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SZEGÖ QUADRATURE FORMULAS
FOR CERTAIN JACOBI-TYPE WEIGHT FUNCTIONS

LEYLA DARUIS, PABLO GONZÁLEZ-VERA, AND OLAV NJÅSTAD

Abstract. In this paper we are concerned with the estimation of integrals on

the unit circle of the form
∫ 2π
0

f(eiθ)ω(θ)dθ by means of the so-called Szegö

quadrature formulas, i.e., formulas of the type
∑n
j=1 λjf(xj) with distinct

nodes on the unit circle, exactly integrating Laurent polynomials in subspaces
of dimension as high as possible. When considering certain weight functions
ω(θ) related to the Jacobi functions for the interval [−1, 1], nodes {xj}nj=1

and weights {λj}nj=1 in Szegö quadrature formulas are explicitly deduced.

Illustrative numerical examples are also given.

1. Introduction

When considering the approximate calculation of integrals of the form

Iψ(f) =
∫ b

a

f(x)dψ(x), (−∞ ≤ a < b ≤ +∞)

by means of a quadrature formula like

In(f) =
n∑
j=1

Ajf(xj)

it is well known that distinct nodes {xj}nj=1 in (a, b) and positive weights {Aj}nj=1

can be uniquely determined so that Iψ(p) = In(p) for any p in Π2n−1 (the space
of polynomials of degree 2n − 1 at most). In this case, In(f) represents the nth
Gauss-Christoffel quadrature formula so that its nodes {xj}nj=1 are the zeros of the
nth orthogonal polynomial with respect to dψ.

In this paper, we shall be concerned with the estimation of integrals on the unit
circle i.e.,

Iψ(f) =
∫ 2π

0

f(eiθ)dψ(θ),
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where ψ is a positive Borel measure on [0, 2π]. For our purpose, instead of a measure
ψ, we could deal with a distribution function on [0, 2π] i.e., a real valued non-
decreasing function with infinitely many points of increase on [0, 2π], (see [7]). In
order to make the paper consistent throughout, measures will be used.

We shall make use of the so-called Szegö quadrature formulas which are to some
extent analogous on the unit circle to Gauss quadrature formulas on the real line.
The Szegö quadrature formulas were introduced by Jones, Nj̊astad and Thron in
[6] in connection with the trigonometric moment problem, where orthogonal poly-
nomials on the unit circle with respect to ψ (Szegö polynomials), become crucial.
Except for very special measures ψ, it is difficult to obtain explicit expressions for
these polynomials. For instance, it is known that for the Lebesgue measure, the
sequence of monic Szegö polynomials is given by ρn(z) = zn for all n. If we consider
the measure

dψ(θ) =
dθ

2π|h(eiθ)|2 ,(1.1)

where h(z) =
∏k
i=1(z − αi) with |αi| < 1, then, (1.1) represents a rational mod-

ification of the Lebesgue measure and the system of Szegö polynomials is given
explicitly in [11], pp. 289-290. For further details see [5].

Our main interest is centered on calculating explicit expressions for Szegö polyno-
mials for certain Jacobi-type weight functions, which allows us to obtain an explicit
formula for Szegö quadrature formulas.

We shall use the notation T = {z : |z| = 1} and D = {z : |z| < 1} for the
unit circle and the open unit disc, respectively. Also, for p and q nonnegative
integers, p ≤ q, Λp,q will denote the space of Laurent polynomials of the form
L(z) =

∑q
j=p αjz

j , αj ∈ C. Λ will denote the space of all Laurent polynomials and
Π the space of algebraic polynomials.

The paper is organized as follows. In Section 2, preliminary results concerning
Szegö polynomials, associated polynomials, Szegö quadrature formulas and sec-
ond kind measures are given. In Sections 3 we obtain explicit representations
for Szegö quadrature formulas with respect to the measures dψ(θ) = sin2(θ)

2π dθ,

dψ(θ) = 1+cos θ
2π dθ and dψ(θ) = 1−cos θ

2π dθ, respectively, along with integral error
expressions and computable error bounds when considering analytic integrands.
Finally, in Section 4, illustrative numerical examples are given. For other results
concerning Szegö quadrature formulas see [3].

2. Preliminary results

Szegö polynomials. Let ψ be a positive Borel measure on [0, 2π]. Let us consider
the following inner product in the linear space Π of polynomials with complex
coefficients:

(f, g)ψ =
∫ 2π

0

f(eiθ)g(eiθ)dψ(θ).

By applying the Gram-Schmidt orthogonalization process to {1, z, ..., zn}, an or-
thogonal basis {ρk(z)}nk=0 can be deduced such that deg(ρk) = k and

(ρj , ρk)ψ = Kjδj,k, Kj > 0, 0 ≤ j, k ≤ n.
Thus, when taking ρn(z) monic for each n, the so-called monic orthogonal polyno-
mials on the unit circle T or Szegö polynomials are obtained. These polynomials
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satisfy recurrence relations

ρ0(z) = ρ∗0(z) = 1,
ρn(z) = zρn−1(z) + δnρ

∗
n−1(z), n = 1, 2, 3, . . . ,

ρ∗n(z) = δnzρn−1(z) + ρ∗n−1(z), n = 1, 2, 3, . . . ,
(2.1)

where δn := ρn(0), n = 1, 2, 3, . . . , are called the reflection coefficients and ρ∗n(z) =
znρn(1/z̄). Conversely, if a sequence {ρn} such that, for each n the polynomial ρn
has exact degree n and satisfies (2.1), is given, then there exists a measure ψ so
that {ρn} is the corresponding sequence of monic Szegö polynomials.

In general, it is difficult to obtain an explicit expression for these polynomials.
If we want to calculate them, we can make use of the so-called Levinson algorithm
(see e.g., [2]).

Associated Szegö polynomials. Let µk =
∫ 2π

0 e−kiθdψ(θ), k ∈ Z, then {µk}k is
called the moment sequence with respect to ψ. Note that µ−k = µk. Let {πn}n be
a sequence of polynomials defined in terms of the sequence {ρn}n and the moments
{µk}, by means of

πn(z) :=

{ ∫ 2π

0
z+eiθ

z−eiθ
(
ρn(eiθ)− ρn(z)

)
dψ(θ) if n = 1, 2, 3, . . . ,

−µ0 if n = 0.
(2.2)

These polynomials are called the associated Szegö polynomials and they satisfy the
relations

π0(z) := −µ0,
zπn−1(z)− δnπ∗n−1(z) = πn(z), n = 1, 2, . . . ,
δnzπn−1(z)− π∗n−1(z) = −π∗n(z), n = 1, 2, . . . ,

(2.3)

where δn are the reflection coefficients and π∗n(z) = znπ(1/z̄).

Szegö quadrature formulas. We are concerned with the estimation of integrals
on the unit circle T = {z : |z| = 1} of the form

Iψ(f) =
∫ 2π

0

f(eiθ)dψ(θ)

by a quadrature formula

In(f) =
n∑
j=1

λjf(xj),(2.4)

where the parameters λj and xj , 1 ≤ j ≤ n, are determined so that Iψ(f) = In(f)
for all f ∈ Λ−(n−1),n−1. Furthermore, the nodes {xj}nj=1 should lie on the unit
circle. We know that the zeros of ρn lie in D (see [1], p. 184). In order to construct
a polynomial with zeros on T, we define

Bn(z, τn) = ρn(z) + τnρ
∗
n(z), |τn| = 1, ∀n.(2.5)

This polynomial has n simple zeros on T (see [6]) and {Bn(z, τn)}n is called a
sequence of para-orthogonal polynomials with respect to ψ. If xj , 1 ≤ j ≤ n, are
the zeros of Bn(z, τn), then (2.4) is called the n-point Szegö quadrature formula.

Let us define

An(z, τn) = πn(z)− τnπ∗n(z), |τn| = 1, ∀n,(2.6)
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where πn is the polynomial associated with ρn with respect to ψ, then the weights
λj , 1 ≤ j ≤ n, of the n-point Szegö quadrature formula, can be expressed as ([5])

λj =
−1
2xj

An(xj , τn)
B′n(xj , τn)

, 1 ≤ j ≤ n,(2.7)

where xj , 1 ≤ j ≤ n, are the zeros of Bn(z, τn).
To the measure ψ, we can associate Carathéodory functions Fψ that is, functions

analytic in D = {z : |z| < 1} with < (Fψ) ≥ 0 for z ∈ D. We can express Fψ as

Fψ(z) =
∫ 2π

0

eiθ + z

eiθ − z dψ(θ) + ic, c ∈ R,(2.8)

which is known as the Herglotz-Riesz transform for the measure ψ. Clearly c =
=Fψ(0).

Conversely, given a Carathéodory function F , there exists a positive Borel mea-
sure ψ on [0, 2π] such that (2.8) holds.

Let us define the rational functions

Rn(z, τn) =
An(z, τn)
Bn(z, τn)

, |τn| = 1, ∀n,(2.9)

where Bn and An are as in formulas (2.5) and (2.6), respectively. The role played by
Fψ(z) and Rn(z, τn) with respect to the Szegö formula is displayed in the following

Lemma 2.1 (See [5]). Let G be a neighbourdhood of T with boundary Γ consisting
of a finite number of rectifiable Jordan curves, and let f(z)

z be analytic in G. Then,
for each n = 1, 2, . . . it holds that

En(f) = Iψ(f)− In(f) =
1

2πi

∫
Γ

(Fψ(z)−Rn(z, τn)) g(z)dz,

where g(z) = − f(z)
2z and the rational function Rn(z, τn) is given as in formula (2.9).

Remark 2.2. The Lemma in particular covers the situation where G contains the
whole of Ĉ − D, and f(z)

z is analytic at z = ∞. Furthermore, assuming that f(z)
z

is analytic in G is not a restriction, since when f(0) 6= 0, we can deal with the
function f(z)− f(0).

So, it is easy to see that

|En(f)| ≤ 1
4π

max
ξ∈Γ

{∣∣∣∣f(ξ)
ξ

∣∣∣∣} ∫
Γ

|Fψ(z)−Rn(z, τn)| dz.(2.10)

Second kind measure. From the recurrence relations (2.1), and the Favard The-
orem ([6]) one sees that the sequence {πn} of associated polynomials is also orthog-
onal with respect to a measure ψ̃ which is said to be of the second kind associated
with ψ. In order to calculate this measure, the following result is required,

Theorem 2.3 ([9]). Let F be analytic in T and suppose that F has simple poles at
{zk}nk=1 with |zk| = 1 in such a way that the limits

lim
z→zk

(z − zk)F (z) = γk(2.11)

exist and z̄kγk ∈ R. Assume that the nontangencial boundary values

lim
z→eiθ

<
{
F (z)−

n∑
k=1

γk
z − zk

}
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exist a.e. on [0, 2π] and are Lp-integrable on [0, 2π] with p ∈ (1,+∞). Then,

F (z) =
∫ 2π

0

eiθ + z

eiθ − z dψ(θ) + i=(F (0))

with

dψ(θ) = (< (F (z))) dθ −
n∑
k=1

2πγk
zk

dδ(eiθ − zk),(2.12)

where <(F (eiθ)) = limz→eiθ <(f(z)) means the nontangential limit and where

dδ(eiθ − zk) =
{

1 if eiθ = zk,
0 if eiθ 6= zk.

It can also be shown (see [10]) that

Theorem 2.4. If F is the Carathéodory function corresponding to the measure ψ
and ψ̃ is the measure of the second kind associated with ψ, then, G = 1

F is the
Carathéodory function corresponding to ψ̃.

3. Chebyshev weight functions

Throughout the rest of the paper we will restrict ourselves to an absolutely
continuous measure ψ, i.e., dψ(θ) = ω(θ)dθ, ω(θ) > 0 a.e. on [0, 2π]. Thus, instead
of a measure ψ we will deal with a weight function ω(θ). A special case is the
so-called Jacobi-type weight functions.

By a Jacobi-type weight function we mean a function of the form ω(θ) =
h(cos θ) |sin θ| , θ ∈ [0, 2π] where h(x) = (1 − x)α(1 + x)β , x ∈ [−1, 1], α, β > −1.

Thus,

ω(θ) = h(cos θ) |sin θ|
= (1 − cos θ)α(1 + cos θ)β

√
1− cos2 θ

= (1 − cos θ)α(1 + cos θ)β
√

(1− cos θ)(1 + cos θ)
= (1 − cos θ)α+1/2(1 + cos θ)β+1/2.

Observe that we can write

ω(θ) = 2γ1+γ2
∣∣eiθ − 1

∣∣2γ1 ∣∣eiθ + 1
∣∣2γ2 = 2γ1+γ2

∣∣∣∣sin θ2
∣∣∣∣2γ1

∣∣∣∣cos
θ

2

∣∣∣∣2γ2

(3.1)

with γ1 = α+ 1
2 ; and γ2 = β + 1

2 . Since α, β > −1, then γ1, γ2 > − 1
2 . In this paper

we shall restrict ourselves to the following cases

α = 1
2 , β = 1

2 , ω(θ) = sin2 θ,

α = − 1
2 , β = 1

2 , ω(θ) = 1 + cos θ,
α = 1

2 , β = − 1
2 , ω(θ) = 1− cos θ.

(3.2)

These are three of the so-called Chebyshev weight functions, i.e., α, β ∈ {± 1
2}.

The remaining case α = β = − 1
2 gives rise to ω(θ) = 1 (Lebesgue measure) where

Szegö quadrature formulas are well known (see e.g., [5]).
On the other hand, taking advantage of the connection between orthogonal poly-

nomials on the unit circle and the interval [−1, 1], in [8] it is proved that for the
weight functions (3.1), the sequence ρn(z) of monic polynomials satisfies

ρn(0) =
α+ 1

2 + (−1)n(β + 1
2 )

n+ α+ β + 1
.(3.3)
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We will consider first the weight function: ω(θ) = sin2(θ)
2π . Its moment sequence

is given by µ0 = 1/2, µ1 = 0, µ2 = −1/4 and µk = 0 ∀k ≥ 3. From (3.3) the
reflection coefficients are δn := ρn(0) = 1+(−1)n

n+2 . The Szegö polynomials for some
values of n in this case are

ρ2(z) = 1
2 + z2, ρ3(z) = z

(
1
2 + z2

)
,

ρ4(z) = 1
3 + 2

3z
2 + z4, ρ5(z) = z

(
1
3 + 2

3z
2 + z4

)
.

As a general rule, we have deduced the following

Proposition 3.1. The sequence {ρn}, where

ρn(z) =

{
2

n+2

∑n/2
i=0(i+ 1)z2i if n is even,

z 2
n+1

∑(n−1)/2
i=0 (i+ 1)z2i if n is odd,

(3.4)

is the sequence of monic Szegö polynomials with respect to the weight function
ω(θ) = sin2(θ)

2π , for all n.

Proof. Suppose that n is even, then

〈ρn(z), zk〉ω =
∫ 2π

0
ρn(eiθ)e−ikθ sin2(θ)

2π dθ

= 1
2πi

∫
T

(
−1

2n+4

∑n/2
i=0(i+1)z2i

)
(z2−1)2

zk+3 dz

= Res(h, 0),

where h(z) =

(
−1

2n+4

∑n/2
i=0(i+1)z2i

)
(z2−1)2

zk+3 . Therefore,

h(z) =
−1

2n+ 4

n/2∑
i=0

i+ 1
zk−2i−1

+
n/2∑
i=0

−2(i+ 1)
zk−2i+1

+
n/2∑
i=0

i+ 1
zk−2i+3

 .

Note that if k is odd, then Res(h, 0) = 0. So, if k = 0, then

Res(h, 0) =
−1

2n+ 4
(−2 + 2) = 0.

If 2 ≤ k ≤ n− 2, then

Res(h, 0) =
−1

2n+ 4

(
k − 2

2
+ 1− 2

(
k

2
+ 1
)

+
k + 2

2
+ 1
)

= 0.

If k = n, then

Res(h, 0) =
−1

2n+ 4

(n
2
− n− 2

)
=

n+ 4
4(n+ 2)

6= 0.

If n is odd, we have

〈ρn(z), zk〉ω = 〈zρn−1(z), zk〉ω
= 〈ρn−1(z), zk−1〉ω
=
{

0 if 1 ≤ k ≤ n− 1
n+4

4(n+2) if k = n.

If k = 0,

〈ρn(z), 1〉ω = 1
2πi

∫
T
zρn−1(z)(z2−1)2

−4z3 dz

= 1
2πi

∫
T
ρn−1(z)(z2−1)2

−4z2 dz

= Res(h, 0),
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where

h(z) =
−1

2(n+ 1)

(n−1)/2∑
i=0

(i+ 1)(z2i+2) +
(n−1)/2∑
i=0

(−2(i+ 1))(z2i)

+
(n−1)/2∑
i=0

(i+ 1)(z2i−2)

 .

Thus, Res(h, 0) = 0. Therefore, for all n, we have that

〈ρn(z), zk〉ω =
{

0 if 0 ≤ k ≤ n− 1,
n+4

4(n+2) if k = n.

The associated polynomials for some values of n are

π0(z) = −1
2
, π1(z) = −1

2
z,

π2(z) =
1
4
− 1

2
z2, π3(z) = z

(
1
4
− 1

2
z2

)
,

π4(z) =
1
6

+
1
6
z2 − 1

2
z4, π5(z) = z

(
1
6

+
1
6
z2 − 1

2
z4

)
.

Proposition 3.2. The sequence {πn}, where

πn(z) = 1
n+2

1−zn
1−z2 − 1

2z
n for n even,

πn(z) = z
(

1
n+1

1−zn−1

1−z2 − 1
2z
n−1
)

= zπn−1(z) for n odd,
(3.5)

is the sequence of associated polynomials with respect to the weight function ω(θ) =
sin2(θ)

2π , for all n.

Proof. For n even,

zπn−1(z)− δnπ∗n−1(z) = z2πn−2(z)− δnπ∗n−2(z)

= z2
(

1
n

1−zn−2

1−z2 − 1
2z
n−2
)
− 2

n+2

(
1
n
z2(1−zn−2)

1−z2 − 1
2

)
= 1

n
z2(1−zn−2)

1−z2 − 1
n(n+2)

z2(1−zn−2)
1−z2 + 1

n+2 −
1
2z
n−2

= 1
n(n+2)(1−z2)

(
(n+ 2)z2(1− zn−2)− 2z2(1 − zn−2) + (1− z2)n

)
− 1

2z
n

= 1
n(n+2)(1−z2)

(
(n+ 2)z2 − (n+ 2)zn − 2z2 + 2zn + n− nz2

)
− 1

2z
n

= 1
n(n+2)(1−z2) (−nzn + n)− 1

2z
n

= 1
n+2

1−zn
1−z2 − 1

2z
n

= πn(z).



690 L. DARUIS, P. GONZÁLEZ-VERA, AND O. NJÅSTAD

On the other hand,

δnzπn−1(z)− π∗n−1(z) = δnz
2πn−2(z)− π∗n−2(z)

= 2
n+2z

2
(

1
n

1−zn−2

1−z2 − 1
2z
n−2
)
−
(

1
n
z2(1−zn−2)

1−z2 − 1
2

)
= 2

n(n+2)
z2(1−zn−2)

1−z2 − 1
n
z2(1−zn−2)

1−z2 − 1
n+2z

n + 1
2

= 1
n(n+2)(1−z2)

(
2z2(1− zn−2)− (n+ 2)z2(1 − zn−2)− (1− z2)nzn

)
+ 1

2

= 1
n(n+2)(1−z2)

(
−nz2 + nzn − nzn + nzn+2

)
+ 1

2

= 1
n(n+2)(1−z2)

(
−nz2(1− zn)

)
+ 1

2

= − 1
n+2

z2(1−zn)
1−z2 + 1

2

= −π∗n(z).

For n odd we have, since δn = 0,

zπn−1(z)− δnπ∗n−1(z) = zπn−1(z) = πn(z),

δnzπn−1(z)− π∗n−1(z) = −π∗n−1(z) = −π∗n(z).

We have proved that the polynomial πn, defined above, satisfies the recurrence
relations

zπn−1(z)− δnπ∗n−1(z) = π∗n(z),

δnzπn−1(z)− π∗n−1(z) = −π∗n(z).

Thus, since π0(z) = − 1
2 , this proves the proposition.

If {ρn} is the sequence of monic Szegö polynomials given in formula (3.4), we
can construct the para-orthogonal polynomials Bn(z, τn) = ρn(z) + τnρ

∗
n(z), where

|τn| = 1. We have calculated them for τn = 1 and τn = −1, ∀n as given in the
following

Proposition 3.3.

B2n(z, 1) = (n+2)
n+1

1−z2n+2

1−z2 , B2n(z,−1) = 1
n+1

∑n
i=0(2i− n)z2i(3.6)

and

B2n+1(z, 1) = 1
n+1

(∑n
i=0(i+ 1)z2i+1 +

∑n
i=0(n− i+ 1)z2i

)
,

B2n+1(z,−1) = 1
n+1

(∑n
i=0(i+ 1)z2i+1 −

∑n
i=0(n− i+ 1)z2i

)
.

(3.7)

Proof.

B2n(z, 1) = 1
n+1

∑n
i=0(i+ 1)z2i + 1

n+1

∑n
i=0(n− i + 1)z2i

= 1
n+1

∑n
i=0 ((i + 1) + (n− i+ 1)) z2i

= n+2
n+1

∑n
i=0 z

2i

= (n+2)
n+1

1−z2n+2

1−z2 .
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Similarly,

B2n(z,−1) = 1
n+1

∑n
i=0(i + 1)z2i − 1

n+1

∑n
i=0(n− i+ 1)z2i

= 1
n+1

∑n
i=0 ((i + 1)− (n− i+ 1)) z2i

= 1
n+1

∑n
i=0(2i− n)z2i

and

B2n+1(z, 1) = ρ2n+1(z) + ρ∗2n+1(z) = zρ2n(z) + ρ∗2n(z)

= 1
n+1

∑n
i=0(i+ 1)z2i+1 + 1

n+1

∑n
i=0(n− i+ 1)z2i

= 1
n+1

(∑n
i=0(i+ 1)z2i+1 +

∑n
i=0(n− i+ 1)z2i

)
,

B2n+1(z,−1) = ρ2n+1(z)− ρ∗2n+1(z) = zρ2n(z)− ρ∗2n(z)

= 1
n+1

∑n
i=0(i + 1)z2i+1 − 1

n+1

∑n
i=0(n− i+ 1)z2i

= 1
n+1

(∑n
i=0(i + 1)z2i+1 −

∑n
i=0(n− i+ 1)z2i

)
.

Similarly, we can construct the polynomial An(z, τn) = πn(z) − τnπ∗n(z), where
again, |τn| = 1, ∀n. If the sequence {πn} is given by formula (3.5), then we have

Proposition 3.4.

A2n(z, 1) = n+2
2(n+1) (1− z2n), A2n(z,−1) = n(z2n+2−1)

2(n+1)(1−z2) + (n+2)z2(1−z2n−2)
2(n+1)(1−z2)

(3.8)

and

A2n+1(z, 1) =
z(1− z2n)

2(n+ 1)(1 + z)
+

1
2

(1 − z2n+1),

A2n+1(z,−1) =
z(1− z2n)

2(n+ 1)(1− z)
− 1

2
(1 + z2n+1).

(3.9)

Proof.

A2n(z, 1) =
(

1
2n+2

1−z2n

1−z2 − 1
2z

2n
)
−
(

1
2n+2

z2(1−z2n)
1−z2 − 1

2

)
= 1

2(2n+2)(1−z2)

(
2(1− z2n)− 2z2(1− z2n) + (1 − z2n)(2n+ 2)(1− z2)

)
= 1

2(2n+2)(1−z2)

(
(2n+ 4)− (2n+ 4)z2 − (2n+ 4)z2n + (2n+ 4)z2n+2

)
= n+4

2(2n+2)(1−z2)

(
1− z2 − z2n + z2n+2

)
= 2n+4

2(2n+2)(1−z2)

(
(1− z2)(1 − z2n)

)
= n+2

2(n+1) (1 − z2n),

A2n(z,−1) =
(

1
2n+2

1−z2n

1−z2 − 1
2z

2n
)

+
(

1
2n+2

z2(1−z2n)
1−z2 − 1

2

)
= 1

2(2n+2)(1−z2)

(
2(1− z2n) + 2z2(1− z2n)− (1 + z2n)(2n+ 2)(1− z2)

)
= 1

2(2n+2)(1−z2)

(
−2n− (2n+ 4)z2 − (2n+ 4)z2n + 2nz2n+2

)
= n(z2n+2−1)

2(n+1)(1−z2) + (n+2)z2(1−z2n−2)
2(n+1)(1−z2) .
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Similarly,

A2n+1(z, 1) = π2n+1(z)− π∗2n+1(z) = zπ2n(z)− π∗2n(z)

= z
(

1
2(n+1)

1−z2n

1−z2 − 1
2z

2n
)
−
(

1
2(n+1)

z2(1−z2n)
1−z2 − 1

2

)
= 1

2(n+1)(1−z2)

(
z(1− z2n)− z2(1− z2n) + (1− z2n+1)(n+ 1)(1− z2)

)
= 1

2(n+1)(1−z2)

(
z(1− z2n)(1 − z) + (1− z2n+1)(n+ 1)(1− z2)

)
= z(1−z2n)

2(n+1)(1+z) + 1
2 (1 − z2n+1),

A2n+1(z,−1) = π2n+1(z) + π∗2n+1(z) = zπ2n(z) + π∗2n(z)

= z
(

1
2(n+1)

1−z2n

1−z2 − 1
2z

2n
)

+
(

1
2(n+1)

z2(1−z2n)
1−z2 − 1

2

)
= 1

2(n+1)(1−z2)

(
z(1− z2n) + z2(1− z2n)− (1 + z2n+1)(n+ 1)(1− z2)

)
= 1

2(n+1)(1−z2)

(
z(1− z2n)(1 + z)− (1 + z2n+1)(n+ 1)(1− z2)

)
= z(1−z2n)

2(n+1)(1−z) −
1
2 (1 + z2n+1).

We know that the coefficients of the Szegö quadrature formula can be written as
in (2.7). If An and Bn are as in formulas (3.8) and (3.6), respectively, for n even,
we have

B
′

n(z, 1) = n+4
n+2

−(n+2)zn+1(1−z2)−(1−zn+2)(−2z)
(1−z2)2

= n+4
n+2

−(n+2)zn+1+(n+2)zn+3+2z−2zn+3

(1+z)2

= n+4
n+2z

(
2−(n+2)zn+nzn+2

(1−z2)2

)
.

In this case, the nodes are xk = e
2kπi
n+2 , k = 1, ..., n + 1, k 6= n

2 + 1. Thus, for all
k = 1, ..., n+ 1, k 6= n

2 + 1 and by formula (2.7),

λk = −1

2e
2kπi
n+2

1−
(
−e

2kπi
n+2

)n
2e

2kπi
n+2

(
−(n+2)

(
e

2kπi
n+2

)n
+n+2

)
(
1−e

4kπi
n+2

)2

= − 1

4e
2kπi
n+2

1−e
2knπi
n+2

(n+2)(1−e
2knπi
n+2 )

(
1− e 4knπi

n+2

)2

= − 1
4(n+2)

1−2e
4kπi
n+2 +e

8kπi
n+2

e
4kπi
n+2

= − 1
4(n+2)

(
−2 + 2<

(
e

4kπi
n+2

))
=

1−cos( 4kπ
n+2 )

2(n+2) .

In short, the following theorem has been shown

Theorem 3.5. The coefficients of the n-point Szegö quadrature formula for n even
corresponding to τn = 1, n = 1, 2, . . . for the weight function ω(θ) = sin2 θ

2π are

λk =
1− cos

(
4kπ
n+2

)
2(n+ 2)

, k = 1, ..., n+ 1, k 6= n

2
+ 1,

and the nodes are given by xk = e
2kπi
n+2 , k = 1, ..., n+ 1, k 6= n

2 + 1.
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When τn 6= 1 explicit formulas for the nodes and the weights are not available.
For the purpose of illustration we have calculated the weights and nodes for the
n-point Szegö quadrature formula for some values of even n and τn = −1. If we
choose n = 4, then

B4(z,−1) = 2
3 (z4 − 1) and A4(z,−1) = − 1

3 (z4 − z2 + 1).

Thus, the nodes {xk}4k=1 and the weights {λk}4k=1 will be given by

x1 = 1, x2 = −1, x3 = i, x4 = −i,

λ1 = λ2 = 0.0625, λ3 = λ4 = 0.1875.

If we take n = 6, then in this case we have

B6(z,−1) = 1
4 (3z6 + z4 − z2 − 3) and A6(z,−1) = − 1

8 (3z6 − 2z4 − 2z2 + 3),

and the nodes {xk}6k=1 and the weights {λk}6k=1 will be given by

x1 = 1, x2 = −1,
x3 = 0.408248 + 0.912871i, x4 = 0.408248− 0.912871i,
x5 = −0.408248− 0.912871i, x6 = −0.408248 + 0.912871i,

λk = 0.025 if k = 1, 2,
λk = 0.1125000066 if 3 ≤ k ≤ 6.

In order to obtain the upper bound given in formula (2.10) and the second kind
measure associated with the weight function ω(θ) = sin2 θ

2π , we have calculated the
Herglotz-Riesz transform

Fω(z) =
∫ 2π

0
eiθ+z
eiθ−z

sin2(θ)
2π dθ

= 1
2πi

∫
T
−(w+z)(w2−1)2

4w3(w−z) dw

=
{

Res(h, 0) + Res(h, z) if |z| < 1,
Res(h, 0) if |z| > 1,

where h(w) = −(w+z)(w2−1)2

4w3(w−z) . Since

1
w − z =

∞∑
i=0

(
−1
zi+1

)
wi

and

−(w + z)(w2 − 1)2

4w3(w − z)
=
−w2

4
+

1
2

+
−1
4w2

+
−zw

4
+

z

2w
+
−z
4w3

,

then

Res(h, 0) = 1
4z2 + −z

2z + z
4z3 = 1−z2

2z2 and Res(h, z) = −2z(z2−1)2

4z3 = −(z2−1)2

2z2 .

Therefore

Fω(z) =

{
1−z2

2 if |z| < 1,
1−z2

2z2 if |z| > 1.
(3.10)

In short, we have the following
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Proposition 3.6. The Herglotz-Riesz transform associated with the weight func-
tion ω(θ) = sin2 θ

2π is given by

Fω(z) =

{
1−z2

2 if |z| < 1,
1−z2

2z2 if |z| > 1.
(3.11)

Then we have

Corollary 3.7. dψ̃ = dθ + π
(
dδ(eiθ − z1) + dδ(eiθ − z2)

)
is the second kind mea-

sure associated with dψ(θ) = sin2 θ
2π dθ, where z1 = 1 and z2 = −1.

Proof. By (3.10), if |z| < 1, then F (z) = 1−z2

2 is the Carathéodory function corre-
sponding to the measure dψ(θ) = sin2 θ

2π dθ and then, by Theorem 1.3, G(z) = 2
1−z2

is the Carathéodory function corresponding to the measure ψ̃ given in Theorem
1.2. By formula (2.11),

z1 = 1, γ1 = −1,

z2 = −1, γ2 = 1

and

G(eiθ) = 2 1
1−cos 2θ−i sin 2θ = 2 1−cos 2θ+i sin 2θ

2−2 cos 2θ

= 1 + sin 2θ
1−cos 2θ i.

Thus, <(G(eiθ)) = 1 and, by formula (2.12),

dψ̃ = dθ + π
(
dδ(eiθ − z1) + dδ(eiθ − z2)

)
and the sequence {πn}, given as in formula (3.5), is orthogonal with respect to
dψ̃.

If An and Bn are as in formulas (3.8) and (3.6), respectively, for n even, we can
compute the modified approximants: Rn(z, 1) = An(z,1)

Bn(z,1) and we obtain

Rn(z, 1) =
(1− zn)(1− z2)

2(1− zn+2)
and the error for the Herglotz-Riesz transform is given by

Fω(z)−Rn(z, 1) =


zn(1−z2)2

2(1−zn+2) if |z| < 1,
(1−z2)2

2z2(1−zn+2) if |z| > 1.
(3.12)

According to Lemma 2.1, if G = {z : r < |z| < R, r < 1, R > 1} , then Γ =
Γ1 ∪ Γ2, where

Γ1 = {z : |z| = r, 0 < r < 1} and Γ2 = {z : |z| = R, R > 1} .(3.13)

In this case, by formula (3.12) and (2.10)

|En(f)| ≤ 1
4π maxξ∈Γ

{∣∣∣ f(ξ)
ξ

∣∣∣}(∫Γ1

|z|n|1−z2|2
2|1−|z|n+2| +

∫
Γ2

|1−z2|2
2|z|2(1−|z|n+2)

)
= 1

4π maxξ∈Γ

{∣∣∣ f(ξ)
ξ

∣∣∣} (∫ 2π

0
rn(1−2r2 cos 2θ+r4)

2(1−rn+2) rdθ +
∫ 2π

0
1−2R2 cos 2θ+R4

2R2(Rn+2−1) Rdθ
)

= 1
4 maxξ∈Γ

{∣∣∣ f(ξ)
ξ

∣∣∣}( rn+1(1+r4)
1−rn+2 + (1+R4)

R(Rn+2−1)

)
.

Thus, we have proved the following
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Theorem 3.8. Let f be analytic in G = {z : r < |z| < R, r < 1, R > 1} . Then,
for each n even

|En(f)| ≤ 1
4 maxξ∈Γ

{∣∣∣f(ξ)
ξ

∣∣∣}( rn+1(1+r4)
1−rn+2 + (1+R4)

R(Rn+2−1)

)
,(3.14)

where Γ = Γ1 ∪ Γ2. Γ1 and Γ2 as in formula (3.13).

Remark 3.9. Note that if f(z) is analytic in {z : |z| < R; R > 1}, then we can
make r → 0 and

|En(f)| ≤ 1
4

max
ξ∈Γ2

{∣∣∣∣f(ξ)
ξ

∣∣∣∣}( (1 +R4)
R(Rn+2 − 1)

)
.

On the other hand, if f(z) is analytic in {z : r < |z| ≤ ∞; 0 < r < 1}, now we
can make R→∞ and one has

|En(f)| ≤ 1
4

max
ξ∈Γ1

{∣∣∣∣f(ξ)
ξ

∣∣∣∣}(rn+1(1 + r4)
1− rn+2

)
.

Since for the remaining Chebyshev weight functions, i.e., ω(θ) = 1+cos θ
2π and

ω(θ) = 1−cos θ
2π , the calculations are quite similar to the previous case, we will omit

them and give only the results.
First, we consider the Chebyshev weight function: ω(θ) = 1+cos θ

2π . In this case
the moment sequence is given by µ0 = 1, µ1 = 1/2 and µk = 0, ∀k ≥ 2. From (3.3),
the reflection coefficients are δn := (−1)n

n+1 , ∀n and we have the following expression
for the Szegö polynomials

Proposition 3.10. The sequence {ρn}, given by

ρn(z) =
(−1)n

n+ 1

n∑
i=0

(−1)i(i + 1)zi,(3.15)

is the sequence of monic Szegö polynomials with respect to the weight function
ω(θ) = 1+cos θ

2π , for all n.

For the associated Szegö polynomials one has

Proposition 3.11. The sequence {πn}, where

πn(z) =
(−1)n

n+ 1
1 + (−1)n−1zn

1 + z
− zn(3.16)

is the sequence of associated polynomials with respect to the weight function ω(θ) =
1+cos θ

2π , for all n.

Let {ρn} be the sequence of monic Szegö polynomials given in formula (3.15).
We have calculated the para-orthogonal polynomial Bn(z, τn) for τn = (−1)n, ∀n
and τn = (−1)n+1, ∀n :

Proposition 3.12.

Bn(z, (−1)n) =
(−1)n(n+ 2)

n+ 1
1 + (−1)nzn+1

1 + z
(3.17)

and

Bn(z, (−1)n+1) =
(−1)n

n+ 1

n∑
i=0

(−1)i(2i− n)zi.(3.18)
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Similarly, if the sequence {πn} is given by formula (3.16), for An(z, (−1)n) and
An(z, (−1)n+1) we have the following

Proposition 3.13.

An(z, (−1)n) =
(−1)n(n+ 2)

n+ 1
(1− (−1)nzn)(3.19)

and

An(z, (−1)n+1) =
(−1)nn(1− (−1)n+1zn+1)

(n+ 1)(1 + z)
+

(−1)n(n+ 2)z(1 + (−1)nzn−1)
(n+ 1)(1 + z)

.

(3.20)

If we choose Bn as in formula (3.17) and An as in formula (3.19), we have,

Theorem 3.14. The coefficients of the n-point Szegö quadrature formula corre-
sponding to τn = (−1)n for the weight function ω(θ) = 1+cos θ

2π are

λk =


1+cos( 2kπ

n+1 )
n+1 if n is odd, 0 ≤ k ≤ n, k 6= n+1

2 ,
1+cos(π+2kπ

n+1 )
n+1 if n is even, 0 ≤ k ≤ n, k 6= n

2 ,

and the nodes are given by

xk =

{
e

2kπi
n+1 if n is odd, 0 ≤ k ≤ n, k 6= n+1

2 ,

e
(π+2kπ)i
n+1 if n is even, 0 ≤ k ≤ n, k 6= n

2 .
(3.21)

In order to obtain the upper bound given in formula (2.10) and the second kind
measure associated with the weight function ω(θ) = 1+cos θ

2π , we have calculated the
Herglotz-Riesz transform:

Proposition 3.15. The Herglotz-Riesz transform associated with the weight func-
tion ω(θ) = 1+cos θ

2π is given by

Fω(z) =
{

1 + z if |z| < 1
− 1+z

z if |z| > 1.(3.22)

As a corollary of this proposition we have

Corollary 3.16. dψ̃ = 1
2dθ + πdδ(eiθ − z1) is the second kind measure associated

with dψ(θ) = 1+cos θ
2π dθ, where z1 = −1.

If An and Bn are as in formulas (3.19) and (3.17), respectively, we can compute
the modified approximants: Rn(z, (−1)n) = An(z,(−1)n)

Bn(z,(−1)n) and we obtain

Rn(z, (−1)n) =
(1− (−1)nzn)(1 + z)

1 + (−1)nzn+1

and the error for the Herglotz-Riesz transform is given by

Fω(z)−Rn(z, (−1)n) =

{
(−1)nzn(1+z)2

1+(−1)nzn+1 if |z| < 1,
−(1+z)2

z(1+(−1)nzn+1) if |z| > 1.
(3.23)

In this case, by formula (3.23) and (2.10)
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Theorem 3.17. Let f be analytic in G = {z : r < |z| < R, r < 1, R > 1} . Then,
for each n

|En(f)| ≤ 1
2 maxξ∈Γ

{∣∣∣f(ξ)
ξ

∣∣∣}( rn+1(1+r2)
1−rn+1 + (1+R2)

Rn+1−1

)
,(3.24)

where Γ = Γ1 ∪ Γ2. Γ1 and Γ2 as in formula (3.13).

For this weight function a result similar to that given in Remark 3.9 also holds.

Finally, for the Chebyshev weight function ω(θ) = 1−cos θ
2π , we have the following:

its moment sequence is given by µ0 = 1, µ1 = −1/2 and µk = 0 ∀k ≥ 2. Note that
in this case, from (3.3), the reflection coefficients are δn := ρn(0) = 1

n+1 , ∀n.

Proposition 3.18. The sequence {ρn}, where

ρn(z) =
1

n+ 1

n∑
i=0

(i+ 1)zi,(3.25)

is the sequence of monic Szegö polynomials with respect to the weight function
ω(θ) = 1−cos θ

2π , for all n.

Remark 3.19. Proceeding as in proof of Proposition 3.1 , it can be checked that

〈ρn(z), zk〉ω = 0, 0 ≤ k ≤ n− 1.

However, the weight function under consideration is a particular case of
∣∣sin θ

2

∣∣2α ,
α > − 1

2 where the sequence {ρn(z)} of monic orthogonal polynomials is explicitly
known. Indeed, it holds [8] that

ρn(z) =
n∑
k=0

(
n
k

)
Γ(α+ n− k)Γ(α+ k + 1)

Γ(α + n+ 1)Γ(α)
zk.(3.26)

Thus, when taking α = 1 in (3.26), formula (3.25) follows.

The associated polynomials are now given in the following

Proposition 3.20. The sequence {πn}, where

πn(z) =
1

n+ 1
1− zn
1− z − z

n,(3.27)

is the sequence of associated polynomials with respect to the weight function ω(θ) =
1−cos θ

2π , for all n.

If {ρn} is the sequence of monic Szegö polynomials given in formula (3.25), the
para-orthogonal polynomials Bn(z, τn) for τn = 1, ∀n and τn = −1, ∀n, are given
by

Proposition 3.21.

Bn(z, 1) =
(n+ 2)
n+ 1

1− zn+1

1− z(3.28)

and

Bn(z,−1) =
1

n+ 1

n∑
i=0

(2i− n)zi.(3.29)

If the sequence {πn} is given by formula (3.27), then, for An(z, 1) and An(z,−1)
one can write
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Proposition 3.22.

An(z, 1) =
n+ 2
n+ 1

(1− zn)(3.30)

and

An(z,−1) =
n(zn+1 − 1)

(n+ 1)(1− z)
+

(n+ 2)z(1− zn−1)
(n+ 1)(1− z)

.(3.31)

If we choose Bn as in formula (3.28) and An as in formula (3.30), we have,

Theorem 3.23. The coefficients of the n-point Szegö quadrature formula corre-
sponding to τn = 1 for the weight function ω(θ) = 1−cos θ

2π are

λk =
1− cos

(
2kπ
n+1

)
n+ 1

and the nodes are xk = e
2kπi
n+1 , k = 1, . . . , n.

For the weight function ω(θ) = 1−cos θ
2π , the Herglotz-Riesz transform is given by

Proposition 3.24. The Herglotz-Riesz transform associated with the weight func-
tion ω(θ) = 1−cos θ

2π is given by

Fω(z) =
{

1− z if |z| < 1,
1−z
z if |z| > 1.(3.32)

Again we have

Corollary 3.25. dψ̃ = 1
2dθ + πdδ(eiθ − z1) is the second kind weight function

associated with dψ(θ) = 1−cos θ
2π dθ, where z1 = 1.

If Bn and An are as in formulas (3.28) and (3.30), respectively, we can compute
the modified approximants: Rn(z, 1) = An(z,1)

Bn(z,1) and we obtain

Rn(z, 1) =
(1− zn)(1 − z)

1− zn+1

and the error for the Herglotz-Riesz transform is

Fω(z)−Rn(z, 1) =

{
zn(1−z)2

1−zn+1 if |z| < 1,
(1−z)2

z(1−zn+1) if |z| > 1.
(3.33)

Therefore, the error bound in this case is given by the following

Theorem 3.26. Let f be analytic in G = {z : r < |z| < R, r < 1, R > 1} . Then
for each n,

|En(f)| ≤ 1
2 maxξ∈Γ

{∣∣∣f(ξ)
ξ

∣∣∣}( rn+1(1+r2)
1−rn+1 + (1+R2)

Rn+1−1

)
,(3.34)

where Γ = Γ1 ∪ Γ2. Γ1 and Γ2 as in formula (3.13).

Finally, it should be indicated that a similar result to Remark 3.9 can be given
for this case.
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4. Numerical results

Let

f1(z) = sin(z)
4−z , f2(z) = sin( 1

z )

z− 1
4
, and f3(z) = sin(z)

(4−z)(z− 1
4 )
.

Note that f1(z)
z is analytic for 0 ≤ |z| ≤ R when R < 4, f2(z)

z is analytic for
r ≤ |z| ≤ ∞ when r > 1

4 , and f3(z)
z is analytic for r ≤ |z| ≤ R when 1

4 < r < R < 4.
For these functions, we have calculated the exact error of the Szegö quadra-

ture formula with respect to the weight functions ω(θ) = sin2 θ
2π , ω(θ) = 1+cos θ

2π

and ω(θ) = 1−cos θ
2π , respectively, and compared them with the error for the well-

known Gauss-Legendre quadrature formulas. Such quadrature formulas should be
understood in the following sense (see [4],[5]). Set f(eiθ) = f1(θ) + if2(θ). Thus,

Iω(f) =
∫ 2π

0

F1(θ)dθ + i

∫ 2π

0

F2(θ)dθ,

where Fi(θ) = fi(θ)ω(θ), i = 1, 2. If we estimate these latter integrals by means
of the n-point Gauss-Legendre formula for [0, 2π],

∑n
j=1 AjFi(θj), i = 1, 2 we can

write

Iω(f) ≈
n∑
j=1

Aj (F1(θj) + iF2(θj)) =
n∑
j=1

Ajf(eiθj )ω(θj).

We also have calculated the error bounds given by formulas (3.14), (3.24) and
(3.34). For the computation of Szegö quadrature formulas we have used Theorem
3.5, Theorem 3.14 and Theorem 3.23 for the weights functions ω(θ) = sin2 θ

2π , ω(θ) =
1+cos θ

2π and ω(θ) = 1−cos θ
2π , respectively.

For the weight function ω(θ) = sin2 θ
2π , we have the results appearing in Tables 1–3.

For the weight function ω(θ) = 1+cos θ
2π , we have the numerical results displayed in

Tables 4–6. Finally, for the weight function ω(θ) = 1−cos θ
2π , we have the correspond-

ing numerical results given in Tables 7–9.
From the numerical results we see that Szegö formulas compete very favorably

with Gauss-Legendre formulas. On the other hand, sharpness of the error bounds
is also established in all of the examples.

Table 1. f1(z)

Nodes Exact error (Szegö) Error bound (R=3.8) Exact error (Gauss-Legendre)

n=8 1.24397935E-06 2.431076E-05 1.71024787E-03
n=16 9.68002240E-12 5.591511E-10 1.48264889E-07
n=24 1.54390389E-16 1.286057E-14 1.18979947E-11

Table 2. f2(z)

Nodes Exact error (Szegö) Error bound (r=0.27) Exact error (Gauss-Legendre)

n=8 1.990366E-05 4.071163E-04 3.156266E-02
n=16 1.548800E-10 1.149814E-08 4.977121E-06
n=24 2.178812E-15 3.247415E-13 7.953741E-08
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Table 3. f3(z)

Nodes Exact error (Szegö) Error bound (R=3.8, r=0.27) Exact error (Gauss-Legendre)

n=8 7.400192E-07 3.161199E-04 3.116131E-04
n=16 1.091954E-11 7.403863E-09 2.943992E-10
n=24 2.775557E-17 1.740482E-13 4.424738E-09

Table 4. f1(z)

Nodes Exact error (Szegö) Error bound (R=3.8) Exact error ( Gauss-Legendre)

n=8 3.34996165E-06 5.174076E-05 3.50150187E-04
n=16 3.44166917E-11 1.190039E-09 1.43798826E-08
n=24 5.27355936E-16 2.737112E-14 1.26720897E-10

Table 5. f2(z)

Nodes Exact error (Szegö) Error bound (r=0.27) Exact error (Gauss-Legendre)

n=8 6.462231E-05 8.689770E-04 1.718254E-02
n=16 5.506783E-10 2.454229E-08 9.102588E-07
n=24 8.409939E-15 6.931467E-13 8.015859E-07

Table 6. f3(z)

Nodes Exact error (Szegö) Eror bound (R=3.8, r=0.27) Exact error (Gauss-Legendre)

n=8 2.614782E-06 6.729565E-04 1.895428E-04
n=16 3.882527E-11 1.576203E-08 1.192112E-07
n=24 4.996003E-16 3.705510E-13 9.867432E-08

Table 7. f1(z)

Nodes Exact error (Szegö) Error bound (R=3.8) Exact error (Gauss-Legendre)

n=8 2.08782660E-06 5.174076E-05 9.61621164E-04
n=16 1.23908591E-11 1.190039E-09 3.25547073E-08
n=24 1.90819582E-16 2.737112E-14 2.32242974E-11

Table 8. f2(z)

Nodes Exact error (Szegö) Error bound (r=0.27) Exact error (Gauss-Legendre)

n=8 2.238229E-05 8.689770E-04 6.482502E-03
n=16 1.982434E-10 2.454229E-08 8.908710E-07
n=24 2.955968E-15 6.931467E-13 5.565306E-08

Table 9. f3(z)

Nodes Exact error (Szegö) Error bound (R=3.8, r=0.27) Exact error (Gauss-Legendre)

n=8 9.413287E-07 6.729565E-04 1.330823E-04
n=16 1.397712E-11 1.576203E-08 2.980441E-08
n=24 2.220446E-16 3.705510E-13 7.450711E-08
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