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NUMERICAL COMPUTATION OF VISCOUS PROFILES
FOR HYPERBOLIC CONSERVATION LAWS

HEINRICH FREISTÜHLER AND CHRISTIAN ROHDE

Abstract. Viscous profiles of shock waves in systems of conservation laws can
be viewed as heteroclinic orbits in associated systems of ordinary differential
equations (ODE). In the case of overcompressive shock waves, these orbits oc-
cur in multi-parameter families. We propose a numerical method to compute
families of heteroclinic orbits in general systems of ODE. The key point is a
special parameterization of the heteroclinic manifold which can be understood
as a generalized phase condition; in the case of shock profiles, this phase con-
dition has a natural interpretation regarding their stability. We prove that our
method converges and present numerical results for several systems of con-
servation laws. These examples include traveling waves for the Navier-Stokes
equations for compressible viscous, heat-conductive fluids and for the magne-
tohydrodynamics equations for viscous, heat-conductive, electrically resistive
fluids that correspond to shock wave solutions of the associated ideal models,
i.e., the Euler, resp. Lundquist, equations.

1. Introduction and outline

Consider a nonlinear system of conservation laws in one space dimension,

ut + f(u)x = 0,(1.1)

where x ∈ R, t ≥ 0, u(x, t) takes values in Rm, and the flux function f is a
smooth nonlinear mapping from (a subset of) Rm to Rm. Assume that the (1.1) is
hyperbolic; i.e., for each u, the Jacobian Df : Rm → Rm×m has m real eigenvalues
λ1(u), . . . , λm(u) with

λ1(u) ≤ λ2(u) ≤ · · · ≤ λm(u),(1.2)

and a complete set of associated eigenvectors r1(u), . . . , rm(u). We are interested
in viscous profiles for shock wave solutions of (1.1).

To be specific, for given base states u−, u+ ∈ Rm and shock speed s ∈ R a
function U with

U(x, t) =
{
u− : x < st,
u+ : x > st,

(1.3)
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is called a shock wave solution of (1.1) if U is a solution of (1.1) in the distributional
sense; this is the case if and only if the Rankine–Hugoniot conditions hold, i.e.,

f(u+)− su+ = f(u−)− su− ≡ q.(1.4)

To stay away from degenerate cases—even though these can sometimes be interest-
ing—we assume that the shock waves we consider are noncharacteristic on either
side, i.e., λj(u±) 6= s for j = 1, . . . ,m. Consequently there exist numbers k−, k+ ∈
{0, . . . ,m} such that for j = 1, . . . ,m

λm−j+1(u−) > s for j ≤ k−, λm−j+1(u−) < s for j > k−(1.5)

and

λj(u+) < s for j ≤ k+, λj(u+) > s for j > k+.(1.6)

k−, k+ are the numbers of incoming modes on either side of the shock. Together
with (1.1) consider now also an associated family.

ut + f(u)x = (D(u, δ)ux)x, δ ∈ ∆,(1.7)

of parabolic or hyperbolic-parabolic systems. Systems of hyperbolic conservation
laws which arise in continuum physics are naturally equipped with such families.
Here ∆ ⊂ [0,∞)p with 0 ∈ ∆ denotes the range of the dissipation parameter δ. The
smooth viscosity matrix D : Rm ×∆→ Rm×m is supposed to satisfy D(., 0) = 0.
A viscous profile for a shock wave (1.3) is a solution φ of the ODE boundary value
problem

D(φ, δ)φ̇ = f(φ)− sφ− q, φ(±∞) = u±,(1.8)

or, in other words, a heteroclinic orbit from u− to u+. The motivation for consider-
ing profiles is that a solution of (1.8)—if it exists and under appropriate conditions
on D—provides a regularized counterpart of the shock wave (1.3) to which latter it
converges for δ tending to 0. This can be viewed as expressing that this shock wave
is compatible with the vanishing dissipation limit. For the analytical background
concerning viscous profiles in the context of hyperbolic conservation laws we refer,
e.g., to the book of Serre ([19], Chapter 7) and the references therein.

To classify different types of shock waves and viscous profiles simultaneously,
we assume for a moment that D ≡ δ Id, with Id the identity matrix of order m
and δ > 0 a scalar dissipation parameter. In this case (at least), (1.8) takes the
standard form of a first-order ODE and the states

u± are hyperbolic rest points of the vector field

u 7→ F (u) ≡ D−1(u)(f(u)− su− q),
(1.9)

i.e., the Jacobian of F at u± has no eigenvalues on the imaginary axis. Denoting
the stable and unstable manifolds of u± by Ms(u±),Mu(u±) and the dimensions
of these manifolds by m±s ,m±u , we let

d ≡ m−u +m+
s −m(1.10)

and observe that

m−u = k−,m+
s = k+, and d = k−u + k+ −m.(1.11)

Now if d = 1 and Mu(u−) intersects Ms(u+) transversally, then the solution of
(1.8) consists of a single orbit. Necessarily, k− + k+ = m+ 1, which identifies the
underlying shock wave solution U as a classical or Laxian shock. For d < 1, the
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intersection ofMu(u−) andMs(u+) is not a structurally stable object and U , with
k− + k+ < m + 1, is called undercompressive. Completing this picture, for d > 1,
the generic intersection ofMu(u−) andMs(u+) forms a d-dimensional heteroclinic
manifold connecting u− and u+; the shock wave U , now with k− + k+ > m + 1,
is classified to be overcompressive. We note that (1.9) and (1.11) will of course
not automatically hold for choices of D which are different from multiples of the
identity matrix I. They do hold in many physically interesting cases however, even
though in the typical hyperbolic-parabolic case D is not even of full rank.

Subject of this paper is the presentation, analysis, and application of a numer-
ical algorithm which allows us to compute the viscous profiles of Laxian and, in
particular, of overcompressive shock waves. The method will be formulated and its
convergence proved for general autonomous systems of ODE, i.e., not be restricted
to shock profile equations. Well-established methods are known from the literature
for approximating heteroclinic (or homoclinic) connections that consist of exactly
one orbit; we refer to [3, 5, 16]. Less can be found for heteroclinic manifolds of di-
mension bigger than one [2, 5]; the methods presented (without convergence proofs)
in these papers do (moreover) not seem to be conveniently applicable to the case
of families of shock profiles as regards their respective suggested ways of singling
out the individual orbits in a higher-dimensional heteroclinic manifold. Motivated
by results on the time-asymptotic stability of viscous profiles [14, 6], we introduce
here a special parameterization for heteroclinic manifolds which does fulfill this
necessity. The idea of this parameterization derives from considerations on the
time-asymptotic stability of viscous profiles as solutions of the partial differential
equations. The parameterization can formally be viewed as evaluating a novel ver-
sion of what Beyn calls a phase condition [3]. Based on the parameterization, we
formulate the announced numerical method.

The remainder of the paper is arranged as follows. Section 2 deals with intro-
ducing the novel parameterization. Furthermore a boundary value problem will be
presented the solutions of which are single trajectories with fixed end states. In
Section 3 we introduce an associated problem on a finite interval, to which end we
prescribe asymptotic boundary conditions at its boundary points X±. These ingre-
dients yield the numerical method for approximating the heteroclinic manifold. It
will be shown that the error induced by the truncation procedure vanishes for X±
tending to ±∞. This main result (Theorem 4.1) is proved in Section 4; the proof
follows [3] closely, though with some nontrivial modifications. Finally, in Section
5, we will apply the method first to some instructive simple models, then to physi-
cally relevant systems of conservation laws like those of fluid dynamics and those of
magnetohydrodynamics. The main emphasis lies on the latter, an example where
various different kind of overcompressive shocks waves arise. Note that analytical
findings regarding the existence and shapes of profiles are not presently available
for many of these particularly interesting shock waves; one motivation for us to
design the numerical approach presented here consisted in the wish to numerically
obtain substantial new information on this problem.

2. A parameterization

of higher-dimensional heteroclinic connections

In the first part of this section, we consider a general system of ODE and in-
troduce a parameterization for higher-dimensional heteroclinic connections and a
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notion of nondegeneracy of such manifolds. In the second part of the section we
then focus on ODE systems that describe shock profiles for conservation laws and
emphasize in particular the benefits of the new parameterization in that case.

2.1. The general case. Fix a vector field F ∈ C2(Rm,Rm) and consider a family
Φ of trajectories which are heteroclinic to two given rest points u−, u+ of F ; in other
words, φ ∈ Φ satisfies

φ̇ = F (φ), φ(±∞) = u±.

We assume that the intersection M of Mu(u−) and Ms(u+), given by

M = {φ(x) |φ ∈ Φ, x ∈ (−∞,∞)},(2.1)

is a smooth manifold of dimension d for d ∈ {1, . . . ,m}.
For the purpose of its numerical approximation we parameterize Φ in the follow-

ing specific way: Define a mapping

Ω : Φ→ Rm

through

Ω(φ) ≡
∫

R

A(x, φ(x))(φ(x) − φ∗(x))dx,(2.2)

with some appropriate function A : R×Rm → Rm×m and φ∗ either an element of
Φ or given by

φ∗ =

{
u− : x < 0,

u+ : x > 0.
(2.3)

The subsequent assumption, crucial for the approach, means that Ω is a chart of
Φ.

Assumption 2.1. The mapping Ω is injective and the range S = Ω(Φ) is a d-
dimensional manifold in Rm allowing for a global chart P : S → T ≡ P(S) ⊂ Rd.
The corresponding parameterization of Φ as {φτ}τ∈T with φτ defined through

PΩ(φτ ) = τ, τ ∈ T,
is differentiable.

Remark 2.2. (i) Choosing different values of τ corresponds to switching between
different trajectories φτ ∈ Φ but not necessarily between different orbits. One can
think of τ as a pair (τ̌ , τ̂) ∈ R×Rd−1 such that variations in τ̌ at constant τ̂ result
in a phase shift along one specific orbit while changing τ̂ corresponds to switching
between orbitally different trajectories.

For d = 1, shifts are the only possible variations. This case is treated by the
work of Beyn[3]. He uses the condition∫ ∞

−∞
φ̇>∗ (φ − φ∗) dx = 0,(2.4)

which was also introduced by Doedel. In (2.4) a shift is selected so as to minimize
the L2-distance to some reference object φ∗. Note the LHS in (2.4) can be recovered
as a special case of the mapping P ◦Ω. However, we are interested in nondecaying
A, in particular the case A = Id, which corresponds to L1-difference rather than
L2-distance.



COMPUTATION OF VISCOUS PROFILES 1025

(ii) In [2] d-dimensional heteroclinic manifolds that arise in the context of phase
transition problems are considered. For parametrization, condition (2.4) together
with d−1 conditions on the L2-norm of the trajectories are used. While L2 seems a
natural setting in that case, for viscous conservation laws L1 is the relevant space.

(iii) In practice it might be difficult to actually find a chart P, since S is not
known in general.

Locally however any linear map P : Rm → Rd of full rank with

T S ∩ N(P) = {0}

yields such a chart by simple restriction to S.

By the parameterization induced by Assumption 2.1 we can view a single tra-
jectory of Φ as the solution of a boundary value problem. This problem consists in
finding, for τ ∈ Rd, a function φτ ∈ C1(R) such that

Fτ (φτ ) = 0,(2.5)

where the operator Fτ is defined by

Fτ :


C1(R) → C0(R)×Rd,

φ 7→
(
φ̇− F (φ)

Ψ(φ)− τ

)
,

(2.6)

with Ψ = P ◦ Ω.
Let us restrict our discussion to situations where the family Φ can be parame-

terized as introduced above and satisfies a certain genericity assumption.

Definition 2.3. Let Assumption 2.1 be true and let Φ be represented by the
smooth d-parameter family

Φ = {φτ ∈ C1(R) | Fτ (φτ ) = 0, τ ∈ T }.

Then Φ is said to constitute a nondegenerate manifold M given by (2.1) if

(i) the rest points u± are hyperbolic; i.e., the Jacobian DF of F evaluated at u±

has no purely imaginary eigenvalues:

spec
(
DF (u±)

)
⊂ C \ iR,(2.7)

(ii) the relation d = m−u + m+
s −m holds, where m−u = dim Mu(u−) and m+

s =
dim Ms(u+),

(iii) for each τ ∈ T , the condition

ẏ = DF (φτ )y, y ∈ C1(R), y(±∞) = 0⇔ y ∈ span
{
∂φτ

∂τ1
, . . . ,

∂φτ

∂τd

}
(2.8)

holds.

Definition 2.3 is a generalization of a notion of nondegenerate orbits given by
Beyn [3]. It will be substantial for verifying the error estimates that will be derived
in Section 3 with a linearization technique.
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2.2. The conservation law case. In this section we focus on the treatment of
viscous profiles; this means, for a shock wave solution (1.3) traveling with speed
s, we consider the boundary value problem (1.8). For simplicity we think again
of D = δ Id, δ > 0, while again the same analysis continues to hold for physically
relevant systems with different, even degenerate viscosity matrix D. We consider
families Φ of viscous profiles and let Ω be defined as in (2.2) with A = Id. It is
shown that this choice allows for a natural interpretation of Assumption 2.1.

Let w±(., ., κ±) denote the diffusion waves ([14]) with base states u± and masses∫
R

w±(x, t, κ±)dx = κ± ∈ R±(u±, s).

Here the eigenspaceR± is given byR±(u, s) ≡
∑
±(λi(u)−s)>0 N (Df(u)− λi(u)Id).

φ∗ ∈ Φ is said to be asymptotically stable if for any function ū in an interestingly
large subclass of L1(R) ∩ L∞(R), there exist φ ∈ Φ and κ−, κ+ ∈ R±(u±, s) such
that the solution u of (1.7) to the initial datum φ∗ + ū exists and satisfies

lim
t→∞

∥∥∥u(., t)−
(
φ( .− st) + w−( ., t, κ−) + w+( ., t, κ+)

) ∥∥∥
L1(R)

= 0;(2.9)

by conservation of mass, (2.9) implies∫
R

ū(x) dx = lim
t→∞

∫
R

u(t, x)− φ∗(x− st) dx

=
∫

R

φ(x) − φ∗(x) dx + κ− + κ+.(2.10)

In many situations it is either known or generally believed (e.g., for physical reasons)
that for a given shock wave profiles exist, are asymptotically stable and allow for
a unique determination of the orbit φ by the mass of the initial perturbation.
Then it is impossible to have Ω(φ1) = Ω(φ2) for two different profiles φ1, φ2 ∈ Φ,
as otherwise φ1,2 = φ∗ + ū1,2 with

∫
ū1 =

∫
ū2 while the limits of the solutions

φ1, φ2 do clearly not coincide. In other words, any such situation is an example of
injectivity of Ω. We recall two specific examples which admit a rigorous analysis.

Example 2.4 (Laxian shock wave). Let the eigenvalues λi of Df be simple and
either genuinely nonlinear (ri · ∇λi 6= 0) or generically degenerate ((ri · ∇)2

λ 6= 0
whenever ri · ∇λi = 0). We consider the case of an i-shock U ; that is, k−, k+ in
(1.5), (1.6) satisfy i = m − k− + 1 = k+. This means d = 1 in the notation of
Section 2.1.

Then for |u+ − u−| sufficiently small the viscous profile φ∗ for U exists and
is asymptotically stable towards all perturbations in an appropriate subspace of
H1(R). The asymptotic profile is given by φ = φ∗(. + hi) where h = (h1, . . . , hm)
is the unique solution of

[r1(u−)| . . . |ri−1(u−)|u+ − u−|ri+1(u+)| . . . |rm(u+)]h> =
∫

R

u0.(2.11)

Note that the invertibility of the matrix in (2.11) is ensured for small jumps.
For the proof of these results we refer to [14, 18] and [10].

Concerning overcompressive shock waves there is the following result.

Example 2.5 (Rotationally invariant system). Let us consider the system

ut + (|u|2u)x = νuxx, u ∈ Rm, ν > 0,(2.12)
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of parabolic conservation laws. The eigenvalues of Df(u) for f(u) = |u|2u are given
by

λ1(u) = · · · = λm−1(u) = |u|2, λm(u) = 3|u|2.
Consequently (2.12) is not strictly hyperbolic and allows for a variety of shock
waves of different types. Here we restrict our discussion to waves U with speed s
such that

λm(u+) < s < λ1(u−).

For this overcompressive situation we obtain d = m by (1.5), (1.6) and (1.10). A
d-parameter family of profiles for U exists. The asymptotic stability of some of
these profiles and the local bijectivity of the mapping

∫
R u0 7→ φ were proved in [6].

Model (2.12) captures the typical behaviour of rotationally invariant systems at
symmetry invariant points of their state spaces, e.g., for magnetohydrodynamics at
the points with double eigenvalues. For the model character of (2.12), cf. [6].

Finally we mention the conjecture that the overcompressive shocks occurring
in magnetohydrodynamics—our main example below—are all stable and satisfy
Assumption 2.1 with A = Id; i.e., one can distinguish between different orbits
which are heteroclinic to the same pair of rest points by their relative masses.

Examples of systems with families of overcompressive shock profiles which do
not share these stability properties (including perturbed versions of the cubic model
presented in Example 2.5) are given in [9]. It is for such cases that using A 6= Id
may be interesting. Analogous physical examples are not known to us at present.

3. Approximation of viscous profiles on finite intervals

To develop a numerical method for the approximation of solutions of the problem
(2.5) on the real line we will introduce an approximate boundary value problem on
a finite interval. To obtain a well posed problem we introduce boundary conditions
for the approximate problem.

3.1. Truncation to a finite interval. Let a finite interval I = [X−, X+] for
X− < 0 < X+ be given. If we consider the solution φτ of the boundary value
problem (2.5) we have, for X−, X+ big enough,

φτ (X−) ∈Mu
loc(u

−), φτ (X+) ∈ Ms
loc(u

+).(3.1)

For a computational approach we have to approximate the local invariant manifolds
Mu

loc(u
−) and Ms

loc(u
+). To this end we substitute suitable asymptotic bound-

ary conditions for the conditions (3.1) . Expressing these conditions by means of
functions b− ∈ C2(Rm,Rm−s ), b+ ∈ C2(Rm,Rm+

u ) we require the approximant
φτI ∈ C1(I,Rm) of φτ on I to satisfy

b−(φτI (X−)) = 0, b+(φτI (X+)) = 0.(3.2)

The special choice of the dimensions of the ranges of b± will become clear from a
specific choice we make below, namely the so-called projection boundary conditions,
where b± are linear.

We consider the characteristic decompositions

DF (u±) = R(u±)Λ(u±)R(u±)−1 = L−1(u±)Λ(u±)L(u±),

where Λ(u±) is the Jordan canonical form of DF (u±) with Jordan blocks corre-
sponding to eigenvalues of negative (positive) real part in the upper left (lower right)
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corner. R(u±) and L(u±) denote the matrices consisting of the right and left eigen-
vectors of DF (u±). Each of these matrices is a juxtaposition of two submatrices
which represent the stable and unstable subspaces of DF (u±) and DF (u±)>:

R(u±) = (Rs(u±)|Ru(u±)) and L(u±) =
(
Ls(u±)
Lu(u±)

)
.

For the projection boundary conditions, Mu/s
loc (u±) are approximated by the tan-

gent spaces of Mu/s(u±) in u± denoted by T Mu/s(u±). Thus we require

φτI (X−) ∈ TMu(u−), φτI (X+) ∈ TMs(u+).(3.3)

Since we have R(Rs(u+)) = N((Lu(u+))), we can rewrite the condition φτI (X+) ∈
TMs(u+) in the form (3.2) by

(Lu(u+))(φτI (X+)− u+) = 0.(3.4)

Note that Lu(u+) ∈ Rm×m+
u and (3.4) gives m+

u conditions. The boundary condi-
tion in X− can be treated analogously.

In the computations to be presented in Section 5 we exclusively use projection
boundary conditions. We refer to [3, 4] for a discussion of the benefits due to
projection boundary conditions. More general asymptotic boundary conditions of
the form (3.2) were introduced in [4, 13, 15] in the framework of problems on
semi-infinite intervals. The extension to infinite intervals was performed in [3, 5].

The generalized phase condition Ψ will be substituted for the approximate prob-
lem by ΨI : C0(I)→ Rd with

ΨI(φ) = P
∫ X+

X−

A(x, φ(x))(φ(x) − φ∗(x)) dx.

To abbreviate the approximate problem, consider now the operator FτI with

FτI :



C1(I) → C0(I)×Rm−s ×Rm+
u ×Rd,

φ 7→


φ̇− F (φ)

b−(φ(X−))

b+(φ(X+))

ΨI(φ)− τ

 .
(3.5)

Finally the approximate problem to (2.5) is to find, for τ ∈ Rd, a function φτI ∈
C1(I) such that

FτI (φτI ) = 0.(3.6)
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For later purpose we mention that the Fréchet derivative FτI ′(φ) of FτI exists at
every φ ∈ C1(I) and is continuous for A smooth enough:

FτI ′(φ) :



C1(I) → C0(I)×Rm−s ×Rm+
u ×Rd

v 7→



v̇ −DF (φ)v

b′−(φ(X−))v(X−)

b′+(φ(X+))v(X+)∫ X+

X−

DG(x, φ(x))v(x) dx


.

(3.7)

DG(x, .), x ∈ R, denotes the Jacobian of the mapping ξ 7→ A(x, ξ)(ξ − φ∗(x)),
ξ ∈ R.

4. Error analysis

4.1. The result. The error introduced by the truncation is analyzed. Due to the
hyperbolicity of the rest points, the exponential convergence of the solutions of the
restricted boundary value problem for X± → ±∞ can be established. For the error
analysis we consider the general case as introduced in subsection 2.1.

Theorem 4.1. Let A be a bounded C1-mapping with bounded derivatives. Let As-
sumption 2.1 be true and Φ be represented by the smooth d-parameter family

Φ = {φτ ∈ C1(R) | Fτ (φτ ) = 0, τ ∈ T }.

Assume further that for every τ ∈ T there exists an X̃τ such that for any I =
[X−, X+] with |X−|, X+ > X̃τ , the boundary conditions b± satisfy

b±(u±) = 0,

det
(
b′−(φτ (X−))Rs(u−)

)
6= 0, det

(
b′+(φτ (X+))Ru(u+)

)
6= 0.

Then for each τ ∈ T there exists an Xτ > X̃τ such that for any I = [X−, X+] with
|X−|, X+ > X̄τ the following is true:

(i) There is a δ > 0 such that a unique solution φτI ∈ C1(I) of (3.6) in Bδ(φτ )
exists.

(ii) There is a constant C > 0 such that:

‖φτI − φτ‖C1(I) ≤ C(X+ −X−) exp
(
−min{λ−X−,−λ+X+}

)
,(4.1)

where λ− and λ+ are given by the minimal absolute value of the real parts of
the unstable (stable) eigenvalues of DF at u− (u+).

The constant C = C(φτ , φ∗, A,P, b±) in (4.1) does not depend on X±.

The proof of Theorem 4.1 will be given in Section 4.3 below. Let us make some
comments on this result. Other estimates on numerical schemes for heteroclinic
or homoclinic connections as in [3, 5] typically lead to expressions for the error
where the algebraic factor X+ −X− does not appear. The reason for our slightly
worse result is that we have to compensate for the fact that the operator ΨI is
not necessarily bounded uniformly with respect to X±; e.g., ΨI is not bounded for
the important choice for A to be the unit matrix. However the algebraic factor
X+ −X− does not increase the asymptotic error significantly.
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Estimate (4.1) is not uniform in the parameter τ . However this property cannot
be expected: The constant C typically increases for trajectories near the boundary
of the heteroclinic manifold M . In Section 5 we present a numerical example for
this fact.

4.2. Preliminaries for the error analysis. In this subsection we collect some
results which will be used to establish the existence and convergence of solutions
φτI of (3.6) if the endpoints of the interval I tend to ±∞. To be specific we recall
some statements from the theory of exponential dichotomies for linear differen-
tial operators and a perturbation lemma to handle the convergence problem by a
linearization technique.

Let the assumptions of Theorem 4.1 be valid and fix τ ∈ T . Then consider the
linear differential operator

L : B1 → B0, (Lv)(x) = v̇(x)−DF (u±)v(x),

where B0 denotes the space of bounded functions v ∈ C(R,Rm) and B1 the space
of bounded functions v ∈ C1(R,Rm) with bounded derivatives of first order. Fur-
thermore let Y (x) be the associated fundamental matrix, identified by Y (0) = Id.
By the hyperbolicity of the matrices DF (u±) and the smoothness of DF (φτ (.)) we
obtain

Lemma 4.2. The operator L has an exponential dichotomy on the semi-infinite
intervals [0,∞) and (−∞, 0]; i.e., there exist projection matrices P,Q ∈ Rm×m

and positive constants K,α such that

|Y (x′)PY −1(x)| ≤ K exp(−α(x′ − x)) (x′, x ∈ [0,∞), x′ ≥ x),

|Y (x′)(I − P )Y −1(x)| ≤ K exp(−α(x− x′)) (x′, x ∈ [0,∞), x ≥ x′),
|Y (x′)QY −1(x)| ≤ K exp(−α(x′ − x)) (x′, x ∈ (−∞, 0], x′ ≥ x),

|Y (x′)(I −Q)Y −1(x)| ≤ K exp(−α(x− x′)) (x′, x ∈ (−∞, 0], x ≥ x′).

(4.2)

We note that
R(P ) = {η ∈ Rm |Y (.)η is bounded in [0,∞)},
N(Q) = {η ∈ Rm |Y (.)η is bounded in (−∞, 0]}.

(4.3)

Any projectors with the property (4.3) satisfy the inequalities (4.2). Furthermore
N(L) can be represented by

N(L) = {Y (.)η |η ∈ R(P ) ∩N(Q) }.
For background material on exponential dichotomies and especially the proofs of
the above statements, we refer to Palmer [17] and the literature cited therein.

The announced perturbation lemma can be found for example in Vainikko [20].

Lemma 4.3. Let (Y, ‖.‖Y ), (Z, ‖.‖Z) be Banach spaces, and Bδ(y0) be given by
Bδ(y0) = {y ∈ Y | ‖y − y0‖Y ≤ δ} for δ > 0, y0 ∈ Y .

Assume that the C1-mapping F : Bδ → Z satisfies for some constants σ > κ > 0

(i) F ′(y0) is a homeomorphism,

(ii) |||F ′(y)− F ′(y0)||| ≤ κ < σ ≤ |||F ′(y0)−1|||−1 ∀ y ∈ Bδ(y0),

(iii) ‖F (y0)‖Z ≤ (σ − κ)δ.

(4.4)
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Then F has a unique zero ȳ ∈ Bδ(y0) and the estimate

‖ȳ − y0‖Y ≤
‖F (y0)‖Z
(σ − κ)

holds. Here |||.||| denotes the associated operator norm.

4.3. The proof of Theorem 4.1. In this section C,C1, C2, C3 > 0 will denote
generic constants which may depend on φτ , φ∗, A,P, b± but not on X±.

We will apply Lemma 4.3 to the mapping FτI given by (3.5). Following the
notions in Lemma 4.3 we choose with natural norms

Y = C1(I), Z = C0(I)×Rm−s +m+
u+d = C0(I)×Rm.

For z = (ξ, r−, r+, r̄) ∈ Z define ‖.‖Z by ‖.‖Z = ‖ξ‖0 + |r+| + |r−| + |r̄|. For y0

we take the exact solution φτ of the problem (2.5) restricted to the interval I. To
prove Theorem 4.1 it then remains to check conditions (i), . . . , (iii).

With the Fréchet derivative FτI ′(φτ ) from (3.7) we consider the variational prob-
lem

FτI ′(φτ )(v) = (ξ, r−, r+, r̄), (ξ, r−, r+, r̄) ∈ Z.

From Lemma 4.4 below we deduce that a solution u of the variational problem
satisfies the stability estimate

‖v‖1 ≤ C1(X+ −X−)
(
‖ξ‖0 + |r+|+ |r−|+ |r̄|

)
.

The linearity of FτI ′(φ) ensures now that its inverse exists and is continuous at least
on R(FτI ′(φ)). With σ = (C1(X+ −X−))−1 we get the bound

|||FτI ′(φ)−1||| ≤ 1
σ
.

Now let κ = σ/2 and δ = (2C1C2(X+ −X−))−1. Taking into account F ∈ C2 we
obtain for all φ̃ ∈ Bδ(φτ )

|||FτI ′(φ̃)−FτI ′(φτ )||| ≤ C2‖φ̃− φτ‖1 ≤ C2δ = κ < σ ≤ 1
|||FτI

′(φτ )−1||| .

Thus conditions (i) and (ii) of Lemma 4.3 are satisfied.
Due to the hyperbolicity of the rest points u− and u+ we have φτ (x) − u− =

O(exp(λ−x)) for x → −∞ and φτ (x) − u+ = O(exp(−λ+x)) for x → ∞. Since A
is bounded, the consistency estimate

‖FτI (φτ )‖Z ≤ |b−(φτ (X−))| + |b+(φτ (X+))|

+ |
∫ X−

−∞
A(x, φτ (x))(φτ (x)− φ∗(x)) dx|

+ |
∫ ∞
X+

A(x, φτ (x))(φτ (x) − φ∗(x)) dx|

≤ C3 exp
(
−min{λ−X−,−λ+X+}

)
holds for X−, X+ big enough. Recall here that the smoothness of the functions b±
and the property b±(u±) = 0 implies b±(φτ (X±)) = O(exp(∓λ±X±)).



1032 HEINRICH FREISTÜHLER AND CHRISTIAN ROHDE

Using this exponential decay property we can satisfy condition (ii) of Lemma
4.3 for a sufficiently large interval I; i.e., there exists a constant Xτ > 0 such that
for X−, X+ > Xτ we have

‖FτI (φτ )‖Z ≤
1

4C2
1C2

1
X̄2
≤ (σ − κ)δ.

Lemma 4.4. Let the assumptions of Theorem 4.1 be valid and let (ξ, r−, r+, r̄) ∈
C0(I) ×Rm−s ×m+

u×d. As soon as |X−|, X+ are sufficiently large, any solution v ∈
C1(I) of the variational problem

FτI ′(φ)(v) = (ξ, r−, r+, r̄)

satisfies

‖v‖1 ≤ C1(X+ −X−)
(
‖ξ‖0 + |r+|+ |r−|+ |r̄|

)
.(4.5)

Proof. By Lemma 4.2 the linear operator L has exponential dichotomies on (−∞, 0]
and [0,∞). Consequently there are projectors P ′ and Q′ such that the inequalities
(4.2) hold. By the nondegeneracy property (2.8) and

N(L) = {Y (.)η|η ∈ R(P ′) ∩ N(Q′)}
we have

R(P ′) ∩ N(Q′) = span
{
∂φτ

∂τ1
(0), . . . ,

∂φτ

∂τd
(0)
}
.

This space will henceforth be denoted by Z1. Let the linear subspaces Z2,Z3 ⊂ Rm

be defined according to

R(P ′) = Z1 ⊕Z2, N(Q′) = Z1 ⊕Z3.

Finally define the subspace Z4 via (R(P ′) + N(Q′))⊕Z4 = Rm. Now let P be the
projector onto Z1 ⊕ Z2, Q the projector onto Z2 ⊕ Z4, and Π the projector onto
Z1. Note that P and Q satisfy

R(P ) = R(P ′) and N(Q) = N(Q′).

Consequently estimates (4.2) hold with P on [0,∞) and Q on (−∞, 0].
Using P and Q consider now s+ : [0,∞) → Rm and s− : (−∞, 0] → Rm given

by

s+(x) = Y (x)P
∫ x

0

Y (x′)−1ξ(x′) dx′ − Y (x)(I − P )
∫ X+

x

Y (x′)−1ξ(x′) dx′,

s−(x) = −Y (x′)(I −Q)
∫ 0

x

Y (x′)−1ξ(x′) dx′ + Y (x)Q
∫ x

X−

Y (x′)−1ξ(x′) dx′.

Then the function

s(x) =

{
s−(x) : X− ≤ x < 0,

s+(x) : 0 < x ≤ X+,

is a particular solution of the linear ODE Lv = ξ in the interval I \ {0} that
satisfies ‖s‖0 ≤ C‖ξ‖0 due to the exponential dichotomy of L (Lemma 4.2). For
η−, η+ ∈ Rm we can thus represent the solution u as follows.

v(x) = Y (x)Hη−,η+(x) + s(x), x ∈ I.(4.6)
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Here Hη−,η+ : R → Rm denotes the piecewise constant function that is equal to
η− in (X−, 0] and equal to η+ in (0, X+).

To finish the proof we have to estimate η− and η+. Therefore let

N(x) =
[
∂φτ

∂τ1
(x)
∣∣∣∣ . . . ∣∣∣∣∂φτ∂τd

(x)
]
.

The property (2.8) assures that there exists a vector η̃± ∈ Rd such that Πη± =
N(0)η̃±. Unique solvability of the linear initial value problem Lv = 0, v(0) = η±
guarantees for all x ∈ R

Y (x)Πη± = N(x)η̃±.

We rewrite (4.6) as

v(x) −N(x)η̃± = Y (x)(η± −Πη±) + s±(x).(4.7)

Let eI = max{exp(αX−), exp(−αX+)} with α from Lemma 4.2. Then if the esti-
mates

|v(x) −N(x)η̃+| ≤ C
(
‖ξ‖0 + |r+|+ |r−|+ eI |η̃+|

)
, x ∈ [0, X+),

|v(x) −N(x)η̃−| ≤ C
(
‖ξ‖0 + |r+|+ |r−|+ eI |η̃−|

)
, x ∈ (X−, 0],

(4.8)

hold, it remains to bound η±, respectively η̃±, in terms of ‖ξ‖0, |r±| and |r̄| in order
to verify (4.5). We postpone the verification of (4.8) to the end of the proof and
collect some observations to achieve the bound on η̃±.

Obviously we have the representation

∫ X+

X−

DG(x, φτ (x))N(x)η̃+ dx =
∫ 0

X−

DG(x, φτ (x))N(x)(η̃+ − η̃−) dx

+
∫ X+

X−

DG(x, φτ (x))N(x)Hη̃+ ,η̃− dx.

(4.9)

The continuity of u on the whole interval I implies

|η̃+ − η̃−| ≤ C‖s‖0.(4.10)

Returning to the estimation of η̃+, Assumption 2.1 shows that, for X+, |X−| suffi-
ciently large, the (d× d)-matrix

[
P
∫
I

DG(x, φτ (x))
∂φτ

∂τ1

∣∣∣∣ . . . ∣∣∣∣P∫
I

DG(x, φτ (x))
∂φτ

∂τd

]
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is invertible. Combining this with (4.9), we obtain

|η̃+| ≤ C

∣∣∣∣∣P
∫ X+

X−

DG(x, φτ (x))N(x)η̃+ dx

∣∣∣∣∣
≤ C

(∣∣∣∣∣
∫ 0

X−

DG(x, φτ (x))N(x)(η̃+ − η̃−) dx

∣∣∣∣∣
+

∣∣∣∣∣
∫ X+

X−

DG(x, φτ (x))
(
N(x)Hη̃+,η̃− − v(x)

)
dx

∣∣∣∣∣
)

+

∣∣∣∣∣P
∫ X+

X−

DG(x, φτ (x))v(x) dx

∣∣∣∣∣
≤ C(X+ −X−)

(
‖ξ‖0 + |r+|+ |r−|+ |r̄|+ eI |η̃+|+ eI |η̃−|

)
.

The last estimate follows from (4.8) and (4.10) for I sufficiently large. Combination
with the analogous inequality for η̃− gives the desired estimate for |η̃+|, |η̃−| for an
eventually even larger interval I.

It remains to show the estimate (4.8). Therefore we note

|Y (x)(I − P )η+| ≤ C
(
‖ξ‖0 + |r+|+ eI |η+|

)
, x ∈ [0, X+],

|Y (x)Qη−| ≤ C
(
‖ξ‖0 + |r−|+ eI |η−|

)
, x ∈ [X−, 0].

(4.11)

The proof of these inequalities using the assumptions on b± can be found in [3],
Appendix D.

Furthermore using the construction of the projectors P,Q,Π we obtain the esti-
mates

|Pη −Πη| ≤ C|Qη|,(4.12)

for all η ∈ Rm. Consider now for x ∈ [0, X+]

|Y (x)(η+ − Πη+)| ≤ |Y (x)(I − P )η+|+ |Y (x)(Pη+ −Πη+)|.

Since (Pη+ −Πη+) ∈ {η ∈ Rm |Y (x)η bounded for x ≥ 0}, we have from (4.12)

|Y (x)(η+ −Πη+)| ≤ |Y (x)(I − P )η+|+ C|Q(η+ − η−)|+ C|Qη−|

≤ C
(
|r+|+ |r−|+ ‖ξ‖0 + eI |η+|

)
.

The last estimate follows from (4.11) and (4.10). In view of equation (4.7) the first
equation in (4.8) is proven since by using the exponential dichotomies on (−∞, 0]
and [0,∞) we can bound ‖s‖0 in terms of ‖ξ‖0.

5. Numerical experiments

Before we present a number of numerical examples from the field of conservation
laws, let us comment on some implementation details. The problem 3.6 can be
readily rewritten as a two-point boundary value problem of dimension m + d if
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we substitute the integral constraint ΨI(φτI ) − τ = 0 in (3.6) by the differential
equation

ẇ = PA(., φτI )(φτI − φ∗), w(x) ∈ Rd,

which has to be augmented by the boundary conditions

w(X−) = 0 and w(X+) = τ.

In all numerical computations presented below φ∗ was chosen to be the jump func-
tion (2.3). Since we exclusively present results for viscous profiles, we set A = Id.
Concerning the asymptotic boundary conditions note that the basis vectors of the
stable and unstable manifolds were always known explicitly or easily computed.
For the solution of the two-point boundary value problem we partly used the code
COLNEW of Bader and Ascher [1]. In nearly all cases the jump (2.3) turns out to
be a good initial guess to start this collocation method.

5.1. A test example. We start the presentation of numerical results with a some-
what constructed problem, which simply leads to overcompressive shock waves and
can be solved analytically. The main task is to illustrate the rates obtained by
Theorem 4.1.

For i = 1, . . . , 3 consider the (decoupled) system

uit + f(ui)x = εiuixx, f(ui) =
1
2

(ui)2.(5.1)

The components of the viscous profile φ = (φ1, φ2, φ3) to the overcompressive shock
wave U with

u− = (1, 1, 1), u+ = (−1,−1,−1), s = 0,

are solutions of the boundary value problem

εiφi
′
= f(φi)− 1

2
, φi(±∞) = ∓1.(5.2)

Here the rest points u± are connected by a three-dimensional heteroclinic manifold
which fills the unit cube. The associated trajectories are given for τ1, τ2, τ3 ∈ R
by

φi(x) = tanh
(

1
2εi

(x− τ i)
)
, i = 1, . . . , 3.

u+

u-

Figure 1. Some orbits from the three-dimensional manifold con-
necting u− and u+.
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Figure 2. Logarithm of error and slope of logarithm of error ver-
sus length of I for different scalings.

For illustration we present in Figure 1 some approximate orbits obtained on the
interval I = [−12, 12]. At first we demonstrate the exponential decay of the error
as predicted by Theorem 4.1. For τ1 = 1.0, τ2 = 0, τ3 = 2.0 we fix some orbit
φα via the choice of different sets of viscosity parameters ε1(α), ε2(α), ε3(α). For
α = 1.0, 2.0, 3.0 let

ε1 = 2.0α, ε2 = α/2.0, ε1 = 1.0.

The left-hand picture in Figure 2 displays the logarithm of the error

eα,I =
3∑
i=1

‖φiI,α − φiα‖L∞(R)
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Figure 3. Logarithm of the error ‖φI,β − φβ‖L∞(R) for different
values of β and X .
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in dependence of the bounded interval I = [−X,X ], X > 0. φI,α is extended
to R by constant continuation with the values φI,α(±X). The right-hand picture
shows the slope of the same quantity. These numerical results confirm the estimate
(4.1), at least the exponential decay rate −min{λ−X−,−λ+X+} for long time
asymptotics. We obtain the expected rates −1/2,−1/4,−1/6, respectively.

Subsequently we illustrate that the estimate (4.1) in general cannot hold uni-
formly for all orbits of the heteroclinic manifold. Note that all vertices of the cube in
Figure 1 are rest points for the dynamical system in (5.2). We consider a sequence
of parameters τ1

β , τ
2
β , τ

3
β such that the corresponding orbits φβ approach some of

these rest points for β → ∞. As the bulk of the variation of the φβ spreads on
intervals of length growing proportionally to β, larger and larger I’s are needed to
well approximate φβ .

The settings are

α = 1.0, τ1
β = β, τ2

β = 0.0, τ3
β = −β,

β = 1.0, 2.0, 4.0, 5.0, 6.0.

Figure 3 shows the increase of the error for increasing values of β. Results for
different intervals I are displayed.

5.2. The rotationally invariant system. We consider the system (2.12) from
Example 2.5 and obtain for m = 2 the ODE-system

u̇ = (|u|2 − s)u− q, u = (u1, u2) ∈ R2.(5.3)

Note that the uniform viscosity parameter ν is scaled out. For the choice q ≡
(0.05, 0) and s ≡ 0.95 system (5.3) has three rest points: the source u− = (1, 0),
the sink u1 ≈ (−0.0528, 0), the saddle u2 ≈ (−0.9472, 0). There exists a pair
of orbits from u− to u2 which is the boundary of a two-dimensional heteroclinic
manifold connecting u− and u1. The shock wave U with u+ = u1 belongs to the
class of overcompressive shocks discussed in Example 2.5.

Our algorithm is now used to approximate orbits from the manifold. The results
can be found in Figure 4. In order to solve the associated boundary value problem
with |φτI (X±) − u±| < 0.01 we have been forced to choose |X±| up to 200 for the
orbits most close to u2 while I = [−10, 10] was sufficient for the orbit following the

u
1

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

fff

u-

2u

Figure 4. Two-dimensional heteroclinic manifold in the u1u2-plane.
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u1-axis. These large intervals arise due to the slow dynamics of (5.3) near the pair
of orbits connecting u− and u2.

5.3. Compressible Navier-Stokes equations. As a first physically relevant
model we consider plane waves that are solutions of the compressible 1D-Euler
equations which describe the dynamics of an inviscid fluid. We assume that the
fluid is an ideal polytropic gas. Adding the natural dissipation mechanism we obtain
the compressible Navier-Stokes equations.

The corresponding ODE-problem can be written after reformulation and rescal-
ing as the 2× 2-system

λτ̇ = F (θ, τ) ≡ τ +
Rθ

τ
− j,

κθ̇ = G(θ, τ) ≡ cV θ −
τ2

2
+ jτ − e.

Here the unknowns τ and θ correspond to longitudinal velocity and temperature
while R > 0 is the gas constant, cV > 0 denotes specific heat at constant volume.
j, e are components of the vector q (cf. (1.10)). Note that due to Galilean invariance
s = 0 is assumed without loss of generality.

The only possible shock wave solutions of the Euler equations are of Laxian
type. It is well known that all these shocks have viscous profiles for all λ, κ > 0
[11]. Figure 5 shows the numerically obtained profiles for different ratios of λ and
κ:

(a):
λ

κ
= 1, (b):

λ

κ
= 1/100, (c):

λ

κ
= 10.(5.4)

The other parameters are fixed with

R = 0.7, cV = 1.5, j = 2.0, e = 3.0.

This choice corresponds to a 3-shock (cf. Example 2.4), where u− is a source and
u+ is a saddle.

The dotted lines in Figure 5 refer to the nullclines of F (concave curve) and G
(convex curve). The computations were performed on I = [−80, 80]. While the
orbits will approach for λ/κ → ∞ the nullcline of G, the orbits will not reach the

u+

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

u -

( a )

( b )

( c )

Figure 5. Viscous profiles for an Euler shock in the τθ-plane (dif-
ferent ratios of viscosity parameters in accordance with (5.4)).
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nullcline of F for λ/κ→ 0 indicating the existence of a subshock in this case. This
is due to the fact that the derivative of F with respect to τ will change sign on the
curve segment between u− and u+.

5.4. The equations of viscous magnetohydrodynamics (MHD). While the
Euler equations do not allow for overcompressive shock waves, these waves can be
observed for the equations of magnetohydrodynamics, which describe the motion of
electrically conducting fluids (for further discussion on these so-called intermediate
waves we refer to [12, 21, 8]). If we consider the associated dissipative model
including the effects of fluid viscosity, thermal conductivity and resistivity, the
subsequent ODE-system can be obtained after reformulation and rescaling:

νḃ = −dw + τb− c,

λτ̇ = τ +
RΘ
τ

+
1
2
| b |2 −j,

µẇ = w− db,

κΘ̇ = cvΘ− 1
2

(| w |2 −2dw · b + τ | b |2)− τ2

2
+ jτ + b · c− e.

In this system of six equations, which we will refer to as Σ6, the quantity q̄ =
(d, c, j, e) ∈ R × R2 × R × R plays the rôle of q in (1.8). The components of
(b, τ,w,Θ) ∈ R2 × (0,∞)×R2× (0,∞) stand for transverse magnetic field, longi-
tudinal velocity, transverse velocity, and temperature. In addition to the dissipation
coefficients λ and κ we already had in the electrically neutral case there are now
also the dissipation parameters ν for resistivity and µ for “transversal” fluid vis-
cosity. From the six-dimensional system Σ6 we will restrict attention to the system
Σ3 that consists of the three equations

νḃ = (τ − d2)b− c,

λτ̇ =
1
2
|b|2 + τ − j +

1
(1 + cV /R)τ

(
−τ

2

2
− d2

2
|b|2 − b · c + e

)
.

u3

u2

u1

u0

u3

u0

Figure 6. Upper and lower parts of the heteroclinic structure of
Σ3 for ω = 0.5 in the bτ -space.
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Σ3 is obtained from Σ6 through letting κ = µ = 0 and substituting the variables Θ
and w in terms of u ≡ (b, τ) ∈ R2 × (0,∞).

As long as c 6= 0, Σ3 has up to four rest points, numbered as u0, u1, u2, u3 (ac-
cording to the dimension of their stable manifolds). For thermodynamical reasons
only viscous profiles ui → uj for shock waves with u− = ui and u+ = uj which
satisfy i < j can exist. Certain combinations (ui, uj) among these—namely those
for which (i, j) ∈ {0, 1} × {2, 3}—give rise to nonclassical or “intermediate” shock
waves.

Depending on the ratio of ν and λ the dynamical system Σ3 undergoes a global
heteroclinic bifurcation. Regarding the existence of viscous profiles and this bifur-
cation it can be proven (cf. [12, 8] and references therein):

Theorem 5.1. There exists ω∗ = ω∗(q̄, λ, ν) > 0 such that we have for

ω ≡ ν

λ
< ω∗ : u0 → u1, u2 → u3 exist,

ω = ω∗ :
u0 → u1, u2 → u3,
u1 → u2

}
exist,

ω > ω∗ :
u0 → u1, u2 → u3,
u1 → u2, u0 → u2,
u1 → u3, u0 → u3

 exist.

In all three cases no other orbits exist.

Now we present numerical results for all possible types of viscous profiles in
MHD. For q̄ we have chosen

q̄ = (1.0, 0.15, 0.0, 1.8, 1.0).

ω∗ then can be calculated numerically using special properties of the MHD-system
[7]. We obtain ω∗ ≈ 0.019.

First we consider an example where ω equals 0.5 > ω∗. In Figure 6 orbits of
almost all types of heteroclinic connections that exist due to Theorem 5.1 are dis-
played. There is a pair of orbits connecting the rest points u1 and u2. Heteroclinic
manifolds of dimension 2 relate u0 to u2 and u1 to u3. The profiles u0 → u1 and
u2 → u3 correspond to classical Laxian shock waves. All these orbits form the
boundary of a three-dimensional heteroclinic manifold connecting u0 with u3 (not
displayed).
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Figure 7. Viscous profiles for ω = 0.01 and ω = ω∗ in the b1τ -plane.
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Figure 8. Orbits connecting u0 and u3 in the b1τ -plane.

We proceed with a parameter study for the ratio ω. For this sake we note that in
our case the (b1τ)-plane constitutes an invariant manifold for Σ3, the orbits u0 →
u1, u2 → u3 belong to this plane for all ω, u1 → u2 for ω = ω∗(cf. [8]). Consequently
the bifurcation scenario presented in Theorem 5.1 can be completely described in
the plane. Figure 7 displays the orbits u0 → u1, u2 → u3 for ω = 0.01 < ω∗ and
additionally the orbit u1 → u2 for ω = ω∗. Figure 8 shows orbits in the (b1, τ)-plane
which belong to the three-dimensional heteroclinic manifold connecting u0 and u3

for

ω = 0.02, 0.05, 0.1, 1.0, 5.0, 15.0.

Also the nullclines of the flux of Σ3 in the b1τ -plane are displayed.



1042 HEINRICH FREISTÜHLER AND CHRISTIAN ROHDE

References

[1] G. Bader and U. Ascher, A new basis implementation for a mixed order boundary value ODE
solver, SIAM J. Sci. Stat. Comput. 8, 483-500 (1987). MR 88f:65118

[2] F. Bai, A. Spence and A. M. Stuart, The numerical computation of heteroclinic connections
in systems of gradient partial differential equations, SIAM J. Num. Anal., 53/3, 743-769
(1993). MR 94h:65107

[3] W.–J. Beyn, The numerical computation of connecting orbits in dynamical systems, IMA J.
Numer. Anal., 9, 379-405 (1990). MR 91i:65146

[4] F. R. DeHoog and R. Weiss, An approximation theory for boundary value problems on infinite
intervals, Computing, 24, 227-239 (1980). MR 82f:65087

[5] E. J. Doedel and M. J. Friedman, Computation and continuation of invariant manifolds,
SIAM J. Numer. Anal., 28, 789-808 (1991). MR 92e:34058

[6] H. Freistühler and T.-P. Liu, Nonlinear stability of overcompressive shock waves in a ro-
tationally invariant system of viscous conservation laws, Commun. Math. Phys. 153, No.1,
147-158 (1993). MR 94f:35084

[7] H. Freistühler and C. Rohde, A numerical study of existence and bifurcation of MHD shock
profiles, in preparation.

[8] H. Freistühler and P. Szmolyan, Existence and bifurcation of viscous profiles for all inter-
mediate magnetohydrodynamic shock waves, SIAM J. Math. Anal., 26, No.1, 112-128 (1995).
MR 95j:35183

[9] H. Freistühler and K. Zumbrun, Examples of unstable viscous shock waves, preprint.
[10] C. Fries, Nonlinear asymptotic stability of general small–amplitude viscous Laxian shock

waves, J. Differ. Equations 146, 185-202 (1998). MR 99h:35132

[11] D. Gilbarg, The existence and limit behaviour of the one–dimensional shock layer, Amer. J.
Math., 73, 1-13 (1951). MR 13:401e

[12] A. G. Kulikovskij and G. A. Lyubimov, On the structure of an inclined magnetohydrodynamic
shock wave (English. Russian original), J. Appl. Math. Mech. 25, 171-179 (1961);

[13] M. Lentini and H. B. Keller, Boundary value problems over semi–infinite intervals and their
numerical solution, SIAM J. Numer. Anal., 17, 577-604 (1980). MR 81j:65092

[14] T.-P. Liu, Nonlinear stability of shock waves for viscous conservation laws, Am. Math. Soc.
Mem. 328, Providence, AMS (1985). MR 87a:35127

[15] P. Markowich, A theory for the approximation of solutions of boundary value problems on
infinite intervals, SIAM J.Math. Anal., 13, 484-513 (1982). MR 83e:34024

[16] G. Moore, Computation and parametrization of connecting orbits, IMA J. Numer. Anal., 15,
245-264 (1995). MR 96a:34087

[17] K. J. Palmer, Exponential dichotomies and transversal homoclinic points, J. Differ. Equa-
tions, 55, 225-256 (1984). MR 86d:58088

[18] A. Szepessy and Z. Xin, Nonlinear stability of viscous shock waves, Arch. Ration. Mech. Anal.
122, No.1, 53-103 (1993). MR 93m:35125
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