 − x2

−x2 − x− 1 −x− 1
x7 − x5 − x4 − x3 1.590005 0.0001137 4x6 − 5x5 − x4 − x3

−x2 − x− 1 +x− 6
x7 − x6 − x4 − x2 − 1 1.601347 0.0004642 2x5 − x4 − 3x3 − 1x2 − x+ 2
x7 − 2x6 + x5 − x4 1.640728 0.0003030 2x6 − 2x5 − 2x4

+x3 − x2 + x− 1 −2x2 + x+ 3
x7 − 2x6 + x5 − 2x4 1.790223 0.0006021 x6 − 3x5 + 5x4 − 4x3

+2x3 − x2 + x− 1 −4x+ 1
x7 − 2x6 + x− 1 1.983861 0.016138 x− 2
x7 − x6 − x5 − x4 1.991964 0.502017 x6 − x5 − x4 − x3

−x3 − x2 − x− 1 −x2 − x− 1

Table 2. Pisot polynomials that do not divide a ±1 polynomial.

Pisot polynomial Pisot number

x6 − x5 − 2x4 + x2 − x− 1 1.979476326
x6 − 3x5 + 3x4 − 2x3 + x− 1 1.955451068
x8 − x7 − x6 − x5 − 2x4 + 1 1.995777793
x9 − x8 − x7 − 2x6 + x3 − x2 − x− 1 1.997784254
x9 − 2x8 + x5 − 2x4 + x− 1 1.996283920
x9 − x8 − x7 − x6 − x5 − x4 − x3 − x2 − 1 1.994016415
x9 − 2x7 − 3x6 − 2x5 + x3 − x− 1 1.992483962
x9 − x8 − x7 − x6 − x5 − x4 − x3 − x− 1 1.989944545
x9 − x8 − x7 − x6 − x5 − x4 + 1 1.963515789
x10 − x9 − x8 − x7 − x6 − 2x5 + 1 1.998987762
x10 − x9 − 2x8 + x6 − x5 − 2x4 + x2 − x− 1 1.998772685
x10 − 2x9 + x7 − 2x6 + x4 − 2x3 + x− 1 1.998277927
x10 − 2x9 + x5 − x4 − x+ 1 1.969456013
x10 − x9 − 2x8 + x6 − x5 − x4 + x3 + x2 − x− 1 1.966884957
x10 − x9 − x8 − x7 − x6 − x5 + 1 1.964715641
x10 − 2x8 − 3x7 − x6 − x3 + x+ 1 1.954062236
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Table 3. Successful calculations with a spectrum over 20 million
for l(q).

Pisot polynomial q l(q) Approximate CPU
size of secs
spectrum in
[αl, αu]

x10 − x9 − x8 − x7 1.742975573 1.18668e-07 26973910 39m50s
+x6 − x3 + 1

x10 − x9 − x7 − x6 1.746541923 7.04603e-08 41498130 58m41s
−x5 − x4 − x3

−x2 − 1
x10 − x9 − x8 − x7 1.795572823 3.5123e-08 43357472 1h1m7s

+x5 − x3 + 1
x10 − x9 − x8 − x7 1.852234868 8.17922e-08 25981420 34m38s
−x3 + 1

x10 − x9 − x8 − x7 1.860952864 3.80874e-07 24944436 35m22s
−x5 + x4 + 1

x10 − 2x9 + x8 − 2x7 1.870250440 4.44816e-08 46252634 1h4m56s
+x6 + x3 − x2

+x− 1
x10 − 2x9 + x7 − x6 1.881601063 2.57611e-07 27513576 35m35s
−x3 + x2 − 1

x10 − 2x8 − 3x7 − x6 1.890027098 2.67873e-07 20923016 29m43s
+x5 + 2x4 + x3

−x2 − 2x− 1
x10 − 2x9 + x8 − x7 1.903832902 2.22525e-07 22738454 28m42s
−x6 − x2 + x− 1

x10 − x9 − x8 − x7 − x5 1.921407084 3.12296e-08 41511868 57m5s
−x4 − x2 − x− 1

x10 − 2x9 + x8 − 2x7 1.957362809 2.22214e-07 22336604 29m7s
+x6 − x5 − x2 − 1

x10 − 2x9 + x7 − 2x6 1.998277927 2.447e-08 46943484 1h3m54s
+x4 − 2x3 + x− 1

Table 4. Successful calculations with a spectrum over 20 million
for a(q).

Pisot polynomial q a(q) Approximate CPU
size of secs

spectrum in
[αl, αu]

x10 − x9 − x8 + x2 − 1 1.601755862 1.59445e-07 33921896 30m38s
x10 − x9 − x8 − x2 + 1 1.632690733 1.03354e-07 21835702 17m30s
x10 − 2x9 + x8 − x7 1.735143707 8.28149e-08 32342934 29m18s

+x3 − x2 + x− 1

Lastly given are two tables of the largest calculations done in the computation
of l(q) and a(q). Any calculation which had an approximate spectrum size of over
20 million is listed. Due to the memory requirements of this program, any problem
with a spectrum of approximate size over 48 million could not be computed. This
accounts for 16 out of the 232 Pisot numbers of degree 10 or less. Table 3 is for
l(q), and Table 4 is for a(q).
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The timings listed in these tables were done on a MIPS R10000 Processor Chip
Revision: 3.4 (Main memory size: 4096 Mbytes). The code to perform these calcu-
lations was written in C++, using the GNU compiler.

Precise values of l(q) and a(q) in terms of their polynomial evaluation at q can
be found on the web at [12].

5. Some questions of A(q) for non-Pisot numbers q

Peres and Solomyak asked in [18] for which q in 1 < q < 2 is A(q) dense. It was
unknown to the authors then if there were any q for which q is not a Pisot number,
yet A(q) is not dense. Here, this is answered in the affirmative.

The examples of non-Pisot numbers q where A(q) is discrete required a search
of 1868 possible candidates. To explain how these candidates were determined,
consider the following theorem.

Theorem 5.1. If q does not satisfy a polynomial of the form εnx
n + ..+ εmx

m +
βm−1x

m−1 + · · ·+ β0 where εi ∈ {±1} and βi ∈ {±2, 0}, then A(q) is not discrete.

Proof. Assume that q does not satisfy such a polynomial. Take P0 = 1. Then take
Pn = 1− q×Pn−1 if q× Pn−1 < 1 and Pn = q× Pn−1 − 1 if q×Pn−1 > 1. Clearly
Pi ∈ A(q) for all i and 0 ≤ Pi ≤ 1. If this sequence repeats, then q satisfies the
difference of the two ±1 polynomials in q, which is of the form described above,
hence a contradiction. Hence, {Pi} is an infinite nonrepeating sequence in [0,1],
and thus A(q) is not discrete.

Corollary 1. If q does not satisfy a height 2 polynomial, then A(q) is not discrete.

Lemma 3. If A(q) is discrete, then A(qn) is discrete for all n.

Proof. Let α =
∑m
i=1 εiq

ni be a point in A(qn). Then (qn−1 + qn−2 + · · ·+ q+ 1)α
is in A(q). Thus qn−1

q−1 A(qn) ⊂ A(q). Thus A(qn) is discrete.

Lemma 3, although of theoretical interest, is not of much practical use, as no
q <
√

2, other than the two Pisot numbers, have been found where A(q) is discrete.
With the limits imposed by Theorem 5.1, the search was restricted to the fol-

lowing:
1. All polynomials dividing a height 1 polynomial of degree ≤ 7.
2. All polynomials dividing any ±1 polynomial up to degree 10.
3. All polynomials dividing a polynomial of the form εnx

n+εn−1x
n−1+· · · εmxm

+ βm−1x
m−1 + · · ·+ β0 where εi ∈ {±1} and βi ∈ {±2, 0} up to degree 7.

Some observations that can be made on the basis of this search are as follows:
1. All examples of q where A(q) is discrete found are Perron numbers (all con-

jugates are of modulus less than q).
2. There were 120 examples found of non-Pisot numbers with discrete spectra
A(q).

3. There were 7 Salem numbers found (all but one conjugate is of modulus 1),
with discrete spectra. They are given in Table 6.

4. The only non-Pisot numbers q whose minimal polynomial has Mahler measure
less than 2 while A(q) is discrete seems to be these Salem numbers.

5. The smallest (non-Pisot) number found with discrete spectrum is the Salem
number 1.72208 of degree four (the root of x4 − x3 − x2 − x+ 1).
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6. The largest root of xn − xn−1 − · · · − x+ 1 is a Salem number with discrete
spectrum (Theorem 5.3 and Theorem 5.4) and the only Salem numbers of
degree 9 or less with discrete spectrum satisfy a polynomial of this type.

7. All q found in the search of non-Pisot numbers satisfying a polynomial of the
form εnx

n + εn−1x
n−1 + · · · εmxm + βm−1x

m−1 + · · · + β0 where εi ∈ {±1},
βi ∈ {±2, 0} and m ≥ 1 do not have zero in the spectrum.

8. The smallest degree polynomial defining a q such that A(q) is discrete is
x3 − 2x− 2.

It is worth noting here the distinction between discrete spectra and uniformly
discrete spectra. As will be shown, these examples found of non-Pisot numbers
with discrete spectra A(q) are “most probably” not uniformly discrete, and some
provably not uniformly discrete.

Theorem 5.2. If l(q) = 0, then A(q) is not uniformly discrete, and if A(q) is not
uniformly discrete, then l2(q) = 0.

Proof. The first part follows by noticing that

2Λ(q) = Λ±2,0(q) ⊆ A(q)−A(q),

and the second part follows by noticing that

A(q)−A(q) ⊆ Λ2(q).

So if the conjecture is true that l(q) > 0 if and only if q is Pisot, then we have
that all of the non-Pisot numbers q must have A(q) nonuniformly discrete.

Table 5. Polynomials with nonuniformly discrete spectrum, A(q)

Non-Pisot polynomial Root

x3 − 2x− 2 1.769292354
x4 − x3 − 2x− 2 1.873708564
x4 − 2x2 − 2x− 2 1.899321089
x5 − x4 − 2x2 − 2 1.803707279
x5 − x4 − x3 − 2x2 + 2 1.917514202
x5 − x4 − 2x2 − 2x− 2 1.942887561
x5 − 2x3 − 2x2 − 2x− 2 1.953501637
x6 − 2x4 − 2x3 − 2 1.813277575
x6 − x5 − x4 − 2x3 + 2x+ 2 1.859080768
x6 − 2x4 − 2x3 − 2x2 + 2 1.865843123
x6 − x5 − x4 − 2x3 + 2 1.961038629
x6 − 2x4 − 2x3 − 2x2 − 2x− 2 1.977807115
x6 − x5 − x4 − x3 − 2x2 + 2 1.963984556
x7 − x6 − x5 − x4 + x3 − 2x2 + 2 1.815396315
x7 − x6 − x5 − 2x4 + 2x2 + 2 1.888840344
x7 − x6 − x5 − x4 − x3 + 2 1.903972308
x7 − x6 − x5 − 2x4 + 2x+ 2 1.937730036
x7 − x6 − x5 − x4 − x3 − 2x2 + 2x+ 2 1.945197233
x7 − x6 − x5 − 2x4 + 2 1.981204104
x7 − x6 − x5 − x4 − 2x3 + 2 1.982546502
x7 − x6 − x5 − x4 − x3 − 2x2 + 2 1.983151826
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The polynomials listed in Table 5 are known to have nonuniformly discrete spec-
tra. These polynomials have discrete spectra, as a result of the search described
earlier in this section. It is seen that l(q) = 0 in all of the polynomials as they do
not satisfy a height 1 polynomial [3, 10]. Thus by Theorem 5.2 these spectra are
nonuniformly discrete spectra.

Next consider the Salem numbers in Table 6. By noticing that 1− 2x2 − 3x3 −
2x4 + x6 divides 1− 2x+ x2 − 2x3 + x4 − 2x5 + x6 − 2x7 + x8, and then 1− 2x+
x2 − · · · − 2x2n−1 + x2n divides 1 − x − x2 − · · · − x2n + x2n+1, it can be noticed
that all of the Salem numbers found with the property that A(q) is discrete satisfy
a polynomial of the form 1− x− x2 − · · · − xn−1 + xn for n ≥ 4.

This led to the investigation of whether all of these numbers are Salem numbers,
and if A(q) is discrete in every case. (Both of these are answered in the affirmative
below.) It is still unknown if this is all of the Salem numbers q where A(q) is
discrete, and if these are the only such q with Mahler measure less than 2.

Theorem 5.3. The root of the polynomial xn − xn−1 − · · · − x+ 1 between 1 and
2 is a Salem number.

Proof. By [19] if P (x) is a Pisot polynomial and P ∗(x) its reciprocal, then

(xnP (x) − P ∗(x))/(x − 1)

defines a Salem number provided it has a root greater than 1. Here we take P (x) =
x − 2. To see that there is a root between 0 and 1, we use the intermediate value
theorem.

Theorem 5.4. If 1 < q satisfies the polynomial 1− x− x2 − · · · − xn−1 + xn, then
A(q) is discrete.

Table 6. All Salem numbers of degree≤ 10, q where the spectrum
A(q) is discrete.

Salem polynomial q a(q) Approximate
size of
spectrum in
[αl, αu]

x4 − x3 − x2 − x+ 1 1.722083806 0.243489 11
x4 − 2x3 + x2 − 2x+ 1 1.883203506 0.249038 13
x6 − x5 − x4 − x3 1.946856268 0.249814 15
−x2 − x+ 1

x6 − 2x5 + x4 − 2x3 1.974818708 0.249959 17
+x2 − 2x+ 1

x6 − 2x4 − 3x3 − 2x2 + 1 1.987793167 0.249991 19
x8 − 2x7 + x6 − 2x5 1.994004199 0.249998 21

+x4 − 2x3 + x2

−2x+ 1
x10 − x9 − x8 − x7 1.997032367 0.249999 23
−x6 − x5 − x4

−x3 − x2 − x+ 1
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Proof. To see that A(q) is discrete, simply consider the algorithm. The following
observations are needed.

1. qm − qm−1 − · · · − q + 1 > 1
q−1 for m < n.

2. qn − qn−1 − · · · − q − 1 < −1
q−1 .

Thus at each step of the algorithm there is only one choice, and it must terminate
after n steps. (The case of polynomials with negative lead coefficients has been
removed by symmetry.)

Thus it remains to prove these two observations.
1. First, notice that the roots qn of qn − qn−1 − · · · − q + 1 form an increasing

sequence bounded below by 1 and above by 2. (This follows as qn+1
n − qnn −

· · ·−qn+1 = qn+1
n −2qnn = qnn(qn−2) < 0 and 2n+1−2n−· · ·−2+1 = 3 > 0.)

Thus for m ≤ n− 2

qm+2
n − qm+1

n − · · · − qn + 1 ≥ 0,
qm+2
n − qm+1

n − · · · − q2
n ≥ qn − 1,

qmn − qm−1
n − · · · − 1 ≥ qn − 1

q2
n

,

qmn − qm−1
n − · · · − 1 > 0,

qmn − qm−1
n − · · ·+ 1 > 2,

qmn − qm−1
n − · · ·+ 1 >

1
q − 1

.

The last inequality follows as the smallest Salem number of this form is
approximately 1.72.

For m = n− 1 and q > 3+
√

17
4 ≈ 1.780 it follows that

0 > −2q2 + 3q + 1,

0 >
q

q − 1
− 2q + 1,

2q − 1 >
q

q − 1
,

q(qn−1 − · · · − q + 1) >
q

q − 1
,

qn−1 − · · · − q + 1 >
1

q − 1
.

For the cases of q < 1.780, we simply note that this is already covered as
a special case in Table 6.

2. Notice qn − qn−1 − · · · − q − 1 = qn − qn−1 − · · · − q + 1− 2 = −2 < −1
q−1 .

From this, we deduce:

Corollary 2. For q as above, a(q) = q−1
q2 ≈ 1

4 .

6. Finding ±1 polynomials with LLL

If q is not a Pisot number, yet is still an algebraic number, Algorithm 1 can be
used to determine if 0 ∈ A(q). Unfortunately, for some q, this algorithm cannot
return a negative answer and has the potential of returning no information at all.
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This is because it is not known if A(q) is discrete; if A(q) is not discrete, the
algorithm is not guaranteed to terminate.

It is of interest to see which q satisfy a ±1 polynomial, or equivalently when
0 ∈ A(q). For this, we introduce a few new algorithms, and a few observations.

Lemma 4. If the lead coefficient and tail coefficient of p(x) are both odd, then
p(x)|1 + x+ · · ·xn (mod 2) for some n.

Proof. This follows from the observation that if p(x) is irreducible modulo 2, and of
degree n, then p(x)|x2n−1+1 (mod 2) [13]. Noticing that (xn+1)(xm+1)/(x+1) =
xn+m−1 + 1 (mod 2) and (x + 1)(xn−1 + xn−2 + · · · + x + 1) = xn + 1 (mod 2)
completes the proof.

Algorithm 2 will for input p(x) find a polynomial q(x), such that p(x)q(x) is of
the form 1 + x + · · ·+ xn (mod 2). Although it is possible to determine the value
for n in the lemma above by looking at the factorization of p(x) mod 2, it is easier
to simply test each n in order.

From here LLL can be often be used to find a polynomial q′(x) where q′(x)p(x)
is a polynomial with ±1 coefficients. Recall if L = {

∑n
i=1 bivi : bi ∈ Z} is a lattice

with a basis of vectors {v1, · · · , vn}, then LLL will find a new basis for L where each
element of the basis will have a “small” norm. (We can choose any inner product
for the lattice L.) For a good review of LLL see [4, 16, 17].

So, for a basis choose p(x)q(x) as one basis element, and 2p(x)xn for 0 ≤ n <
deg q as the rest. It can be seen that if there is one basis element in the original basis
with all odd coefficients, and all the rest have only even coefficients, then the result-
ing basis from LLL will have at least one basis element with only odd coefficients.
Secondly, as LLL will try to minimize the sum of the squares of the coefficients (the
norm we picked for this problem), this polynomial with odd coefficients will, with
some luck, be a polynomial with ±1 coefficients.

This is written up into Algorithm 3.

FindQMod2(poly)
for n from 1 to infinity do

if poly divides 1 + x + ... + x^n (mod 2) then
RETURN(quotient of 1 + x + ... + x^n divided by poly)

end if;
end do;

end:

Algorithm 2: Finding a polynomial divisible by p(x) (mod 2).

FindPMPoly(poly)
q := FindQMod2(poly)
n := degree(q)
Basis := [poly*q, 2*poly, 2*poly*x, \cdots, 2*poly*x^(n-1)];
NewBasis := LLL(Basis);
Select the smallest basis element from NewBasis

with all odd coefficients and return it
end

Algorithm 3: LLL to find a polynomial with small odd coefficients.
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Table 7. Polynomials found by the LLL algorithm

Pisot polynomial ±1 polynomial it divides

x2 − x− 1 x2 − x− 1
x3 − x− 1 x6 + x5 − x4 − x3 − x2 − x− 1
x3 − x2 − 1 x6 − x5 + x4 − x3 − x2 − x− 1
x5 − x3 − x2 − x− 1 −x30 + x29 + x28 − x27 + x26 + x25 − x24 − x23

+x22 − x21 + x20 + x19 − x18 − x17 + x16 + x15

+x14 − x13 − x12 + x11 − x10 + x9 + x8 − x7 − x6

+x5 − x4 − x3 − x2 − x− 1
x5 − x4 − x3 − x2 + 1 −x30 + x29 + x28 + x27 − x26 + x25 − x24 + x23

+x22 − x21 − x20 + x19 − x18 − x17 − x16 + x15

+x14 − x13 + x12 + x11 + x10 − x9 − x8 − x7 − x6

−x5 − x4 − x3 − x2 + x+ 1

Salem polynomial ±1 polynomial it divides

x10 + x9 − x7 − x6 − x5 −x30 − x29 + x28 + x27 + x26 + x25 − x24 + x23

−x4 − x3 + x+ 1 −x22 − x21 − x20 + x19 + x18 + x17 − x16 − x15

+x14 + x13 − x12 + x11 − x10 − x9 − x8 − x7 + x6

+x5 + x4 + x3 + x2 − x− 1
x10 − x6 − x5 − x4 + 1 −x30 − x29 + x28 + x27 + x26 + x25 + x24 − x23

−x22 − x21 − x20 + x19 + x18 + x17 + x16 − x15

−x14 − x13 − x12 + x11 − x10 + x9 + x8 − x7 + x6

−x5 + x4 + x3 − x2 + x− 1
x10 − x7 − x5 − x3 + 1 Degree 32 example found.

Non-Pisot ±1 polynomial it divides
Non-Salem polynomial

x4 − x2 − 1 x5 + x4 − x3 − x2 − x− 1
x6 − x4 − 1 x13 + x12 − x11 − x10 + x9 + x8

−x7 − x6 − x5 − x4 − x3 − x2 − x− 1
x6 − x4 − x2 − 1 x7 + x6 − x5 − x4 − x3 − x2 − x− 1
x4 + x3 − x2 − x− 1 x4 + x3 − x2 − x− 1
x4 − x− 1 x14 + x13 + x12 − x11 − x10

−x9 − x8 − x7 − x6 − x5 + x4 − x3 − x2 − x− 1

Algorithm 3 experimentally works quite well for small problems. Unfortunately,
for almost every polynomial of degree n, the resulting q(x) is of degree 2n−n. This
means that LLL must be performed on a basis of size 2n − n, which leads to an
exponential time algorithm.

Some results are tabulated in Table 7, for Pisot numbers, Salem numbers, and
non-Pisot non-Salem numbers.

7. Conclusions

There are still many questions which this paper leaves open:
1. Is the set of q such that a(q) = l(q) finite?
2. Does there exists and α ≈ 1.95 such that if q < α, and q Pisot, then 0 ∈ A(q)?
3. Are all q where A(q) is discrete necessarily Perron?
4. Are the only q where A(q) is discrete and the Mahler measure of q is less than

2 necessarily Salem numbers or Pisot numbers.
5. Do the only Salem numbers q with A(q) discrete satisfy qn−qn−1−· · ·−q+1

for some n?
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6. Is there a α ≈ 1.72 such that if q < α and q is not Pisot, then A(q) is not
discrete?

7. Is it true that l(q) > 0 if and only if q is Pisot?
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6. P. Erdős, I. Joó, and F. J. Schnitzer, On Pisot numbers, Ann. Univ. Sci. Budapest. Eötvös
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