
MATHEMATICS OF COMPUTATION
Volume 71, Number 238, Pages 793–814
S 0025-5718(01)01343-6
Article electronically published on October 4, 2001

THE PARALLELIZED POLLARD KANGAROO METHOD
IN REAL QUADRATIC FUNCTION FIELDS

ANDREAS STEIN AND EDLYN TESKE

Abstract. We show how to use the parallelized kangaroo method for com-
puting invariants in real quadratic function fields. Specifically, we show how
to apply the kangaroo method to the infrastructure in these fields. We also
show how to speed up the computation by using heuristics on the distribution
of the divisor class number, and by using the relatively inexpensive baby steps
in the real quadratic model of a hyperelliptic function field. Furthermore, we
provide examples for regulators and class numbers of hyperelliptic function
fields of genus 3 that are larger than those ever reported before.

1. Introduction

In this paper we generalize the parallelized kangaroo method for computing in-
variants in real quadratic function fields. Basic such invariants of a real quadratic
function field are the regulator and the divisor class number which play an impor-
tant role in cryptosystems based on hyperelliptic function fields. For example, in
the key-exchange protocol by Scheidler, Stein and Williams [SSW96], the regulator
provides a measure for the key space; moreover, computation of the regulator is an
instance of solving the discrete logarithm problem in real quadratic function fields.

The Pollard kangaroo method [Pol78], also called the lambda method, was orig-
inally developed to compute discrete logarithms in Z/pZ and has been canonically
generalized to solve the discrete logarithm problem in any finite abelian group.
The key ingredient for the kangaroo method is that we know that the discrete log-
arithm lies in a given interval [a, b[; then the expected running time is O(

√
b− a)

group operations. Van Oorschot and Wiener [vOW99] have shown that the kan-
garoo method can be parallelized with linear speed-up, which makes the method
attractive for distributed attacks. It is important to note that the serial version
of the kangaroo method is very space efficient, and that the space requirements of
the parallelized version can be adjusted to the constraints of the machines. This
is a big advantage over square-root attacks based on Shanks’ baby step–giant step
method [Sha71].

The objects with which we deal in real quadratic function fields are reduced
principal ideals, which do not constitute a group. However, the baby step–giant
step method could be efficiently adapted to this setting by defining analogues of
baby steps and giant steps that make use of the ideal arithmetic (see [SZ91]). The

Received by the editor July 10, 2000.
2000 Mathematics Subject Classification. Primary 11Y16, 11Y40, 11R29; Secondary 11R58,

14H05.

c©2001 American Mathematical Society

793

794 ANDREAS STEIN AND EDLYN TESKE

disadvantage of this method is that the space restrictions of the machines consti-
tute a bound on how large regulators can be computed. Currently, this bound is
at about 25 digits [SW98, ST99b]. It is therefore natural to ask whether such a
space efficient method as the kangaroo method can be employed to real quadratic
function fields. In this paper we show that this indeed can be done. This allows
us to push the range for regulator and class number computation much further. In
fact, we give experimental results for the computation of a 29-digit class number
and regulator with the parallelized Pollard kangaroo method. We used the com-
puter algebra system SIMATH [Zim97] on 16 variably fast machines (including SGI
Challenge Workstations and Sun Ultra Enterprise 450s), and found two matching
distinguished points after 109 hours. We estimate that on a network of 16 Sun Ultra
Enterprise 450s under Solaris 2.6 that computation of a 29-digit class number and
regulator would have taken about 73 hours.

In the following, we first give an overview of the kangaroo method and its par-
allelization, where in the parallelized case we deal with both the variants of van
Oorschot and Wiener [vOW99] and Pollard [Pol]. We keep this exposition as general
as possible. Since no experimental results with the parallelized kangaroo method
(not to mix with the parallelized rho method!) have been published so far, we also
include some statistics about experiments with elliptic curve groups showing that
the practical performance matches the theoretical predictions. Then, in Section 3,
we give the basic definitions and facts needed about real quadratic function fields.
In Section 4 we specialize the kangaroo method for the problem of regulator and
class number computation in function fields and give experimental results.

2. The parallelized Pollard kangaroo method

Let G be a finite cyclic group generated by the group element g, and let h ∈ G.
Then there exists a least positive number x such that h = gx. This number x is
usually called the discrete logarithm, or index , of h to the base g. In the special case
that h = 1, we call x the order of g. We want to compute x. Let us assume that
we know integers a and b such that a ≤ x < b. This is the setting for which Pollard
[Pol78] has designed his kangaroo method. The idea is to define two kangaroos: a
tame kangaroo T with starting point t0 = gb and a wild kangaroo W with starting
point w0 = h. In terms of the exponents of g, T starts at the upper end of the
interval [a, b[, while W starts at an unknown spot x. Let δ0(T) = b, the initial
distance of T from the origin, and δ0(W) = 0, the initial distance of W from h. Let
S = {gs1 , . . . , gsr} (si > 0) be a set of jumps, and let v : G→ {1, . . . , r} be a hash
function. We think of the exponents si as travel distances, which should be small
in comparison with the length b − a of the interval; in [Pol78] Pollard suggested
that the powers of two (starting with 20) up to a certain size to be specified below
might be a good choice. Now we let the tame kangaroo travel through the group,
following the path

tj+1 = tj ∗ gsv(tj) , j ∈ N0 .(2.1)

While computing the path (tj), we keep track of the distances δj(T),

δj+1(T) = δj(T) + sv(tj) , j ∈ N0 .(2.2)

Hence, tj = gδj(T), for each j ∈ N0. After a certain number of jumps, the tame
kangaroo stops and installs a trap at its final spot, say tM . Then the wild kangaroo

THE KANGAROO METHOD IN REAL QUADRATIC FIELDS 795

is set off, following the path

wj+1 = wj ∗ gsv(wj) , j ∈ N0 ,(2.3)

with the distances δj(W) given by

δj+1(W) = δj(W) + sv(wj) , j ∈ N0 .(2.4)

Then wj = h∗gδj(W) (j ∈ N0). Hence, in terms of the exponents of g, at each stage
we know the exact position of T , but we do not know the position of W since its
starting spot x is unknown; this is why W is wild. After each jump it is checked
whether W has fallen into the trap. If this is the case, say at wN , the equation
tM = wN immediately yields a solution of gx = h, namely x = δM (T) − δN (W).
Otherwise, after a certain number of jumps the wild kangaroo is halted, and a
new wild kangaroo with starting point w0 = h ∗ gz and initial distance δ0(W) = z
(z small) is set off. If W falls into T ’s trap, this means that the paths of the two
kangaroos must have met earlier during the travel, from which point on they have
been identical. In this case, if we draw the two paths on a piece of paper starting
at the bottom left and the bottom right, respectively, we obtain the Greek letter
lambda, which explains why the method is also called the lambda method. Van
Oorschot and Wiener [vOW99] have analyzed this method and found out that the
running time is expected to be minimal if the mean value of S is approximately
(
√
b− a)/2, and if T makes approximately 0.7

√
b − a jumps before placing the

trap. Then after about 2.7
√
b− a jumps of the wild kangaroo, W either must have

fallen into the trap, which happens with probability ≈ 0.75, or it must have safely
passed the trap and should be halted. The expected total running time amounts
to 3.28

√
b− a group operations. The algorithm has to store only the set S and the

current positions of the two kangaroos; since |S| = O(log(b − a)) if the exponents
si are powers of two, it is very space efficient.

2.1. The van Oorschot–Wiener parallelization. In the same paper [vOW99],
van Oorschot and Wiener improved on the above result by applying a distinguished
point method . Their technique suits both for a better serial application of the kan-
garoo method and for its efficient parallelization. The idea is to call a group element
(=“point”) distinguished if it satisfies some easily checkable property. For example,
one could require that certain bits of the binary representation of a distinguished
point must be zero. Whenever a kangaroo hits a distinguished point, say tj or wj , it
is stored, together with the corresponding distance δj. In the parallel setting, this
information is sent to a central server; in this case, the name of the corresponding
kangaroo should be included to be able to deal with collisions between members of
the same herd. As soon as the same distinguished point has been found by both
a tame and a wild kangaroo, the discrete logarithm can be derived from the cor-
responding distances. We describe this method in more detail. Let m denote the
number of processors. Let us first assume that m is even. We work with u = m/2
tame and v = m/2 wild kangaroos. The tame kangaroos T0, . . . , Tu−1 start at and
shortly after the middle of the interval at positions t0(Tk) = g(a+b)/2+kν , 0 ≤ k < u,
with some small constant ν. (Note that ν should be chosen with some care to re-
duce the possibility of collisions between kangaroos of the same herd. For example,
we should have ν 6= si, i = 1, . . . , r.) The wild kangaroos W0, . . . ,Wv−1 start at
w0(Wk) = h∗gkν , 0 ≤ k < v. Then the kangaroos follow paths as in (2.1) and (2.3),
where again we keep track of the distances (2.2) and (2.4), just as in the original

796 ANDREAS STEIN AND EDLYN TESKE

kangaroo method described above. Let d denote the distance between the herds of
tame and wild kangaroos, that is, d = |(a+ b)/2− x|, and let β be the mean value
of the exponents si in S. Then the expected running time is

d/β + (2/m)2β + 1/Θ ,

where Θ denotes the proportion of points that satisfy the distinguishing property.
Since d is unknown, the analysis [vOW99] assumes an expected value for d of
(b − a)/4. The expected running time until two different kangaroos hit the same
distinguished point is minimal if β is approximately m(

√
b− a)/4 which gives an

expected running time of

(1 + 4d
b−a)(

√
b− a)/m+ 1/Θ(2.5)

jumps on each processor. Observe that 1 ≤ 1 + 4d/(b − a) ≤ 3. If d is approxi-
mately (b− a)/4, that is x ≈ (a+ b)/2± (b− a)/4, it takes an expected number of
approximately

2(
√
b− a)/m+ 1/Θ

jumps on each processor. This is, on average, true for a randomly chosen x, but in
general does not hold for a specific x.

If m is odd, we also can simulate 2m half-speed processors by alternating between
jumps of one tame and one wild kangaroo. This takes an expected number of
2(
√
b− a)/m+ 2/Θ jumps on each (real) processor.

Notice that if we have more information about the distribution of d in the interval
[a, b[—as it is the case for real quadratic function fields—it may be useful to alter
β and thus obtain a different expected running time. For example, if E(d) is the
expected value for d, then the optimal choice for β is

β = m
√
E(d)/2 ,(2.6)

which gives an expected running time of 4
√
E(d)/m+1/Θ jumps on each processor.

In comparing the expected number of jumps (= group operations) for the
kangaroo method using distinguished points with the expected number of
(
√
π · ord g/2)/m + 1/Θ group operations for the parallelized rho method (cf.

[vOW99]), we see that the kangaroo method is expected to be faster than the
rho method if b− a < π/8 · ord g (π/8 ≈ 0.39).

The parallelization method of van Oorschot and Wiener does not exclude col-
lisions between kangaroos of the same herd. Such collisions do not reveal any
information about the value x to be computed. Since the kangaroos travel on the
same paths once they have collided, computing power is wasted if not one of the
colliding kangaroos is halted. Halting a kangaroo (with the purpose to restart it at a
new starting point) requires a message from the central server to the corresponding
machine, an effort which one would like to avoid.

2.2. Pollard’s parallelization. Pollard [Pol] found a method of parallelization
such that collisions between kangaroos of the same herd cannot occur. His method
works as follows. Let m be the number of processors and let u and v denote
the numbers of tame and wild kangaroos, respectively. We choose u and v to be
coprime, nearly equal, and such that u+v ≤ m. The powers of g in the set of jumps
are multiples of uv: S = {gs1uv, gs2uv, . . . , gsruv}. As before, the tame kangaroos
T0, . . . , Tu−1 are set off at and shortly after the middle of the interval, now at
positions t0(Ti) = g(a+b)/2+iv, 0 ≤ i < u, and the wild kangaroos W0, . . . ,Wv−1

THE KANGAROO METHOD IN REAL QUADRATIC FIELDS 797

start at positions w0(Wk) = h∗gku, 0 ≤ k < v. Then they travel through the group
just as before. Since the equation

(a+ b)/2 + iv = x+ ku mod uv (x = logg h)

has a unique solution in i (mod u) and k (mod v), there is exactly one pair (Ti,Wk)
of kangaroos that travels in the same residue class modulo uv; this is the only
pair which can meet. No two tame and no two wild kangaroos can meet each
other. Hence, as soon as any two kangaroos have met and a distinguished point
tj(Ti) = wj′(Wk) has been found, the unknown x can be determined from the
starting points t0(Ti) and w0(Wk) and distances δj(Ti) and δj′ (Wk). Pollard’s
analysis of this method shows that the optimal choice for S is such that the mean
value of the si is close to (

√
(b− a)/uv)/2. Then it takes an expected number of

approximately (
√

(b − a)/(uv))B(S)+1/Θ jumps on each processor. Here, B(S) is
a correction factor depending on the choice of S; Pollard [Pol] showed that B(S) ≈ 1
if the exponents si in S are the consecutive powers of 2 or 4 (starting with 20, resp.
40) and |S| ≥ 6. Since both u and v are close to m/2, this then gives essentially
the same expected running time as for the method by van Oorschot and Wiener.

2.3. The parallelized Pollard kangaroo method in practice. There are sev-
eral aspects to consider when it comes to actually implementing a parallelized
Pollard kangaroo attack. We begin with some typical experimental data, shown in
Tables 1–3, to illustrate our discussion. Using the computer algebra system LiDIA
[LiD97], we implemented both the van Oorschot–Wiener and the Pollard variants
of parallelization for groups of points of elliptic curves over finite fields, to compute
the group order. We simulated the parallelization on a serial computer; this agrees
with the assumption in the running-time analysis that all machines are equally fast.

In our first example we work with the curve E7,13 : y2 = x3 + 7x + 13 defined
over the finite field Fp with the 15-digit prime p = 100000005000197; the point
group E7,13(Fp) is cyclic. A theorem due to Hasse says that its order n satisfies the
inequality |n − p − 1| ≤ 2

√
p; in fact n = 100000015380435. We choose a random

point P on the curve and we use the parallelized kangaroo method to find a multiple
of its order in the interval [p + 1 − 2

√
p, p+ 2 + 2

√
p[. Note that if ord P > 4

√
p,

then the unique multiple of ord P in the interval must be the group order. We
have d = |n − p − 1| = 1.038...

√
p. This is the distance between the herd of tame

kangaroos set off near (p + 1) · P and the herd of wild kangaroos set off near the
neutral element O of E7,13(Fp), and it is approximately the distance on which the
running time analysis in [vOW99] and [Pol] is based. Using (2.5), we then find that
α := 1 + 4d/(b − a) = 2.038..., and the expected running time is 12889/m+ 1/Θ
jumps/kangaroo. We work with m = 4, m = 8, and m = 20 kangaroos.

In this and the following examples, we fix the remaining parameters as follows.
We use various sizes for the sets of distinguished points, from Θ = 1, 2−1, . . . to
2−12. As for the jump distances, for the van Oorschot–Wiener parallelization we
let si = 2i−1 (1 ≤ i < r) and choose 0 < sr ≤ 2r−1 such that the mean value of
the si equals the nearest integer of mp1/4/2—notice that r is uniquely determined
by these conditions. Correspondingly, for the Pollard parallelization we work with
jump distances siuv, where si = 2i−1 for 1 ≤ i < r, and sr is such that the mean
value of the si equals bp1/4/

√
uvc, where u = m/2 − 1 and v = m/2 + 1 are the

numbers of tame and wild kangaroos, respectively. Finally, in the van Oorschot–
Wiener variant we work with ν = 13 as distance between the starting points of two

798 ANDREAS STEIN AND EDLYN TESKE

Table 1. E7,13(Fp) with p = 100000005000197. Order computation.

Θ 1 2−1 2−2 2−3 2−4 2−5 2−6 . . . 2−12

4 kangaroos. Expected: 3222 + 1/Θ jumps/kangaroo

van Oorschot–Wiener variant

dist. points 13861 6932 3467 1735 870 437 220 . . . 6
jumps/kang. 3465 (2.191) 3467 3469 3475 3486 3505 3544 . . . 7664

Pollard’s variant

dist. points 15690 7851 3924 1963 983 493 248 . . . 7
jumps/kang. 3923 (2.481) 3926 3928 3932 3941 3957 3989 . . . 7939

8 kangaroos. Expected: 1611 + 1/Θ jumps/kangaroo

van Oorschot–Wiener variant

dist. points 13917 6965 3484 1744 876 442 224 . . . 7
jumps/kang. 1740 (2.201) 1741 1743 1748 1758 1774 1811 . . . 4971

Pollard’s variant

dist. points 13727 6864 3436 1722 865 436 222 . . . 11
jumps/kang. 1716 (2.17) 1717 1719 1723 1731 1747 1779 . . . 5992

20 kangaroos. Expected: 644 + 1/Θ jumps/kangaroo

van Oorschot–Wiener variant

dist. points 13389 6702 3361 1690 855 436 227 . . . 9
jumps/kang. 669 (2.115) 670 672 677 685 701 733 . . . 2443

Pollard’s variant

dist. points 13769 6891 3456 1735 876 448 233 . . . 23
jumps/kang. 688 (2.175) 689 691 695 702 719 750 . . . 4812

consecutive kangaroos of the same herd; whenever two tame or two wild kangaroos
meet (which is signalled by their finding the same distinguished point), one of these
two kangaroos is halted and set off at a new starting point.

Now for each order computation, we counted the number of jumps of each kanga-
roo until any pair of tame and wild kangaroos found the same distinguished point,
and the total number of distinguished points found by all kangaroos. Table 1 shows
the average values taken over 1000 such runs; here we considered only those runs
with points P whose order exceeded 4

√
p. The number in brackets in the second

column shows the average ratio of the number of jumps and (
√
b− a)/m, for which

the theoretical value is α = 2.038. Note that in the van Oorschot–Wiener variant,
on average at most one collision occurred between kangaroos of the same herd when
m = 4 and m = 8, and at most two such collisions when m = 20.

In our second example, we work with the curve E5,17 : y2 = x3 + 5x+ 17 defined
over Fp, where p = 100000000000000500053 (21 digits). E5,17(Fp) is cyclic of group
order n = 99999999991517342872. Hence, d = |n− p− 1| = 0.848...

√
p, α = 1.848,

and we expect an average running time of about 369663/m+ 1/Θ jumps for each
kangaroo. With m = 8 and m = 20 kangaroos, we conduct the same computations
as in the first example. The average values of the results, this time taken over 100
computations with ord P > 4

√
p, are shown in Table 2. Also, on average at most

one collision occurred between kangaroos of the same herd, both for m = 8 and
m = 20 (in the van Oorschot–Wiener variant).

In our last example, the curve is E5,17 : y2 = x3 + 13x + 5 over Fp with the
16-digit prime p = 1000000000000037. The group E5,17(Fp) is cyclic and has order
n = 1000000058247036. This time the distance between the herds of tame and wild

THE KANGAROO METHOD IN REAL QUADRATIC FIELDS 799

Table 2. E5,17(Fp) with p = 100000000000000500053. Order computation.

Θ 2−2 2−3 2−4 2−5 2−6 . . . 2−12

8 kangaroos. Expected: 46208 + 1/Θ jumps/kangaroo
van Oorschot–Wiener variant

dist. points 97746 48861 24443 12232 6120 . . . 104
jumps/kang. 48871 (1.954) 48876 48885 48903 48934 . . . 54035

Pollard’s variant
dist. points 107388 53681 26824 13416 6703 . . . 112
jumps/kang. 53677 (2.147) 53681 53690 53706 53735 . . . 57577

20 kangaroos. Expected: 18483 + 1/Θ jumps/kangaroo
van Oorschot–Wiener variant

dist. points 87349 43684 21850 10943 5487 . . . 102
jumps/kang. 17478 (1.747) 17482 17492 17508 17550 . . . 21141

Pollard’s variant
dist. points 89903 44954 22480 11239 5632 . . . 106
jumps/kang. 17975 (1.797) 17978 17985 17998 18029 . . . 22005

kangaroos is larger than
√
p. Indeed, we have d = |n−p−1| ≈ 1.842, and α ≈ 2.842.

We then expect, on average, about 31963/m+ 1/Θ jumps for each kangaroo. Our
results, this time for m = 8 and m = 20 kangaroos, are shown in Table 3. All
averages are taken over 1000 computations. In the van Oorschot–Wiener variant,
we observed on average at most one collision between members of the same herd
when m = 8 and at most two collisions when m = 20.

2.3.1. Which variant: van Oorschot–Wiener or Pollard? Our experimental data
suggest that with both variants, we achieve an almost linear speed-up. The Pollard
variant of parallelization has the advantage that collisions between kangaroos of
the same herd are impossible. In the van Oorschot–Wiener variant we do have to
deal with such collisions, which requires communication from the central server to
the processors. In our experiments, the number of collisions was quite small, but
this effect may be more significant when dealing with much larger herds of kanga-
roos. On the other hand, the van Oorschot–Wiener variant allows that additional
kangaroos (=processors) can join a parallelized kangaroo attack at any stage and
contribute with each single distinguished point they find. Thus, it mainly depends
on the application which variant suits better.

2.3.2. The distinguished point set. A simple way to implement the distinguished
point set is to define a point to be distinguished if the F lowest bits in the represen-
tation of the point as a binary string are zero. Then the proportion of distinguished
points is Θ = 1/2F . In our experiments, we worked with F = 0, . . . , 6, 12. Our
results fully match the theoretical predictions of how Θ effects the running time. In
general, F should be chosen small enough such that 1/Θ = 2F is small compared
with

√
b− a, but not too small since the algorithm has to store an expected number

of 2Θ
√
b − a distinguished points.

2.3.3. The set of jumps. Our experimental results suggest that choosing the expo-
nents si in the set of jumps as powers of two works fine in principal in the sense
that the theoretically predicted running times are almost met. Sample experiments

800 ANDREAS STEIN AND EDLYN TESKE

Table 3. E13,5(Fp) with p = 1000000000000037. Order computation.

Θ 1 2−1 2−2 2−3 2−4 2−5 2−6 . . . 2−12

8 kangaroos. Expected: 3995 + 1/Θ jumps/kangaroo

van Oorschot–Wiener variant

dist. points 32566 16276 8139 4071 2040 1025 514 . . . 12
jumps/kang. 4071 (2.895) 4072 4074 4079 4091 4112 4149 . . . 7640

Pollard’s variant

dist. points 30364 15184 7585 3790 1903 954 480 . . . 14
jumps/kang. 3795 (2.699) 3797 3799 3802 3811 3825 3855 . . . 7332

20 kangaroos. Expected: 1598 + 1/Θ jumps/kangaroo

van Oorschot–Wiener variant

dist. points 29418 14724 7371 3689 1860 937 481 . . . 15
jumps/kang. 1471 (2.616) 1472 1475 1479 1489 1504 1543 . . . 3666

Pollard’s variant

dist. points 32974 16510 8265 4146 2080 1048 531 . . . 27
jumps/kang. 1649 (2.932) 1650 1651 1655 1662 1677 1706 . . . 5536

with choosing the si uniformly at random from the interval [0, 2µ] (µ denoting the
theoretically optimal mean value of the si) yielded even slightly better results.

2.3.4. Choice of the spacings ν in the van Oorschot–Wiener variant. In the experi-
ments shown in our tables, we worked only with ν = 13. Working with other choices
of ν such as the primes 31, 1031, 1000031 yielded almost identical results. It is sub-
ject to further investigation whether the number of useless collisions can be reduced
by using another strategy to choose the spacings, for example, by introducing any
kind of randomization.

3. A brief introduction to real quadratic function fields

3.1. Basic definitions. For details about function fields we refer to [Sti93], and for
the arithmetic of real quadratic function fields we mention [Art24, SSW96, PR99].
Let k = Fq be a finite field of odd characteristic with q elements. A hyperelliptic
function field over the constant field k of genus g is a quadratic extension of the
rational function field over k in one variable, i.e., K = k(X)(

√
D), where D = D(X)

is a squarefree polynomial of degree 2g + 1 or 2g + 2. If D is a monic squarefree
polynomial of degree 2g+ 2, then K is called a real quadratic function field over k,
and otherwise imaginary quadratic.

Let D be a monic squarefree polynomial of degree 2g+2 so that K = k(X)(
√
D)

is a real quadratic function field over k with respect to the real quadratic order
O(X) = k[X][

√
D]. In this case, the infinite place ∞ of k(X) splits into two

extensions ∞1 and ∞2 in K. We know that O(X)∗ = k∗ × 〈ε〉, where ε ∈ K is a
fundamental unit. We know that K ≤ Fq((1/X)), where Fq((1/X)) denotes the field
of Puiseux series. We then consider elements of K as Puiseux series at ∞1 in 1/X.
Now, let α ∈ Fq((1/X)) be a nonzero element. Then α =

∑d
i=−∞ ciX

i with cd 6= 0.
We denote by deg(α) = d the degree of α. We set deg(0) = −∞. We define the
regulator RX of K over k with respect to O(X) as RX := deg(ε). We then have

THE KANGAROO METHOD IN REAL QUADRATIC FIELDS 801

that h = RXhX , where hX denotes the ideal class number of K with respect to
O(X) and h the divisor class number of K.1

3.2. Ideals. The ring O(X) is a Dedekind domain. Any (nonzero integral O(X)-)
ideal can be uniquely represented in the form a = SQk[X] + (SP + S

√
D) k[X] ,

where S, P, Q ∈ k[X] with Q|(D − P 2), sgn(S) = sgn(Q) = 1, and deg(P) <
deg(Q); here, sgn(S) denotes the highest coefficient of S. The set {SQ, SP+S

√
D}

is called a k[X]-basis of a. If a is given in the representation above, which we also
call standard representation, then the norm of a is defined by N(a) = QS2 ∈ k[X].
An ideal is called primitive if S = 1. If a = (α) = αO(X) with α ∈ O(X), we call
a a principal ideal. We say that two integral ideals a and b are equivalent, written
a ∼ b, if there exist some nonzero elements α1, α2 ∈ O(X) such that (α1)a = (α2)b.

A primitive ideal a is called reduced if degN(a) ≤ g. Hence, each reduced
ideal a can be uniquely represented by a pair (Q,P) of polynomials in k[X], where
Q|(D − P 2), sgn(Q) = 1, i.e., Q = N(a), and deg(P) < deg(Q) ≤ g. For instance,
O(X) is a reduced principal ideal with representation (1, 0). It is well known
that each ideal class contains exactly one cycle of reduced ideals. So does the
principal ideal class. Throughout our computations, we will only be performing
arithmetic on reduced principal ideals, which will be represented by their k[X]-bases
{Q,P +

√
D}. We denote by R the set of reduced principal ideals. The continued

fraction expansion of ideals starting at r1 = O(X) produces all elements of R. This
infinite process is ultimately periodic with period p, and thus R = {r1, . . . , rp},
where rp+i = ri for i ∈ N.

3.3. Distance. With each reduced principal ideal a = (α), we associate a distance

δ(a) = δ(a,O(X)) := deg(α) .(3.1)

From [SSW96] we know that δ is unique modulo RX , and defines an order

r1 = O(X) < r2 < · · · < rp < rp+1 < · · ·
on the reduced principal ideals (and in particular on R). Furthermore, δ(ri) is
strictly increasing with i; more exactly, we have that 1 ≤ δ(ri+1) − δ(ri) ≤ g + 1.
Note that δ(r2) = g + 1 and RX = δ(rp+1). Two reduced principal ideals a and b

are equal if and only if

δ(a) ≡ δ(b) (mod RX) .

Given any positive integer y, there certainly exists an index j ≥ 1 such that

δ(rj) ≤ y < δ(rj+1) .

We call δ(rj) the closest ideal to (the left of) y and denote it by Nearest(y). In
this situation, we put

n(y) = y − δ(Nearest(y)) = y − δ(rj) .
Following [PR99], we identify any integer y between 0 and RX − 1 with a tuple
(Nearest(y), n(y)), where y = δ(Nearest(y)) + n(y) and 0 ≤ n(y) ≤ g. That
means there exists a unique representation for any integer y between 0 and RX − 1
in terms of an element Nearest(y) ∈ R and an integer n(y) which is the distance

1If C denotes the nonsingular projective model of the function field K, then C is an irreducible
hyperelliptic curve of genus g. Thus, the function field k(C) of C is equal to K = k(C) =

k(X)(
√
D) = k(X)(Y), where Y 2 = D(X). Thus, the divisor class number of K is the cardinality

of the Jacobian of the hyperelliptic curve C.

802 ANDREAS STEIN AND EDLYN TESKE

between Nearest(y) and y. Using that rmp+j = rj and δ(rmp+j) = mRX + δ(rj)
for m ∈ N and j ≥ 1, we then, in the obvious way, extend this representation
to all nonnegative integers y; then also n(s + mRX) = n(s) for m, s ∈ N. Possi-
bly n(y) = 0, then there exists a reduced principal ideal with precise distance y.
But, it might happen that n(y) 6= 0 in which case there is a “hole” in the cycle.
For instance δ(r1) = 0 and δ(r2) = g + 1 so that Nearest(j) = r1 = O(X) for
j = 0, . . . , g. Then the integers 0, 1, . . . , g, g + 1 are represented by the tuples
(O(X), 0), (O(X), 1), . . . , (O(X), g), (r2, 0), respectively. Note that n(y) = g if and
only if y = g +mRX for some m ∈ N.

In our application we mainly consider the case that q is large and g is small. By
picking random integers y between g + 1 and RX , we found experimental evidence
that n(y) = 0 with probability 1−O(1/q), and, in general, n(y) = j for 1 ≤ j ≤ g−1
with probability O(1/qj).

We call one step in the continued fraction expansion of reduced principal ideals,
i.e., the computation of ri+1 from ri, a baby step (forward). Similarly, the compu-
tation of ri from ri+1 is said to be a baby step (backward). Generally, a baby step
can be performed by using 4g +O(1) operations in the finite field k (see [Ste99]).

3.4. Infrastructure. Shanks’ infrastructure idea [Sha72] also applies to the set of
reduced principal ideals in a real quadratic function field. We define an operation
? (a giant step or an infrastructure operation) on R as follows. Let a = (Qa, Pa)
and b = (Qb, Pb) be two reduced principal ideals. First, compute the ideal product
ab = (S)c′, where c′ is a primitive principal ideal. Second, reduce c′ to obtain an
equivalent reduced principal ideal c. Put c = a ? b. If one knows the distances δ(a)
and δ(b), then δ(c) can be computed as well, and

δ(c) = δ(a) + δ(b) + f ,(3.2)

where −2g ≤ f ≤ 0. This operation can be performed efficiently in an expected
number of 17 g2 +O(g) operations in the finite field k (see [Ste99]).

We remark here that we found experimental evidence (for 1 ≤ g ≤ 10) that
for randomly chosen reduced ideals a and b we have f = −bg/2c with probability
1−O(1/q).

Furthermore, given any nonnegative integer y, we may compute Nearest(y)
effectively in O(log n) giant steps by using an adaption of the square-and-multiply
strategy.

In the kangaroo method, the infrastructure will be applied as follows. For jump
distances si, we compute the corresponding ideals Nearest(si). Then jumps of the
kangaroos will be giant steps of the form zj ? Nearest(si), with zj denoting the
position of the kangaroo after j jumps.

Notice that (3.2) means that kangaroos experience a slight headwind, as a con-
sequence of which kangaroos tend to jump a bit too short. We can help the kan-
garoo by altering the set of jumps a bit: given the jump distances si, we work
with the ideals Nearest(si + bg/2c), such that jumps of the kangaroos are of the
form zj ? Nearest(si + bg/2c). Then, with probability 1 − O(1/q) we have for
zj+1 = zj ?Nearest(si + bg/2c) that δ(zj+1) = δ(zj) + si. In particular, this means
that the expected running time of the algorithm is not affected by the headwind.

3.5. An estimate of h. Our main application of the kangaroo method for real
quadratic function fields is to compute RX and h. For this, we first need to know
integers a and b such that a ≤ h = hXRX < b. Of course, b− a should be as small

THE KANGAROO METHOD IN REAL QUADRATIC FIELDS 803

as possible. Luckily, a reasonable interval for h can be determined by evaluating
the formulas in [ST99b]. The idea is to determine integers E and L such that

|h− E| < L2 .

If we put a = E − L2 + 1 and b = E + L2, then b − a = 2L2 − 1. Of course, we
want L to be as small as possible. For g ≤ 2, we find appropriate E and L using
the inequality

(
√
q − 1) 2g ≤ h ≤ (

√
q + 1) 2g ,

which is a consequence of the Theorem of Hasse–Weil (see e.g., [Sti93, Theorem
V.1.15 and V.2.1]). To compute E and L for g ≥ 3, we make use of the analogue
of the analytic class number formula for function fields and proceed with approxi-
mating h by truncated Euler products. This works as follows. We know that

h =
qg+1

q − 1

∏
P

1
1− χ(P)q− deg(P)

=
qg+1

q − 1

∞∏
ν=1

∏
P

deg(P)=ν

1
1− χ(P)q−ν

,

where P runs through all monic prime polynomials of k[X] and χ(P) = [D/P]
denotes the Legendre symbol for polynomials of D over P . Following the reasoning
in [ST99b], we let

λ =

{
b(2g − 1)/5c if g ≡ 2 (mod 5) ,
round((2g − 1)/5) otherwise

(round(y) is the unique integer such that − 1
2 < y − round(y) ≤ 1

2). We now put
E = round(E′), where

E′ =
qg+1

q − 1

λ∏
ν=1

∏
P

deg(P)=ν

1
1− χ(P)q−ν

.

Let

ψ =
(2g + ε(λ))q−

λ
2

(λ + 1)(
√
q − 1)

+
(2g + 2)q−

λ−1
2

(λ+ 2)(
√
q − 1)3

,

where ε(λ) = 0 if λ is even and ε(λ) = 1 if λ is odd. Then we define the integer L
by

L =
⌈√

E′(eψ − 1) + 1
2

⌉
and we know from [ST99b, Theorem 4.3] that

|h− E| < L2 and L = O(q
g
2−

λ+1
4) .

Note that for g ≥ 3 the approximation E can be determined efficiently in O(qλ)
operations. There is a detailed description in [SW98] of how to evaluate E efficiently
if λ = 1 or λ = 2.

804 ANDREAS STEIN AND EDLYN TESKE

3.6. The computation of RX and h. The complete algorithm for computing
RX and h consists of three steps. First, we compute an approximation E of h such
that |h − E| < L2 for some integer L, as explained above. In the second step, we
compute a multiple h0 = h∗RX of RX in the interval]E − L2, E + L2[. This can
be done either by Shanks’ baby step–giant step method as described in [SW98], or
by applying Pollard’s kangaroo method to function fields (see below). In the final
step, one determines h∗ by factoring h0 and using the fact that a prime divisor r
of h0 divides h∗ if and only if Nearest(h0/r) = O(X). Once having computed h∗,
one knows RX = h0/h

∗. In general, we expect RX to be greater than 2L2 − 2,
in which case h0 = h and h∗ = hX . If RX ≤ 2L2 − 2, some additional steps will
produce the values of h and hX .

The complexity of this algorithm is mainly determined by the first and second
steps. The running time for the approximation is O(qλ). The multiple of the
regulator can be computed in O(L) operations by the baby step–giant step method
or in expected running time O(L) by Pollard’s kangaroo method. For g ≥ 3, this
gives a total running time of

O(qround((2g−1)/5)+η), g ≥ 3 ,

where η = 0 if g ≡ 0 or g ≡ 3 (mod 5), η = 1/4 if g ≡ 1 (mod 5), η = −1/4 if
g ≡ 2 (mod 5), and η = 1/2 if g ≡ 4 (mod 5). If g = 1 or 2, the total running time
is O(q 1/4) or O(q 3/4), respectively.

4. The parallelized kangaroo method in

real quadratic function fields

In this section we apply the parallelized kangaroo method to compute the the
regulator RX , and hence the class numbers h and hX , in a real quadratic function
field.

Let K = k(X)(
√
D) be a real quadratic function field. We let E and L as in

subsection 3.5. Then, h lies in the interval [E − L2 + 1, E + L2[of length 2L2 − 1.
This estimate for h and the distance (3.1) represent the necessary ingredients such
that the kangaroo method can be applied to compute a multiple of the regulator
RX in expected running time O(L). We explain how this works. We first define the
set of jumps, which is denoted by S. Here, essential parameters are l, the number
of elements in S, and β, the mean value of the jump distances. In practice, we
will work with l = 50, and β will be chosen according to Section 2. Given positive
integers β and l, we first generate l positive integers s1, s2, . . . , sl whose mean value
is β. In fact, since Nearest(m) = O(X) for m = 1, . . . , g, we even require that
si ≥ g + 1, i = 1, . . . , l to guarantee that O(X), the neutral element with respect
to the giant step operation, is not included in S. So let s1 be a randomly chosen
integer in [g + 1, 2β]. Then, for i = 2, . . . , l − 1, randomly select si in the interval
[g + 1, 2β] with the additional property that

(i− 1)β <
i∑

j=1

sj ≤ (i + 1)β − (g + 1) .

Finally, we put

sl = l β −
l−1∑
i=1

si .

THE KANGAROO METHOD IN REAL QUADRATIC FIELDS 805

Note that sl ∈ [g + 1, 2β] and
∑l
i=1 si/l = β. We then put

bi = Nearest(si + bg/2c) , 1 ≤ i ≤ l,
and define the set of jumps to be S = {b1, b2, . . . , bl}. The term bg/2c is added to
compensate for the headwind (see subsection 3.4). Having precomputed the reduced
principal ideals bi and their distances δ(bi), we store them as triples (Qi, Pi, δ(bi)),
where (Qi, Pi) refers to the standard representation of bi, i = 1, . . . , l. Next, let
v : R → {1, . . . , l} be a hash function. For example, if the reduced principal ideal
a is represented by (Q,P), then we can put v(a) = 1 + the last coefficient of the
polynomial Q modulo l.

A kangaroo Z (tame or wild) with starting point z0 then follows the path (zj) of
reduced principal ideals such that

zj+1 = zj ? bv(zj) , j ∈ N0 .(4.1)

In the beginning, we let δ0(Z) = δ(z0) and, in general, we define δj(Z) = δ(zj) for
j ≥ 1. By the results mentioned in subsection 3.4, we have

δj+1(Z) = δj(Z) + δ(bv(zj)) + fj+1(Z) , j ∈ N0 ,(4.2)

where fj+1(Z) is a computable integer with −2g ≤ fj+1(Z) ≤ 0. With that defi-
nition, the distance δj(Z) of subsection 2 coincides with the distance of subsection
3.3 in real quadratic function fields.

Having introduced the notation of kangaroos in real quadratic function fields, we
can now follow precisely the lines of Section 2 and define tame and wild kangaroos.
We just have to show how to find a multiple of the regulator.

In the original setting of Pollard, we define a tame kangaroo T following the path
(tj) with starting point t0 = Nearest(E + L2) and a wild kangaroo W travelling
along the path (wj) with starting point w0 = O(X) = Nearest(h). Both paths are
computed using (4.1). We keep track of the distances δj(T) and δj(W) as in (4.2),
where E+L2− δ0(T) ≤ g and δ0(W) = 0. The tame kangaroo jumps M steps and
then stops at the final resting spot tM , where it installs the trap. If it happens that
the wild kangaroo W falls into the trap, then there exists an index N such that
tM = wN . Thus, δM (T) ≡ δN (W) (mod R), and δM (T)− δN (W) is a (most likely
nontrivial) multiple of the regulator RX . Otherwise, the wild kangaroo is halted
after a certain number of steps and a new wild kangaroo is started at Nearest(z)
with a small integer z. As in the general setting, we expect this process to terminate
after a total number of 3.28

√
2L2 − 1 jumps, if the mean value β of the distances

of the ideals in the set of jumps is (
√

2L2 − 1)/2.
The distinguished point method can be employed in an analogous way. We call

a reduced principal ideal a distinguished point if it satisfies some easily checkable
property. For instance, we can define that a is a distinguished point if and only if
the last coefficient of N(a) has a specified number, say F , of zero bits; then Θ =
1/2F represents the approximate proportion of distinguished points. Whenever a
kangaroo reaches a distinguished point, we store the ideal together with its distance.

In the parallel setting of van Oorschot and Wiener, we proceed as in subsection
2.1. Let m denote an even number of processors, and let u = v = m/2. We then
define two herds of kangaroos, namely m/2 tame kangaroos T0, . . . , Tu−1 and m/2
wild kangaroosW0, . . . ,Wv−1. The tame kangaroos are set off around E at starting
points t0(Tk) = Nearest(E + kν), 0 ≤ k < u, with some small constant ν > g + 1.
The wild kangaroos start at w0(Wk) = Nearest(kν), 0 ≤ k < v. Both herds

806 ANDREAS STEIN AND EDLYN TESKE

now follow the paths and keep track of the distances as in (4.1) and (4.2). When it
happens that two members of different herds reach the same distinguished point, we
can compute a multiple of the regulator from these kangaroos’ starting positions and
the distances they travelled. This takes an expected number of 2

√
2L2 − 1/m+1/Θ

jumps for each kangaroo.
In the parallel setting of Pollard as outlined in subsection 2.2, the kangaroos

travel in fixed equivalence classes modulo uv for some coprime integers u and v. If
we allow the kangaroos to alter the lengths of the jumps as in (4.2), they change
equivalence classes modulo uv and Pollard’s idea does not work. We resolve this
problem by slightly modifying the definition of a jump. For this, we follow the idea
of subsection 3.3 of identifying positive integers y with tuples (Nearest(y), n(y)),
and we let the kangaroos travel on tuples of that form such that for each kangaroo,
the sums δ(Nearest(y))+n(y) are invariant modulo uv. This works as follows. As
before, let m denote the number of processors, and let u and v be coprime integers
less than m denoting the numbers of tame and wild kangaroos, respectively. Given
a set {s1, s2, . . . , sl} of jump distances, we put for 1 ≤ i ≤ l
b′i = Nearest(uvsi + bg/2c) and bi = n(uvsi + bg/2c) = uvsi + bg/2c − δ(b′i)
and define the set of jumps by S′ = {(b′1, b1), (b′2, b2), . . . , (b′l, bl)}. Let v : R →
{1, . . . , l} be a hash function. Given a nonnegative integer µ0, we set off a kangaroo
Z ′ at µ0 by letting its starting point be the tuple (z′0, z0), where

z′0 = Nearest(µ0) and z0 = n(µ0) = µ0 − δ(z′0) .

Then Z ′ follows the path ((z′j , zj)) of reduced principal ideals z′j (together with the
differences zj) such that for j ≥ 0

z
′
j = Nearest(µ0 + uvλj) and zj = n(µ0 + uvλj) = µ0 + uvλj − δ(z′j) ,

(4.3)

where λ0 = 0 and λj = λj−1 + sv(z′j−1). If we put δj(Z ′) = δ(z′j), then

δj(Z ′) + zj = µ0 + uvλj ≡ µ0 (mod uv), j ≥ 0 .(4.4)

Given (z′j , zj) the tuple (z′j+1, zj+1) can be efficiently computed as follows. First,
we perform a giant step operation and determine zj+1 = z′j ? b′v(z′j)

such that

δ(zj+1) = δ(z′j) + δ(b′v(z′j)
) + fj+1(Z ′)

= µ0 + uvλj+1 − zj + bg/2c − bv(z′j)
+ fj+1(Z ′) ,

where −2g ≤ fj+1(Z ′) ≤ 0. Notice that

−4g + bg/2c ≤ δ(zj+1)− (µ0 + uvλj+1) ≤ bg/2c .
Starting at zj+1, we then perform at most 4g − bg/2c baby steps forward or bg/2c
baby steps backward to compute z′j+1 = Nearest(µ0 + uvλj+1). Then, we put
zj+1 = µ0 + uvλj+1 − δ(z′j+1). Notice that with probability 1 − O(1/q) we have
zj = 0 = bv(z′j)

and fj+1(Z ′) = −bg/2c, in which case z′j+1 = zj+1 and a jump is
just the same as in the van Oorschot–Wiener parallelization. Only if z′j+1 6= zj+1

do we actually obtain a different interpretation of a jump.
Now we define two herds of kangaroos. The tame kangaroos T0, . . . , Tu−1 are set

off at E + iv with starting points (t0(Ti), t0(Ti)) = (Nearest(E + iv), n(E + iv)),
0 ≤ i < u. The wild kangaroos W0, . . . ,Wv−1 are set off at ku with starting points
(w0(Wk), w0(Wk)) = (Nearest(ku), n(ku)), 0 ≤ k < v. Both herds now follow

THE KANGAROO METHOD IN REAL QUADRATIC FIELDS 807

the paths and keep track of the distances as in (4.3) and (4.4). Let mRX be the
multiple of RX that is closest to E in the interval [E − L2 + 1, E + L2]. Then the
equation

E + iv = mRX + ku (mod uv)

has a unique solution in i (mod u) and k (mod v). Now recall that Nearest(ku) =
Nearest(mRX + ku) and n(ku) = n(mRX + ku) for m ∈ N. Therefore, there exist
unique integers i and k such that

δj(Ti) + tj(Ti) = δj′(Wk) + wj′ (Wk)(4.5)

for some integers j and j′, where

δj(Ti) + tj(Ti) = E + iv + σ , δj′(Wk) + wj′ (Wk) = mRX + ku+ τ ,

and σ and τ are multiples of uv that can be evaluated along the paths. The
event (4.5) can be detected if δj(Ti) = δj′(Wk), which is the case with probability
1−O(1/q), since then the corresponding reduced principal ideals tj(Ti) and wj′ (Wk)
coincide and the kangaroos Ti and Wk travel on the same paths toward the next
distinguished point. It follows immediately that

mRX = E + iv + σ − (ku+ τ)

(or, if the travel continues after (4.5) until the next distinguished point, with corre-
spondingly modified σ′ and τ ′), so that we have found a multiple of the regulator.
This takes an expected number of approximately

√
(2L2 − 1)/(uv) + 1/Θ jumps

on each processor; in the very unlikely event that (4.5) is not detected because
tj(Ti) 6= wj′ (Wk) or tj(Ti) = wj′ (Wk) but tj(Ti) 6= wj′ (Wk) (where the latter may
cause that (4.5) does not survive until the next distinguished point), the algorithm
continues until the next event of the form (4.5).

4.1. Improvements. There are two ways to improve the kangaroo method in
function fields. First, the above complexity analysis and parameter choice were
made under the assumption that h was distributed at random in the interval
[E − L2 + 1, E + L2[, but this is not the case for function fields. In fact, results
in [ST99b, Section 6] imply that for large values of q, the expected mean value of
|h−E|/L2 is a real number α(g) much smaller than 1/2, for instance, α(3) ≈ 0.163
and α(4) ≈ 0.125. If we start the tame kangaroos at around E and the wild kan-
garoos at around h, then the expected initial difference between the two herds of
kangaroos is α(g) · L2 (and not L2/2). With this knowledge we can improve the
choice of the set of jumps as discussed in subsection 2.1 (see also below).

Second, we make use of the different running times for baby steps and giant steps
in real quadratic function fields to obtain a speed-up of size Θ(

√
n), where

n = running time for one giant step/running time for one baby step .(4.6)

Because of the running times mentioned in subsections 3.3 and 3.4, we expect that
n ≈ 4g for large values of q.

The idea is to build “classes” with respect to the baby steps, since one giant step
roughly corresponds to n baby steps. Here, we consider the van Oorschot–Wiener
setting. Let m denote an even number of processors and let β denote the mean
value for the distances of the ideals in the set of jumps S = {b1, b2, . . . , bl}.

Let R denote the set of reduced principal ideals. Any a ∈ R is given as a =
(Q,P), where Q,P ∈ k[X] such that Q|(D − P 2), deg(P) ≤ deg(Q), and Q is

808 ANDREAS STEIN AND EDLYN TESKE

monic. Let last(Q) denote the lowest coefficient of Q. For a positive integer ρ we
define Qρ ⊂ R by

Qρ = {a = (Q,P) ; last(Q) = 0 (mod ρ)} ,

and we let the kangaroos operate on Qρ. Define the map Ψ : R→ Qρ by

Ψ(c) = the first a ∈ Qρ that is reached from c via baby steps .

By considering the pre-images of Ψ, we have that Ψ divides R into approximately
|R|/ρ equivalence classes of size ρ each. Furthermore, the expected running time
to evaluate Ψ for a given c ∈ R is (ρ− 1) baby steps. Let v : Qρ → {1, . . . , l} be a
hash function and f : Qρ →R given by

f(a) = a ? bv(a) .

Then one jump of a kangaroo consists of computing Ψ(f(a)). That is, we define
the jumps on the set Qρ rather than on R. Observe that the expected cost of one
jump is one giant step plus (ρ− 1) baby steps, hence

1 + (ρ− 1)/n

giant steps.
We now determine the optimal choices for β and ρ, given that we know m, α(g),

n, and L. Our analysis is a generalization of the generic case: if baby steps and
giant steps have the same complexity, then n = ρ = 1. As in subsection 2.1, let E(d)
denote the expected initial distance between the herds of tame and wild kangaroos.
Then E(d) = E(|h−E|) = α(g)L2. Now we denote by t the expected running time
for one kangaroo when the set of jumps is chosen such that the mean value β of
the distances is β ≈

√
2L2 − 1m/4, i.e., under the assumption that the solution is

uniformly distributed in the interval]E − L2, E + L2[. Then

t = E(d)/β + (2/m)2β + 1/Θ = (2α(g) + 1)
√

2L2 − 1/m+ 1/Θ +O(1)

giant steps. In the following, we neglect the term 1/Θ, assuming that it is small
compared to the total running time. Let tg = tg(β) be the expected running time
for one kangaroo when choosing the jump distances according to the heuristics in
[ST99b], and let tg,n = tg,n(β, ρ) be the expected running time for one kangaroo
when using the method with baby steps as explained above and the heuristics.

With the expected initial distance between the two herds being α(g)L2, it takes
an expected number of α(g)L2/β jumps to cover this initial distance. Now we
assume that for each jump (after the kangaroo that travels behind has covered the
initial distance), the probability for a hit is, on average,

ρ/β

(ρ < β). Then it takes an expected number of 4β/(ρm2) jumps for the m/2
kangaroos following behind to produce a hit on a spot previously occupied by one
of the m/2 leading kangaroos. Hence, the expected total running time per kangaroo
is

α(g)L2/β + 4β/(ρm2)(4.7)

jumps. Thus, the expected running time per kangaroo totals

tg,n(β, ρ) =
(
α(g)L2/β + 4β/(ρm2)

)
(1 + (ρ− 1)/n)

THE KANGAROO METHOD IN REAL QUADRATIC FIELDS 809

giant steps. Taking the first derivative with respect to β yields that tg,n(β, ρ)
becomes minimal for

β = mL

√
α(g)

√
ρ

2
.

Plugging this into tg,n(β, ρ) and taking the first derivative with respect to ρ yields
that tg,n(β, ρ) becomes minimal if

ρ =
√
n− 1√
α(g)

2β
mL

=
√
n− 1

√
ρ ,

i.e., ρ = n− 1, and

β =
mL

2

√
α(g)

√
n− 1 .(4.8)

This gives a total expected running time of

tg,n =
8
√
n− 1

√
α(g)

n

L

m

giant steps for each kangaroo. If we do not use baby steps, then we have n = ρ = 1,
and the optimal choice of β would be

β =
mL

2

√
α(g)(4.9)

(in accordance with (2.6)), yielding a total expected running time of

tg = 4
√
α(g)

L

m

giant steps for each kangaroo. Thus, using baby-step equivalence classes gives a
speed-up of

tg
tg,n

=
4
√
α(g)n

8
√
n− 1

√
α(g)

=
n

2
√
n− 1

∼ √g

for large values of q, where n is approximately 4g. Also notice that we obtain a
speed-up of the original method without heuristics and baby steps by a factor of
about

t

tg,n
=

(2α(g) + 1)n
√

2L2 − 1
8
√
n− 1

√
α(g)L

∼ (2α(g) + 1)
√

2
√
n

8
√
α(g)

∼
√
g(2α(g) + 1)

2
√

2
√
α(g)

.

For example, for g = 3 and α(g) ≈ 0.163, this gives a speed-up factor of about 2,
while for g = 4 and α(g) ≈ 0.125, the speed-up factor is about 2.5. By exploiting
only the heuristics but not using the baby-step equivalence classes, we still can
speed up the original van Oorschot–Wiener parallelization by the factor t/tg =
(2α(g) + 1)/(2

√
2α(g)).

4.2. Experimental results. For our computations we used several Suns and SGIs,
and the Computer Algebra System SIMATH [Zim97]. The reference machine was
a Sun Ultra Enterprise 450 under Solaris 2.6. We computed the regulator RX
and the class numbers h, hX of a real quadratic function field K = k(X)(

√
D)

over k = Fq, where q is an odd prime. The discriminants D ∈ k[X] were random
monic squarefree polynomials of even degree. Hereby, we mainly used irreducible
polynomials so that we could not use 2-parts of the ideal class number hX .

810 ANDREAS STEIN AND EDLYN TESKE

Table 4. Average running times for regulator computation (no
use of baby steps) for g = 3 and q = 10009.

γ 2 3 4 5 6 7 8 9
7.73s 6.42s 6.23s 6.16s 6.86s 7.35s 7.92s 8.64s

γ 10 11 12 13 14 16 20 23
8.81s 9.73s 10.16s 10.85s 11.46s 13.31s 16.41s 18.55s

We implemented the parallelized Pollard kangaroo method successfully in the
variant of van Oorschot and Wiener as described in Section 4 together with the
aforementioned improvements. We now provide examples for 2 and 16 kangaroos.
We used a set of jumps S with l = 50 elements; we believe that arguments similar
to the ones given in [Tes98] will show that a choice of l ≥ 20 elements is sufficient.
We define a distinguished point to be a reduced ideal a = (Q,P) ∈ Qρ for which
the lowest F bits of last(Q)/ρ are 0 (in the non–baby step setting we let ρ = 1).
For example, we can choose F = blog2 Lc/2 such that Θ = 1/2F ≈ 1/

√
L, and

the expected number of distinguished points to be stored is 2Θ
√

2L2 ≈ 2
√

2L.
Note that this is only about the square root of the space requirement of the baby
step–giant step algorithm [SW98].

In the first application, we simulated two parallel processors by letting the kan-
garoos jump alternately. There were only two kangaroos, a tame kangaroo T with
starting point t0(T) = Nearest(E) and a wild kangaroo W with starting point
w0(W) = O(X). Our aim was to compare in practice the (average) running time
of the method using baby steps with the (average) running time of the original
method, with varying mean values for the jump distances. We concentrated on the
case that g = 3, which means deg(D) = 8, and q = 10009. We used such a small
value of q because we needed to work with a large sample space in order to produce
meaningful averages.

In Table 4, we list examples for the original method with different mean values
β for the set of jumps. We worked with Θ = 2−4, so that about every 16th
ideal encountered was stored as distinguished point. We randomly generated 1000
examples, with

β =
γ

10
L ,

where γ is an integer between 2 and 23. Recall that for the original method the
theoretically optimal β is β = L/

√
2, which means that γ should be around 7.

When taking into account the heuristics [ST99b], we expect that (using (4.9))
γ = 10

√
α(3) ≈ 4 would be optimal (recall that α(3) ≈ 0.163). We then expect

a speed-up of t/t3 = (2 · 0.163 + 1)/(2
√

2 · 0.163) ≈ 1.16. Indeed, on dividing the
time for γ = 7 by the time for γ = 4 we find a speed-up by a factor 1.18.

In Table 5, we list examples for the improved method (i.e., using baby-step
classes) with different mean values β for the set of jumps. We worked with Θ = 2−4.
As for the parameter for the baby-step classes, we worked with r = 9. (This choice
for r takes into account that for small values of q, the ratio (4.6) is smaller than 4g.
See also Table 8 in [Ste99].) Again, we randomly generated 1000 examples, with
β = γL/10, where γ is now an integer between 3 and 30. When applying the method

THE KANGAROO METHOD IN REAL QUADRATIC FIELDS 811

Table 5. Average running time for regulator computation
(method using baby steps) for g = 3 and q = 10009.

γ 3 4 6 8 9 10 11 12 13 14
9.97s 7.70s 5.38s 4.45s 4.27s 4.03s 3.83s 3.73s 3.67s 3.49s

γ 15 16 17 18 20 22 24 26 28 30
3.52s 3.57s 3.58s 3.51s 3.60s 3.74s 3.88s 4.04s 4.17s 4.26s

with baby-step classes we expect that (using (4.8) with n = 10) γ = 10
√
α(3)
√

9,
i.e., γ = 12, yields optimal performance. We then expect that the speed-up factor
of the new method compared to the method with heuristics is t3/t3,10 = 1.5. Again,
this is reflected by our experimental results: when comparing the entries for γ = 3, 4
in Table 4 with the corresponding entries for γ = 12 we found a speed-up by a factor
1.7. Notice that for larger values of q and g = 3, when n ≈ 12, the expected speed-
up goes up to t3/t3,n =

√
3 ≈ 1.73.

Finally, we give experimental data about two of our largest regulator computa-
tions. In both examples, we worked with 8 tame and 8 wild kangaroos. We used
m = 16 processors, including SGI Challenge Workstations running IRIX V6.5 and
SunUltra Enterprise 450 machines under Solaris 2.6. Distinguished points were col-
lected on the individual machines, and then manually transferred to a central file
for comparison.

In the first example, we took k = Fq with q = 1000000097 (10 digits) and

D(X) = X8 + 438841888X7 + 582096993X6 + 508378916X5 + 745512041X4

+ 485998124X3 + 614914799X2 + 46942763X + 162950126 ,

a prime polynomial modulo q. We computed

E = 1000037518200164985425069904 and L = 1870915821,

and used the kangaroo method to find the divisor class number h in the interval
]E−L2, E+L2[. For this, we used the variant with baby-step classes, with parameter
ρ = 10. We worked with a set S of l = 50 jumps for which the mean value β of
the jump distances was 16 · L. (This choice of β is slightly different from the
theoretically optimal choice (4.8), which would be 10.2 ·L. Our choice corresponds
to γ = 10β/(Lm/2) = 20 of Table 5—while β = 10.2L corresponds to γ = 12—
which, in earlier versions of Table 5, produced the best average running times in
practice.) We defined the jumps only on ideals represented by (Q,P), such that
last(Q) ≡ 0 (mod 10). Such an ideal was a distinguished point if, in addition, the
last 19 bits of last(Q)/10 were zero. The 8 tame kangaroos were set off at the ideals
closest to E + 10009i, i = 0, . . . , 7, and the 8 wild kangaroos were set off at the
ideals closest to 10009i, i = 0, . . . , 7. Altogether, 1908 distinguished points were
found and centrally stored until, after 19 hours of (parallel) computing time, two
matching points had been discovered, where one stemmed from a wild and one from
a tame kangaroo. (Before that, we had observed one useless collision between two
wild kangaroos.) This match allowed us to compute

h = 1000037518790912387296311384 ,

a divisor class number of 28 digits. For the regulator, we found that RX = h. Notice
that |h−E|/L2 = 0.168769 Therefore, using (4.7), we find that the theoretically

812 ANDREAS STEIN AND EDLYN TESKE

expected number of jumps for the 16 kangaroos altogether is 1064118920. On the
other hand, since it takes on average 219 jumps to find a distinguished point, we
conclude that the total number of jumps performed by all kangaroos was about
1000341504, and this agrees with our predictions.

To estimate the running time for this computation had it been done on a single
SunUltra Enterprise 450, we observe that it took, on average, 10 1/4 minutes on
such a machine to find a distinguished point. Thus, the estimated total running
time is 19557 minutes, or 13 days and 14 hours.

For our second example we chose k = Fq with q = 2155000013 and

D(X) =X8 + 583595124X7 + 1467293974X6 + 670334099X5 + 1512249128X4

+ 146202392X3 + 1574723323X2 + 434418859X + 1335383000 .

Here, q3 = 1.000787 . . . · 1028. Moreover, we evaluated

E = 10008146415638424587222346704 and L = 4031767232,

so that E−L2 > 1.0008 . . . ·1028. This means that the real quadratic function field
k(X)

√
D must have a divisor class number h with 29 digits, whence the choice of q

and D. Again, we used the variant with baby-step classes, with parameter ρ = 10.
This time we worked with 50 elements in the set of jumps whose jump distances had
the mean value 0.85 ·16 ·L. The kangaroos operated on ideals such that last(Q) ≡ 0
(mod 10). For an ideal to be distinguished we requested, in addition, that the last
20 bits of last(Q)/10 be zero. The tame kangaroos were set off at the ideals closest
to E + 100003i, i = 0, . . . , 7, and the 8 wild kangaroos were set off at the ideals
closest to 100003i, i = 0, . . . , 7. Altogether 1101 distinguished points have been
collected until a useful collision was detected after almost 110 hours. (As before,
we also observed one useless collision, again between two wild kangaroos.) We then
computed

h = RX = 10008146417885395033445124868 .

Thus, |h − E|/L2 = 0.138231 . . . , so that the expected number of jumps of all 16
kangaroos is 2026461075. Considering that 1101 distinguished points were found
and it took on average 220 jumps to find one such point, we estimate that altogether
about 1154482176 jumps have been performed. (In fact, an explicit count of the
jumps gave the value 1150422076.) This is much less than we would expect, which is
most likely due to the fact that in the second stage of the algorithm, i.e., when both
herds travel in the same region, the algorithm experiences performance variances
as they are typical for birthday paradox algorithms (see [Tes00] for some details).

Since, on average, it took 1 hour and 12-1/4 minutes to find a distinguished
point on a SunUltra Enterprise 450 running Solaris 2.6, we estimate that the whole
computation would have taken altogether about 1326 hours, or 55 days and 6 hours,
on a single such machine. For genus g = 3, this is the largest such class number
and regulator computation ever reported.

5. Outlook

Pollard’s kangaroo method also applies to imaginary quadratic function fields,
which we consider to be quadratic function fields k(X)(

√
D(X)), where D is a

monic squarefree polynomial of degree 2g + 1. (In the case that D(X) is a square-
free polynomial of degree 2g + 2 and the leading coefficient is a nonsquare in k, a
constant field extension of degree 2 will lead to a real quadratic function field.) In

THE KANGAROO METHOD IN REAL QUADRATIC FIELDS 813

the imaginary case, the corresponding operation on reduced ideals as described in
subsection 3.4 is a group operation (see [Can87, PR99, Ste99]) so that the paral-
lelized kangaroo methods as suggested by van Oorschot and Wiener and by Pollard
immediately generalize to imaginary quadratic function fields (see also [GH]). How-
ever, since one only has one operation in the imaginary case, baby steps and giant
steps have the same complexity and the idea of speeding up with baby steps does
not work.

In Section 4 we only considered the computation of the regulator and the class
number, since we could determine an interval for the divisor class number. We now
define the discrete logarithm problem for real quadratic function fields as follows.
For any a ∈ R, find δ(a), 0 ≤ δ(a) < R. Then, of course, Pollard’s kangaroo
method also applies to solving the discrete logarithm problem in real quadratic
function fields, if one knows that the discrete logarithm lies in a given interval.

A generalization of Pollard’s rho method and its parallelized versions (see [Pol78,
Tes98, vOW99, Pol]) to function fields can be employed as well by applying similar
ideas as in Section 4. This method is preferable if one has no additional information
on the size of the regulator or the class numbers.

Acknowledgment

We are grateful to John M. Pollard for fruitful comments on [ST99a].

References

[Art24] E. Artin. Quadratische Körper im Gebiete der höheren Kongruenzen I, II. Math.
Zeitschr., 19:153–206, 1924.

[Can87] D. G. Cantor. Computing in the Jacobian of a hyperelliptic curve. Math. Comp., 48:95–
101, 1987. MR 88f:11118

[GH] P. Gaudry and R. Harley. Counting points on hyperelliptic curves over finite fields.
In Algorithmic Number Theory Seminar ANTS-IV, volume 1838 of Lecture Notes in
Computer Science, pages 313–332. Springer, 2000.

[LiD97] LiDIA Group, Technische Universität Darmstadt, Darmstadt, Germany. LiDIA - A
library for computational number theory, Version 1.3, 1997.

[Pol] J. M. Pollard. Kangaroos, Monopoly and discrete logarithms. J. Cryptology 13:437–447,
2000. CMP 2001:03

[Pol78] J. M. Pollard. Monte Carlo methods for index computation (mod p). Math. Comp.,
32(143):918–924, 1978. MR 58:10684

[PR99] S. Paulus and H.-G. Rück. Real and imaginary quadratic representations of hyperelliptic
function fields. Math. Comp., 68:1233–1241, 1999. MR 99i:11107

[Sha71] D. Shanks. Class number, a theory of factorization and genera. In Proc. Symp. Pure
Math. 20, pages 415–440. AMS, Providence, R.I., 1971. MR 47:4932

[Sha72] D. Shanks. The infrastructure of a real quadratic field and its applications. In Proc.
1972 Number Th. Conf., Boulder, Col., pages 217–224, 1972. MR 52:10672

[SSW96] R. Scheidler, A. Stein, and H. C. Williams. Key-exchange in real quadratic congruence
function fields. Des. Codes Cryptogr., 7:153–174, 1996. MR 97d:94009

[ST99a] A. Stein and E. Teske. Catching kangaroos in function fields. Technical Report CORR
99-09, Department of Combinatorics and Optimization, University of Waterloo, Water-
loo, Ontario, 1999. 19 pages.

[ST99b] A. Stein and E. Teske. Explicit bounds and heuristics on class numbers in hyperelliptic
function fields. Math. Comp., posted on October 4, 2001, PII S0025-5718(01)01385-0
(to appear in print).

[Ste99] A. Stein. Sharp upper bounds for arithmetics in hyperelliptic function fields. J. Ra-
manujan Math. Soc., 9–16 (2):1–86, 2001.

[Sti93] H. Stichtenoth. Algebraic Function Fields and Codes. Springer, Berlin, 1993. MR
94k:14016

http://www.ams.org/mathscinet-getitem?mr=88f:11118
http://www.ams.org/mathscinet-getitem?mr=58:10684
http://www.ams.org/mathscinet-getitem?mr=99i:11107
http://www.ams.org/mathscinet-getitem?mr=47:4932
http://www.ams.org/mathscinet-getitem?mr=52:10672
http://www.ams.org/mathscinet-getitem?mr=97d:94009
http://www.ams.org/mathscinet-getitem?mr=94k:14016

814 ANDREAS STEIN AND EDLYN TESKE

[SW98] A. Stein and H. C. Williams. An improved method of computing the regulator of a
real quadratic function field. In Algorithmic Number Theory Seminar ANTS-III, vol-
ume 1423 of Lecture Notes in Computer Science, pages 607–620. Springer, 1998. MR
2000j:11201

[SZ91] A. Stein and H. G. Zimmer. An algorithm for determining the regulator and the fun-
damental unit of a hyperelliptic congruence function field. In Proc. 1991 Int. Symp. on
Symbolic and Algebraic Computation, ISAAC, Bonn, July 15-17, pages 183–184. ACM
Press, 1991.

[Tes98] E. Teske. Speeding up Pollard’s rho method for computing discrete logarithms. In Algo-
rithmic Number Theory Seminar ANTS-III, volume 1423 of Lecture Notes in Computer
Science, pages 541–554. Springer, 1998. MR 2000j:11199

[Tes00] E. Teske. On random walks for Pollard’s rho method. Math. Comp. 70:809–825, 2001.
MR 2001g:11194

[vOW99] P. C. van Oorschot and M. J. Wiener. Parallel collision search with cryptanalytic appli-

cations. J. Cryptology, 12:1–28, 1999. MR 99i:94054
[Zim97] H. G. Zimmer et al. Simath manual, 1997. Universität des Saarlandes, Saarbrücken,

Germany.

University of Illinois at Urbana-Champaign, Department of Mathematics, 1409 West

Green Street, Urbana, Illinois 61801

E-mail address: andreas@math.uiuc.edu

University of Waterloo, Department of Combinatorics and Optimization, Waterloo,

Ontario, Canada N2L 3G1

E-mail address: eteske@cacr.math.uwaterloo.ca

http://www.ams.org/mathscinet-getitem?mr=2000j:11201
http://www.ams.org/mathscinet-getitem?mr=2000j:11199
http://www.ams.org/mathscinet-getitem?mr=2001g:11194
http://www.ams.org/mathscinet-getitem?mr=99i:94054

	1. Introduction
	2. The parallelized Pollard kangaroo method
	2.1. The van Oorschot--Wiener parallelization
	2.2. Pollard's parallelization
	2.3. The parallelized Pollard kangaroo method in practice

	3. A brief introduction to real quadratic function fields
	3.1. Basic definitions
	3.2. Ideals
	3.3. Distance
	3.4. Infrastructure
	3.5. An estimate of h
	3.6. The computation of RX and h

	4. The parallelized kangaroo method in[1] real quadratic function fields
	4.1. Improvements
	4.2. Experimental results

	5. Outlook
	Acknowledgment
	References

