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A POSTERIORI ERROR ESTIMATES
FOR GENERAL NUMERICAL METHODS
FOR HAMILTON-JACOBI EQUATIONS.

PART I: THE STEADY STATE CASE

SAMUEL ALBERT, BERNARDO COCKBURN, DONALD A. FRENCH,
AND TODD E. PETERSON

Abstract. A new upper bound is provided for the L∞-norm of the difference
between the viscosity solution of a model steady state Hamilton-Jacobi equa-
tion, u, and any given approximation, v. This upper bound is independent of
the method used to compute the approximation v; it depends solely on the
values that the residual takes on a subset of the domain which can be easily
computed in terms of v. Numerical experiments investigating the sharpness of
the a posteriori error estimate are given.

1. Introduction

This paper is the first of a series devoted to the study of a posteriori error esti-
mates for Hamilton-Jacobi equations. The Hamilton-Jacobi equations arise in sev-
eral areas of applications, such as evolving interfaces in geometry, fluid mechanics,
computer vision, and materials science (see Sethian [16]); the shape-from-shading
problem (see, for instance, Lions, Rouy, and Tourin [13]); and optimization, con-
trol, and differential games (see the references in Crandall and Lions [7]). Because
of these many applications, there is an interest in finding algorithms that pro-
duce numerical approximations with a guaranteed precision set beforehand by the
practitioner. Thus it is important to be able to estimate the quality of any given
approximation v solely in terms of computable quantities; this is what a posteriori
error estimates provide.

In this paper, we show how to obtain new a posteriori error estimates for
Hamilton-Jacobi equations and perform analytical and numerical experiments to
study their sharpness. To render the presentation of the ideas as clear as possible,
we consider the simple setting of periodic viscosity solutions of the following model
steady state Hamilton-Jacobi equation:

u+H(∇u) = f in Rd,(1.1)
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where u and f are periodic in each coordinate with period 1. Extensions to the
transient case and to second-order equations will be treated in Parts II and III,
respectively, of this series.

Before describing our result, let us stress the fact that one of the main current
trends in the numerical analysis of partial differential equations is the development
of a posteriori error estimates. The more traditional error estimates, nowadays
called a priori because they can be obtained prior to the computation of the ap-
proximate solution, have been (and still are) the main tool of theoretical analysis
in this field for the past few decades. However, for practical applications they are
not very useful because they depend on the numerical method used to compute
the approximate solution v, involve information that is not known about the exact
solution (which can only be crudely estimated), and cannot capture the features of
the particular problem under consideration. These difficulties prompted the idea
of developing error estimates that depend solely on the approximate solution; as a
consequence, they can only be used after one has computed the approximate solu-
tion, that is, a posteriori. These estimates are nothing but continuous dependence
results for the equation under consideration; this is why, unlike the a priori error
estimates, they do not depend on the numerical method used to compute the ap-
proximation v. For example, to get an a posteriori error estimate in our case, the
idea is to write

v +H(∇ v) = g,

and then try to obtain a continuous dependence result of the form

‖ u− v ‖ ≤ Ψ(f − g) = Ψ(−R(v)),

where R(v) = v+H(∇ v)− f is the so-called residual of v. In order to evaluate the
functional Ψ, it is usually necessary to obtain a priori estimates of approximations
to the solution of the so-called adjoint problem; see the book by Eriksson, Estep,
Hansbo and Johnson [8] for an introduction to the subject. However, for a few
equations and norms ‖ · ‖, the functional Ψ can be evaluated without having to
solve an adjoint problem; this is precisely our case.

The error estimate we obtain on the approximate solution v is of the form

‖ u− v ‖L∞(Ω) ≤ Φ(v),(1.2)

where the nonlinear functional Φ depends on the Hamiltonian H , the right hand
side f , and the domain Ω, but is totally independent of the numerical method used
to compute v. The error estimate (1.2) can thus be applied if v is obtained by means
of a finite difference scheme like the ENO scheme developed by Osher and Shu [14],
by means of a finite element method like the discontinuous Galerkin (DG) method
of Hu and Shu [10] or the Petrov-Galerkin method used by Barth and Sethian [2], a
finite volume method like the intrinsic monotone scheme of Abgrall [1] or the ones
devised by Kossioris, Makridakis and Souganidis [11].

As expected, the functional Φ depends on the residual of v. However, a novel
feature of the a posteriori error estimate (1.2) is that only the values that the
residual takes on a suitably defined subset of the domain Ω are used to evaluate Φ.
This subset, which can be chosen in terms of v only, does not contain neighborhoods
of points at which v has kinks (discontinuities in first derivatives) or at which it
has a large Hessian. This dramatically enhances the sharpness of the a posteriori
error estimate, since these are the only points at which the residual might remain
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of order one, even for very good approximate solutions v; see the analytic examples
of Section 3 and the numerical experiments of Section 4.

To obtain the error estimate (1.2), we use the elegant technique introduced
by Crandall, Evans and Lions [5] to study viscosity solutions of Hamilton-Jacobi
equations. This technique can deal with arbitrary Hamiltonians, works in the same
way regardless of the space dimension, and leads naturally to the use of the L∞-
norm (which is why we use this norm). The use of any other norm involves the
resolution of the so-called adjoint equation. Indeed, Lin and Tadmor [12] have
recently obtained error estimates in the L1-norm and, not surprisingly, had to
consider the resolution of an adjoint equation. Since the study of its solution was
successfully carried out only for strictly convex Hamiltonians, their error estimate
holds only in that case.

Several authors have obtained L∞-error estimates for Hamilton-Jacobi equations,
but our result is different in many respects. Crandall and Lions [5] obtained an a
priori error estimate between the viscosity solution and the approximation v given
by a monotone scheme defined in Cartesian grids. In our setting, their result reads
as follows:

‖ u− v ‖L∞(Ω) ≤ C (∆x)1/2,

where ∆x is the maximum mesh size. This result holds for viscosity solutions
that might displays kinks. Souganidis [17] extended this estimate to more general
Hamiltonians and to general finite difference schemes in Cartesian grids. Recently,
Abgrall [1] introduced the intrinsic monotone schemes for unstructured meshes and
proved that the same error estimate holds. Perthame and Sanders [15] proved
an error estimate of the same flavor for the Neumann problem for a nonlinear
parabolic singular perturbation. Falcone and Ferretti [9] obtained a priori error
estimates, assuming the viscosity solution of the Hamilton-Jacobi-Bellman equation
to be very smooth. Their schemes were constructed by using the discrete dynamic
programming principle and were devised to converge fast to the solution; their
results apply to convex Hamiltonians H . All these a priori error estimates are not
useful in practical applications for the reasons described at the beginning of this
section. In contrast, the estimate (1.2) is an a posteriori error estimate that holds
regardless of how v was computed, is independent of the smoothness of the exact
solution and takes into account the particularities of the specific problem (as our
numerical results show).

Note also that whereas the main objective of all the above mentioned error
estimates is to obtain a rate of convergence of the approximate solution, our main
objective is to be able to obtain, for any given approximate solution v, an accurate
upper bound for the value ‖ u− v ‖L∞(Ω) that solely depends on v. To quantify the
accuracy of the bound, we introduce the so-called effectivity index

ei(u, v) = Φ(v)/‖ u− v ‖L∞(Ω),(1.3)

and study how close it is to the ideal value of 1.
A preliminary numerical study of the corresponding quantity in the framework of

one-dimensional time-dependent nonlinear scalar conservation laws was performed
by Cockburn and Gau [4]; the approximate solution they used was computed by
using the monotone scheme of Engquist and Osher. Their results give a ratio that
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is very close to 1 for nonlinear convection with a smooth solution and for linear
convection regardless of the smoothness of the exact solution. Since the integral
of the entropy solution of a one-dimensional conservation law is nothing but the
viscosity solution of a Hamilton-Jacobi equation, it is reasonable to expect a similar
outcome for Hamilton-Jacobi equations; in this paper, we show that small effectivity
indices are indeed obtained. For the difficult case of nonlinear Hamiltonians with
viscosity solutions that display kinks, our numerical experiments show that the
effectivity index ei(u, v) is proportional to | ln ∆x | for monotone schemes. This is
to be contrasted with the effectivity index of order (∆x)−1/2 that would have been
obtained had we used the a priori Crandall and Lions [7] estimate, and with the
effectivity index of order (∆x)−1 that would have been obtained had we used the a
posteriori estimate of Cockburn and Gau [4] for the corresponding scalar hyperbolic
conservation law.

We also study the effectivity index for the modern high-resolution DG method
proposed by Hu and Shu [10]. A straightforward application of our a posteriori error
estimate produces effectivity indices proportional to (∆x)−1 when the exact solution
is very smooth; this is due to the fact that these high-order accurate DG methods
produce a highly oscillatory residual, as is typical of Galerkin methods. However,
we can obtain another approximate solution by using a simple post-processing (that
maintains the order of accuracy of the approximation) for which the effectivity index
remains constant, and reasonably small, as the mesh size decreases. In the case of
viscosity solutions displaying kinks, the results for the DG methods of Hu and Shu
[10] are similar to the ones given by monotone schemes. This is due to the fact that
in such a case, the maximum error occurs at the kinks and it is precisely around
those that the DG method employs a low degree polynomial approximation.

The important issue of adaptivity, that is, the issue of how to compute an ap-
proximate solution v satisfying

Φ(v) ≤ τ,

for any given tolerance τ , with minimal computational effort will be addressed
elsewhere. This is a difficult problem that requires study of how the functional
Φ(v) depends on the grid and the numerical scheme used to compute v; it falls
beyond the scope of this paper. However, our numerical experiments discussed in
Section 4 do give some insight into the use of the a posteriori error estimate for
adaptivity purposes.

This paper is organized as follows. In Section 2, we state, discuss, and give a
proof of the a posteriori error estimate. In Section 3, we illustrate the application
of the estimate (1.2) and assess its sharpness; we study three important cases that
can be considered as prototypical and perform all the computations by hand. These
results give us indications of how to choose several parameters relevant to the proper
and efficient evaluation of the a posteriori error estimate as applied to numerical
schemes. We devote Section 4 to the numerical study of the effectivity index ei(u, v)
where v is the approximate solution provided either by a monotone scheme or
by the DG method of Hu and Shu [10]; most of the numerical experiments are
done in a one-dimensional setting, but we also present a couple of two-dimensional
test problems. Finally, we end in Section 5 with some extensions and concluding
remarks.
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2. The a posteriori error estimate

2.1. Viscosity solutions. We start this subsection by recalling the definition of
viscosity solutions, and some of their basic properties. We use the definition intro-
duced by Crandall, Evans and Lions [5]; this is not the original definition of Crandall
and Lions [6], but it is equivalent to it and it is convenient for our purposes.

To state the definition, we need the notion of semidifferentials of a function. The
superdifferential of a function u at a point x, D+u(x), is the set of all vectors p in
Rd such that

lim sup
y→x

(
u(y)− {u(x) + (y − x) · p}

)
≤ 0,

and the subdifferential of a u at a point x, D−u(x), is the set of all vectors p in Rd
such that

lim inf
y→x

(
u(y)− {u(x) + (y − x) · p}

)
≥ 0.

Below we will use some elementary properties of these semidifferentials, often with-
out comment.

We also need to define the following quantity:

R(u;x, p) = u(x) +H(p)− f(x),

which is just the residual of u at x if p = ∇u(x). For this reason, we also call R
the residual; notice, however, that the residual of u, R(u; ·, ·), has two variables and
not just one.

We are now ready to define the viscosity solution of (1.1).

Definition 2.1. [5] A viscosity solution of the Hamilton-Jacobi equation (1.1) is a
continuous periodic function on Rd such that, for all x in Rd,

+R(u;x, p) ≤ 0 ∀p ∈ D+u(x), and −R(u;x, p) ≤ 0 ∀p ∈ D−u(x).

Note that this definition can be written more compactly as

σR(u;x, p) ≤ 0, ∀p ∈ Dσu(x), σ ∈ {+,−}.(2.1)

This σ notation will be useful below.

2.2. L∞-contraction property. The viscosity solution u of (1.1) may be com-
pared with the viscosity solution of the equation

v +H(∇ v) = g,

via the so-called L∞-contraction property, see Theorem 2.1 in [5], namely,

‖ u− v ‖L∞ ≤ ‖ f − g ‖L∞(2.2)

(see also Theorem II.1 in Crandall and Lions [6]). From this inequality, it is very
easy to obtain an a posteriori error estimate if v is any continuous periodic function
on Rd. Indeed, let us define g by

g(x) =

{
sup{v(x) +H(p) : p ∈ D+v(x)}, if D+v(x) 6= ∅,
inf{v(x) +H(p) : p ∈ D−v(x)}, if D−v(x) 6= ∅.
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Note that if D+v(x) and D−v(x) are both nonempty at some point x, then v is
differentiable at x, and D+v(x) = D−v(x) = {∇v(x)}, so g(x) is well defined. With
g so defined, v is the viscosity solution of v +H(∇v) = g and, by (2.2),

‖ u− v ‖L∞ ≤ sup{|R(v;x, p) | : x ∈ Rd, p ∈ D+v(x) ∪D−v(x)}.(2.3)

This is in fact a very simple a posteriori error estimate of the form we seek. However,
it turns out that this estimate is not always sharp; in some cases the quantity on
the right of (2.3) remains of order one even as v converges to u, see the second of
the analytical examples in Section 3.

2.3. The a posteriori error estimate. Our main result gives an upper bound
for the following seminorms:

|u− v |− = sup
x∈Ω

(u(x)− v(x) )+,

|u− v |+ = sup
x∈Ω

( v(x) − u(x) )+,

where w+ ≡ max{0, w}. To state our a posteriori error estimate, we need to
introduce some notation. We start with the following quantity:

Rε(u;x, p) = u(x) +H(p)− f(x− ε p)− 1
2
ε | p |2

= R(u;x, p) + f(x)− f(x− ε p)− 1
2
ε | p |2.

(2.4)

Since Rε is nothing but the residual R when ε = 0, and since the evaluation of
Rε involves the evaluation of f at the shifted point x − ε p, we call Rε the shifted
residual.

To characterize the subset of the domain Rd × Rd on which the shifted residual
of v will be evaluated, we use the paraboloid Pv defined as follows:

Pv(x, p, κ; y) = v(x) + (y − x) · p+
κ

2
| y − x |2, y ∈ Rd,(2.5)

where x is a point in Rd, p is a vector of Rd, and κ is a real number. Note that in
one space dimension, Pv(x, v′(x), v′′(x); ·) is nothing but the Taylor polynomial of
degree two of v at x.

We are now ready to state the a posteriori error estimate.

Theorem 2.2 (A posteriori error estimate). Let u be the viscosity solution of the
equation (1.1) and let v be any continuous function on Rd periodic in each coordinate
with period 1. Then, for σ ∈ {−,+}, we have that

|u− v |σ ≤ inf
ε≥0

Φσ(v; ε),(2.6)

where

Φσ(v; ε) = sup
(x,p)∈Aσ(v;ε)

(
σRσε(v;x, p)

)+
.(2.7)

The set Aσ(v; ε) is the set of elements (x, p) satisfying

x ∈ Rd,
p ∈ Dσv(x),

σ {v(y)− Pv(x, p, σ/ε ; y)} ≤ 0 ∀y ∈ Rd

(for ε = 0, only the first two conditions apply).
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Figure 1. The parabola y 7→ Pv(1/2− ε, 1,−1/ε; y) for ε = 1/4.

We want to stress several important points concerning this result.
a. The L∞-error estimate. From the estimates of the seminorms |u − v |σ,

we obtain the desired error estimate (1.2), namely,

‖ u− v ‖L∞ = max
σ∈{−,+}

|u− v|σ ≤ max
σ∈{−,+}

inf
ε≥0

Φσ(v; ε).(2.8)

b. The error estimate with ε = 0. Note that we can always set ε = 0 in
the above inequality and recover the simple estimate (2.3); moreover, if v is the
viscosity solution of v +H(∇v) = g, we recover the L∞ contraction property.

The estimate (2.3) is remarkable in its simplicity and provides a sharp upper
bound for smooth viscosity solutions and approximate solutions with nonoscillatory
residuals, as can be seen in the first analytic experiment of Section 3 and in some of
the numerical experiments in Section 4; see also the numerical results for nonlinear
conservation laws in [4]. However, when the exact solution is not smooth, the
Hamiltonian is nonlinear, and the numerical scheme is monotone, the upper bound
given by the estimate (2.3) is of order one whereas the estimate (2.8) gives an upper
bound of order ∆x| ln ∆x| only. In order to understand the mechanism responsible
for this improvement, we need to illustrate the definition of the set Aσ(v; ε).

c. The set Aσ(v; ε). The definition of Aσ(v; ε) states that the paraboloid
Pv(x, p,−1/ε; ·) must remain below the graph of v for σ = −, and that the parabo-
loid Pv(x, p,+1/ε; ·) must remain above the graph of v for σ = + (see Figure 1). To
give an example of this set, consider A−(v; ε) for the periodic continuous function
v(y) = −| y − 1/2 | defined on Ω = [0, 1). A short calculation gives that

A−(v; ε) =

{
{0} × [−1, 1] ∪ (0, 1/2−ε]× {1} ∪ [1/2+ε, 1)× {−1}, if ε < 1/2,
{0} × [−1/2ε, 1/2ε], otherwise.

Note that (x, p) /∈ A−(v; ε) if x ∈ (1/2− ε, 1/2 + ε); that is, a neighborhood of the
kink of v, located at x = 1/2, has been excluded. Also note that if ε is bigger that
ε, then the set A−(v; ε) is included in A−(v; ε).
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d. Smoothness of the mapping ε 7→ Φσ(v; ε). When f and the approximate
solution v are Lipschitz, the function Φσ(v; ε) cannot be bigger than Φσ(v; ε), if
ε > ε, by a quantity exceeding C (ε− ε), where

C = ‖ v‖Lip(Ω)

(
1
2
‖ v‖Lip(Ω) + ‖ f‖Lip(Ω)

)
.

To see this, consider the following computations:

Φσ(v; ε) = sup
(x,p)∈Aσ(v;ε)

(
σRσε(v;x, p)

)+
≤ sup

(x,p)∈Aσ(v;ε)

(
σ Rσε(v;x, p)

)+ since Aσ(v; ε) ⊂ Aσ(v; ε),

≤ sup
(x,p)∈Aσ(v;ε)

((
σRσε(v;x, p)

)+ +
(
σRσε(v;x, p)− σRσε(v;x, p)

)+)
≤ Φσ(v; ε) + sup

(x,p)∈Aσ(v;ε)

(
σRσε(v;x, p)− σRσε(v;x, p)

)+
,

and since
Rσε(v;x, p)−Rσε(v;x, p)

= −f(x− σε p) + f(x− σε p)− σ

2
(ε− ε) | p |2,

we get

Φσ(v; ε) ≤ Φσ(v; ε) + C (ε− ε),

as claimed. In other words, Φσ(v; ·) ∈ Lip+(R+).
e. The search for the optimal value of ε. What allows the error estimate

(2.8) to achieve bounds lower than (2.3) is the possibility of playing with the pa-
rameter ε. As we just saw, the size of the set Aσ(v; ε) decreases as the auxiliary
parameter ε increases; this induces a tendency for the upper bound to decrease as
ε is increased. On the other hand, as ε increases, the signed shifted residual σRσε
might also increase. The optimal value of ε is obtained by balancing these two
tendencies.

f. The paraboloid test. To compare v to the paraboloid Pv in order to evaluate
the condition (2.8), which we call the paraboloid test, could be very expensive
computationally even if one takes advantage of the periodicity of the functions. In
subsection 4.2, we discuss a practical way to alleviate this when the function v is
Lipschitz.

2.4. Proof of the a posteriori error estimate. We prove the result for σ = −;
the proof for the case σ = + is similar. Set Ω = [0, 1)d. Given ε > 0, define the
auxiliary function

ψ(x, y) = u(x)− v(y)− |x− y|
2

2ε
,

and let (x̂, ŷ) ∈ Ω× Ω be such that

ψ(x̂, ŷ) ≥ ψ(x, y) ∀x, y ∈ Ω;

such a point exists since ψ is continuous and periodic on Ω×Ω. Set p̂ = (x̂− ŷ)/ε.
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We assume that |u− v |− > 0, otherwise there is nothing to prove. In this case,
we have

|u− v |− = sup
x∈Ω

{
u(x)− v(x)

}
= sup

x∈Ω
ψ(x, x)

≤ sup
x,y∈Ω

ψ(x, y)

= ψ(x̂, ŷ) = u(x̂)− v(ŷ)− |x̂− ŷ|
2

2ε
=

[
u(x̂) +H(p̂)− f(x̂)

]
−
[
v(ŷ) +H(p̂)− f(ŷ) + f(ŷ)− f(x̂) +

|x̂− ŷ|2
2ε

]
= R(u; x̂, p̂)−

[
R(v; ŷ, p̂) + f(ŷ)− f(x̂) +

|x̂− ŷ|2
2ε

]
.

Since the mapping x 7→ ψ(x, ŷ) has a maximum at x = x̂, we have that

0 ∈ D+
x ψ(x̂, ŷ) = D+u(x̂)− p̂,

and so

p̂ ∈ D+u(x̂).

Since u is the viscosity solution, this implies that R(u; x̂, p̂) ≤ 0, and hence

|u− v |− ≤ −
[
R(v; ŷ, p̂) + f(ŷ)− f(ŷ + εp̂) +

1
2
ε | p̂ |2

]
= −R−ε(v; ŷ, p̂),

where we have used the definition of p̂ to write x̂ = ŷ + εp̂.
Finally, since ψ(x̂, ŷ) ≥ ψ(x̂, y) for all y ∈ Ω, we have that

v(y) ≥ v(ŷ) +
|x̂− ŷ|2

2ε
− |x̂− y|

2

2ε

= v(ŷ) + p̂ · (y − ŷ)− |y − ŷ|
2

2ε
,

i.e., that v(·) ≥ Pv(ŷ, p̂,−1/ε; ·); note that this implies that p̂ ∈ D−v(ŷ). We thus
have

|u− v |− ≤ sup{−R−ε(v; y, p) : y ∈ Ω, p ∈ D−v(y), v(·) ≥ Pv(y, p,−1/ε; ·)}.
Since this inequality holds for any ε > 0 and since a similar result can be obtained
for ε = 0, the desired result follows. This completes the proof of the a posteriori
error estimate of Theorem 2.2.

3. Analytical examples

We will apply Theorem 2.2 to three different examples for which all computations
can be done analytically, to obtain an idea of the sharpness of the error estimate.

a. Smooth u, nonoscillatory R(v; ·, ·). We take H(p) = − 1
4π2 p

2 and f(x) =
cos4(π x). The exact solution of (1.1) is then u(x) = cos2(π x), a smooth function.
We take

v(y) = c u(y),
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where c ∈ (0, 1); the residual R(v; ·, ·) is a smooth function that does not oscillate.
We start by estimating |u− v |−. By Theorem 2.2, we have

|u− v |− ≤ inf
ε≥0

Φ−(v; ε) ≤ Φ−(v; 0)

= sup
(y,p)∈A−(v;0)

(−R(v; y, p))+ = sup
y∈[0,1)

(−R(v; y, v′(y)))+

= (1− c),
which is the best possible estimate. To estimate |u − v |+, we have, again by
Theorem 2.2,

|u− v |+ ≤ inf
ε≥0

Φ+(v; ε) ≤ Φ+(v; 0)

= sup
(y,p)∈A+(v;0)

(R(v; y, p))+ = sup
y∈[0,1)

(R(v; y, v′(y)))+

= c2 (1 − c)/4 (1 + c) < (1− c).
This implies that ei(u, v) = 1.

b. Nonsmooth u, nonoscillatory R(v; ·, ·). The case in which a sharp error
estimate is most difficult to obtain is the case of a strictly nonlinear Hamiltonian
and a viscosity solution with a kink. As an example, consider the Hamilton-Jacobi
equation (1.1) with d = 1, H(p) = 1

2p
2, and f(x) = 1

2 − |x|; its viscosity solution is
u(x) = −|x|. We take the function v = vν to be

vν(x) = −ν ln
(

exp(x/ν) + 2 + exp(−x/ν)
)
,

which is the solution of the parabolic equation

v +
1
2

(v′)2 − ν v′′ = fν ,

where fν(x) = vν(x) + 1/2.
In this case

‖ u− vν‖L∞ = ν ln 4,

that is, vν converges uniformly to u and the convergence is of order one in the
viscosity coefficient ν.

Now, we apply our a posteriori error estimate. Of course this example is not
periodic and we cannot apply Theorem 2.2 directly. However, in this particular
case one can show directly that ψ achieves a maximum—whereas periodicity is
used to assert this in the proof of Theorem 2.2—and from there the proof can
proceed as given.

All the computations below can be rigorously justified for ν ≤ 1/2. We begin by
estimating |u− vν |−. By Theorem 2.2, we have

|u− vν |− ≤ inf
ε≥0

Φ−(vν ; ε) = inf
ε≥0

sup
(y,p)∈A−(vν ;ε)

(−R−ε(vν ; y, p))+.

Since

A−(vν ; ε) = {(y, v′ν(y)) : | y | ≥ yε,ν},
where yε,ν ≥ 0 is the biggest root of the equation z = −ε v′ν(z) (see Figure 2), we
get

|u− vν |− ≤ inf
ε≥0

sup
y≥yε,ν

(−R−ε(vν ; y, v′ν(y)))+ = inf
ε≥0

(−R−ε(vν ; yε,ν, v′ν(yε,ν)))+.
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Pvν( z, v’ν(z), -1/ε; y)

z = -ε v’ν(z) -z

Figure 2. The viscosity solution u, its approximation vν and the
parabola y 7→ Pvν(z, v′ν(z),−1/ε; y) for z = yε,ν and ν = 0.1.

y

(
R

-ε
(

v ν
:y

,v
’ ν(

y)
)+

0 0.25 0.5 0.75
0

0.25

0.5

0.75

ε = 8 ν

ε = 0

ε = ε opt

ε = -y/vν(y)

(1+ln(4/ν)) ν/2
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Figure 3. The functions y 7→ (−R−ε(vν ; y, v′ν(y)))+ for
three values of ε (thin lines) and the function y 7→
(−R−y/v′ν(y)(vν ; y, v′ν(y)))+ (thick line) for ν = 0.1.

In Figure 3, the functions y 7→ (−R−ε(vν ; y, v′ν(y)))+ are plotted for y ≥ 0, for three
values of ε and for ν=0.1. Note how the shifted residual at y, (−R−ε(vν ; y, v′ν(y)))+,
increases with ε. The thick line represents the function

yε,ν 7→ (−R−ε(vν ; yε,ν , v′ν(yε,ν)))+,

which, by the definition of yε,ν, coincides with the function

y 7→ (−R−y/v′ν(y)(vν ; y, v′ν(y)))+.

Clearly, this function intersects the functions y 7→ (−R−ε(vν ; y, v′ν(y)))+ at the
abscissae y = yε,ν. Note how the value yε,ν increases as ε increases; this reflects the
fact that the size of A−(vν ; ε) decreases as ε increases.
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It is a simple but long exercise to show that

εopt(ν) = ν log(4/ν) (1 +O(ν)).

This gives that

yεopt(ν),ν = ν log(4/ν) (1 +O(ν)),

and that

|u− vν |− ≤
ν

2
( 1 + ln(4/ν) )(1 +O(ν)).

The evaluation of |u − vν |+ is very simple and will not be presented; it gives
|u− vν |+ = 0, as expected. This implies that

ei(u, vν) =
1 + ln(4/ν)

ln 16
(1 +O(ν)).

Unfortunately, in this case the value of ei(u, vν) is bigger than the optimal value of
one, but, on the other hand, it is a quantity that remains between 1 and 6 as the
viscosity coefficient ν varies from 1/2 to 10−6; this is extremely good for practical
purposes.

We end these computations by seeing what would have happened if we had used
Φσ(vν ; 0) instead of Φσ(vν ; εopt(ν)). A simple computation gives

Φσ(vν ; 0) =

{
−R(vν ; 0, 0) = 1/2 + ν ln(4) if σ = −,
0 if σ = +,

and so, we would have obtained the upper bound

max
σ∈{−1,+1,}

Φσ(vν ; 0) = 1/2 + ν ln(4),

which is totally useless from the practical point of view! The fact that the residual
at y = 0 does not go to zero as the diffusion coefficient ν goes to zero is a reflection
of the presence of a kink in the viscosity solution. In other words, it is impossible to
drive the residual to zero pointwise in the presence of kinks in the viscosity solution.
This is why it is essential to look for the optimal value of the auxiliary parameter
ε.

c. A very special case and a highly-oscillatory R(v; ·, ·). Consider the very
special case when f ≡ c; the viscosity solution of equation (1.1) is thus u ≡ c−H(0).
Let vN be any continuous and periodic function with period 1.

We begin by estimating |u− vN |−. By Theorem 2.2, we have

|u− vN |− ≤ inf
ε≥0

Φ−(vN ; ε) = inf
ε≥0

sup
(y,p)∈A−(vN ;ε)

(−R−ε(vN ; y, p))+.

Since ε ≥ ε′ implies that

A−(vN ; ε) ⊂ A−(vN ; ε′),
(−R−ε(vN ; y, p))+ ≤ (−R−ε′(vN ; y, p))+,

we have

Φ−(vN ; ε) ≤ Φ−(vN ; ε′) if ε ≥ ε′,
and hence

|u− vN |− ≤ lim
ε→∞

Φ−(vN ; ε).
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Finally, since

A−(vN ;∞) = {(x, 0) : vN (x) ≤ vN (y)∀y ∈ R} ≡ X × {0},
we get

|u− vN |− ≤ sup
x∈X

(−vN (x)−H(0) + f)+

= sup
x∈X

(u− vN (x))+

= sup
x∈R

(u− vN (x))+

= |u− vN |−.
A similar result holds for |u−vN |+, and so we get the optimal result ei(u, vN ) = 1.

Let us see what would had happened if we had used Φσ(vN ; 0) instead of
Φσ(vN ;∞) to estimate the error; we take vN to be the following highly oscilla-
tory approximation:

vN (y) = c− 1
N2

cos(2πNy).

Since

R(vN ; y, v′N (y)) = − 1
N2

cos(2πNy) +H
(2π
N

sin(2πNy)
)
,

we have, for general Lipschitz Hamiltonians H ,

max
σ∈{−1,+1,}

Φσ(vN ; 0) = O(1/N),

and so we would have obtained an O(N) times bigger upper bound!
d. An analogy. It is well known that extra care is needed when obtaining error

estimates for an approximate solution with a highly oscillatory residual. Next, we
briefly illustrate this point. If u is the weak solution of the following boundary
value problem:

−∆u = f in Ω, u = 0 on ∂Ω,

the following error estimate can be proved:

‖ u− v ‖H1
0(Ω) ≤ C‖R(v) ‖H−1(Ω),

where v is any function in H1
0 (Ω), R(v) = −∆ v − f , and C is a constant that

depends on Ω only. Since the norm in H−1(Ω) is difficult to compute, we can use
the crude estimate

‖R(v) ‖H−1(Ω) ≤ ‖R(v) ‖L2(Ω)

to get the new upper bound

‖ u− v ‖H1
0 (Ω) ≤ C‖R(v) ‖L2(Ω),

which now is in terms of an easy-to-compute norm of the residual of v, R(v).
This näıve approach, however, does not take into account the possible oscillatory
behavior of the residual R(v). On the other hand, if v is, for example, a C1 function
determined by a Galerkin method in a mesh of squares of size 1/N , it can be shown
that

‖R(v) ‖H−1(Ω) ≤ CN−1 ‖R(v) ‖L2(Ω),
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where C is a computable constant independent of N . This finer estimate does
take into account the oscillatory behavior of the residual R(v), typical of Galerkin
methods, and results in the much better estimate

‖ u− v ‖H1
0 (Ω) ≤ CCN−1 ‖R(v) ‖L2(Ω).

In our framework, the question is if the possible oscillatory behavior of the
residual R(v; ·, ·) can be captured by means of the search for the optimal parameter
ε, the use of the shifted residual Rσε(v; ·, ·), and the definition of the set Aσ(v; ε).
The previous example shows that in some cases (smooth oscillatory residual), this
is the case. Unfortunately, this behavior of our a posteriori error estimate does
not seem to hold in general. A way around this difficulty is to apply the estimate
to a post-processed approximate solution. The purpose of the post-processing is
to eliminate the oscillations in the residual while maintaining the quality of the
approximation. In the next section, we show that this strategy works very well.

4. Numerical experiments

The purpose of this section is to study the application of our a posteriori error
estimator to approximations generated through numerical schemes; we consider a
simple, standard monotone scheme and the modern high-resolution DG method of
Hu and Shu [10]. We evaluate the effectivity indexes for these schemes on several
prototypical one-dimensional problems. Finally, to show that results similar to the
ones obtained in this case can also be obtained in two dimensions, we include a
couple of experiments with monotone schemes in two space dimensions. For the
sake of simplicity, we use uniform grids in all our experiments.

4.1. Discretization of the norms and the nonlinear functionals of the
a posteriori error estimate. Since the approximate solutions are defined by a
finite number of degrees of freedom, it is reasonable, in practice, to replace the
domain Ω = [0, 1)d over which we evaluate the seminorms | · |σ and the functionals
Φσ(·, ·), by a finite number of points in Ω which we denote by Ωh.

Another modification to be made in practice concerns the values of the auxiliary
parameter ε. Theoretically, the evaluation of Φσ(·, ·) requires optimization over the
set ε ∈ [0,∞). In practice, however, it is sensible to replace [0,∞) by the following
set:

Eh = {i ·E/N, 0 ≤ i ≤ N},

where

E = 2ω | ln(1/ω) |, N = 4 | ln(1/ω) |,

where ω is an upper bound for the artificial diffusion coefficient of the numerical
scheme under consideration. The above choice of E is motivated by the second
analytic example of Section 3. Indeed, in this example, in which the viscosity
solution has a kink, the optimal value of ε is, approximately, ν | ln(1/ν) |; since ν
is the diffusion coefficient, it is reasonable to take E = ω | ln(1/ω) |, where ω is the
maximum artificial diffusion coefficient of the numerical scheme. To be on the safe
side, we multiply this number by two. The choice of N is somewhat arbitrary, but
we have found it to work well in practice.
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We denote by | · |h,σ and Φh,σ(·) the corresponding quantities obtained after
the above mentioned modifications. The effectivity index ei(u, v) is, accordingly,
replaced by what we could call the computational effectivity index

eih(u, v) = max
σ∈{+,−}

Φh,σ(v)/ max
σ∈{+,−}

|u− u |h,σ.

The main objective of our numerical experiments is to study the performance of
this index.

4.2. Fast evaluation of the paraboloid test. To evaluate the condition (2.8)
is computationally very expensive, since to determine if the point (x, p) belongs
to the set Aσ(v; ε) we must compare v(y) and Pv(x, p, σ/ε; y) for each point y
in Ω. Fortunately, when v is Lipschitz in Ω, which is the case in most practical
applications, it is not necessary to perform this comparison for y in the whole
domain Ω but only on a significantly smaller set. To see this, note that if the
paraboloid Pv(x, p, σ/ε; ·) is ‘tangent’ to v at the point y, we must have that

q = p+ σ(y − x)/ε,

for some q ∈ Dσv(y). This implies that

| y − x | ≤ | p− q | ε ≤ 2 ‖ v ‖Lip(Ω) ε.

This means that we can replace the condition (2.8) by the following:

σ {v(y)− Pv(x, p, σ/ε; y)} ≤ 0 ∀ y ∈ Ω : | y − x | ≤ 2 ‖ v ‖Lip(Ω) ε.

4.3. The discrete paraboloid test. In our computations, we actually use the
following discrete version of the above paraboloid test:

σ {v(y)− Pv(x, p, σ/ε; y)} ≤ 0 ∀ y ∈ Ωh : | y − x | ≤ 2 ‖ v ‖Lip(Ω) ε,(4.1)

which is carried out only for x ∈ Ωh, of course. Note that by using this version of
the paraboloid test, the computationl cost of evaluating the discrete a posteriori
error estimator for a value of ε ∈ Eh at a given point of Ωh is proportional to(

‖ v ‖Lip(Ω)
ω

∆x
| lnω |

)d
,

if we assume that Ωh is a uniform Cartesian grid of d-dimensional cubes of side
∆x. Note that this evaluation can be done in parallel; if this is the case, since there
are only 4| lnω | + 1 points in Eh the whole computation can be carried out in a
number of operations proportional to(

‖ v ‖Lip(Ω)
ω

∆x
| lnω |

)d
| lnω |.

Since ω is proportional to ∆x, the computational complexity of evaluating the
discrete a posteriori error estimate is only proportional to

‖ v ‖dLip(Ω) | ln ∆x |d+1.
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Table 1. Smooth solution test problems.

Hamiltonian H(p) right-hand side f(x) viscosity solution u(x)

p (linear) cos2(π x)− π sin(2π x) cos2(π x)

−p2/4π2 (concave) cos4(π x) cos2(π x)

p3/8π3 (nonconvex) sin(2πx) + cos3(2πx) sin(2πx)

Table 2. Nonsmooth solution test problems.

Hamiltonian H(p) right-hand side f(x) viscosity solution u(x)

p2/π2

(convex)
−| cos(π x) |+ sin2(π x) −| cos(π x) |

−p4 + 2p2 − 1
(nonconvex)

u(x) +H(u′(x)) if x 6= 1/2

{
x2, if 0 ≤ x ≤ 1

2
,

(x− 1)2, if 1
2
≤ x ≤ 1.

4.4. One-dimensional experiments.
a. The test problems. We test our error estimator with the one-dimensional

test problems described in Tables 1 and 2. The solutions of the problems displayed
in Table 1 are smooth, and the solutions of the problems in Table 2 both have kinks
at x = 1/2.

b. Monotone schemes. We use the following monotone scheme defined on a
uniform grid:

vj +H

(
vj+1 − vj−1

2∆x

)
− ωvj+1 − 2vj + vj−1

∆x2
= fj ,(4.2)

ω = sup
x∈Ω

∆x
2
|H ′(f ′(x))|,(4.3)

where φj ≡ φ(xj) and xj = j∆x. The term ω allows the artificial viscosity to
scale with the discretization. The upside to the use of monotone schemes is that
we are guaranteed their convergence to the correct viscosity solution, cf. Crandall
and Lions [7]. The downside is that they are at most first order accurate.

Our a posteriori error estimator is based on the notion of viscosity solutions
and so requires comparison between continuous functions. A natural choice for v
is the classical piecewise linear interpolant of the numerical solution at the points
xj . Choosing Ωh = {xj+1/2} then leads to a well-defined derivative at the points
where the solution is sampled. Thus, the shifted residual Rσε(v;xj+1/2, v

′(xj+1/2))
becomes

v(xj+1/2) +H(v′(xj+1/2))− f(xj+1/2 − σε v′(xj+1/2))− 1
2
σε| v′(xj+1/2) |2,

where v′(xj+1/2) = vj+1−vj
∆x .

Next, we describe our numerical results. In Table 3, we show our results for
the smooth solution test problems. We see that in each of the three problems,
the monotone scheme converges linearly, as expected, and that the computational
effectivity index is independent of the mesh step size ∆x; moreover, we see that for
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Table 3. Monotone scheme on smooth solution test problems.

Hamiltonian 1/∆x error order eih(u, v)

linear 40 3.8e− 2 – 6.4
80 1.9e− 2 0.99 6.4
160 9.7e− 3 1.00 6.4
320 4.8e− 3 1.00 6.4
640 2.4e− 3 1.00 6.4
1280 1.2e− 3 1.00 6.4

concave 40 1.4e− 1 – 1.0
80 7.5e− 2 0.91 1.0
160 3.8e− 2 0.96 1.0
320 1.9e− 2 0.98 1.0
640 9.8e− 3 0.99 1.0
1280 4.9e− 3 1.00 1.0

nonconvex 40 5.0e− 1 – 1.3
80 3.1e− 1 0.69 1.4
160 1.8e− 1 0.81 1.4
320 9.7e− 2 0.86 1.3
640 5.2e− 2 0.90 1.2
1280 2.7e− 2 0.93 1.1

Table 4. Monotone scheme on nonsmooth solution test problems.

Hamiltonian 1/∆x error order eih(u, v)

convex 40 1.5e− 1 – 1.8
80 7.7e− 2 0.98 1.7
160 3.9e− 2 0.99 2.0
320 2.0e− 2 1.00 2.3
640 9.8e− 3 1.00 2.4
1280 4.9e− 3 1.00 2.9

nonconvex 40 3.9e− 2 – 1.5
80 1.9e− 2 1.00 1.8
160 9.6e− 3 1.00 2.6
320 4.8e− 3 1.00 3.5
640 2.4e− 3 1.00 4.6
1280 1.2e− 3 1.00 6.3

nonlinear Hamiltonians, the computational effectivity indexes are nearly optimal.
In all these case, the optimal value of ε was 0, in agreement with our first analytic
example.

The results for the nonsmooth solution test problems are displayed in Table 4.
We can see that the scheme converges linearly, as expected, and the computational
effectivity index remains reasonably small throughout the huge variation of the size
of ∆x. In the convex Hamiltonian case, we expected a behavior of the computa-
tional effectivity index similar to the one observed in the second analytic example.
The fact that the computational effectivity index increases more slowly must be
an effect of the discretization of the functionals Φσ(v, ε). In the case of the non-
convex Hamiltonian, we see, however, a more marked though slow increase in the
computational effectivity index, as we would expect.
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Table 5. Monotone scheme on nonsmooth solution test problems:
The set [ a, b ] for which the parabola test failed, the number of grid
points in the interval, and the optimal value εopt.

Hamiltonian 1/∆x a b | b− a |/∆x εopt εopt/E N · εopt/E

convex 40 .425 .550 5 3.1e− 2 0.24 4
80 .450 .538 7 1.6e− 2 0.21 4
160 .475 .519 7 8.0e− 3 0.18 4
320 .484 .513 9 5.0e− 3 0.20 5
640 .492 .506 9 2.5e− 3 0.18 5
1280 .495 .504 11 1.5e− 3 0.20 6

nonconvex 40 .475 .500 1 2.9e− 2 0.20 3
80 .475 .513 3 2.4e− 2 0.27 5
160 .488 .506 3 1.2e− 2 0.23 5
320 .491 .506 5 9.6e− 3 0.33 8
640 .494 .505 7 6.0e− 3 0.37 10
1280 .496 .503 9 3.9e− 3 0.44 13

In Table 5, we show the numbers εopt/E and N · εopt/E which indicate what
fraction of E is the optimal auxiliary parameter εopt and on how many values of ε
the nonlinear functional of the error estimate have to be evaluated before hitting
their minimum, respectively. It can be seen that our choices of the parameters
E and N are quite reasonable, since they change very little as the discretization
parameter ∆x changes several orders of magnitude. In Table 5, we also display
the interval over which the parabola test failed, that is, the interval containing the
set of points of Ωh for which the condition (4.1) is not satisfied. Note how this set
always contains the point x = 1/2 at which the viscosity solution has its only kink,
and shrinks as the mesh size ∆x goes to zero. This indicates that the parabola test
can be used to give an indication of the location of the kinks of the exact solution.

c. Discontinuous Galerkin schemes. We adapt the DG method of Hu
and Shu [10], originally devised for transient Hamilton-Jacobi problems, to our
steady state setting. Next, we briefly describe this DG method; see also the short
monograph on DG methods [3] and the references therein. We start by seeking a
steady state solution to the equation

ut + u+H(ux)− f = 0.

After differentiating the above with respect to x, we obtain the equation

φt + φ+H(φ)x − fx = 0.(4.4)

for φ = ux. This may be viewed as a conservation law with both source and forcing
terms included. As such, we apply the DG method. Allowing our initial condition
to evolve to a steady state gives us the solution φ to

φ+H(φ)x − fx = 0,

which is then integrated to recover the solution to our original steady state
Hamilton-Jacobi equation.
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The solution to (4.4) is based on a weak formulation. Specifically, we multiply φ
by a test function and then integrate by parts on the spatial derivative, obtaining
on each interval∫ xj+1

xj

(φtv + φv −H(φ)vx − fxv)dx+H(φ(x−j+1))v(x−j+1)−H(φ(x+
j ))v(x+

j ) = 0.

The flux terms H(p) appearing outside the integral are then replaced by an appro-
priate choice of numerical flux, Ĥ(φ(x−j ), φ(x+

j )). We take the Lax-Friedrichs flux,
namely,

ĤLF (a, b) =
1
2

[H(a) +H(b)− C(b − a)], C = max
inf φ(x,0)≤s≤supφ(x,0)

|H ′(s)|.

The above weak formulation is used to define an approximate solution φh which
at each time is a piecewise polynomial of degree k. Then a Runge-Kutta time dis-
cretization is used to drive the solution to the steady state; note that for degree zero
polynomial approximation (k = 0) this reduces to the well-known Lax-Friedrichs
scheme.

Next, we describe how we adapt this DG method to steady state problems. Since
the viscosity solution to a Hamilton-Jacobi equation may have a discontinuity in
its derivative, one must deal with the problems caused by shocks in the solution
of the corresponding conservation law. One typically implements slope limiters by
using a test to determine whether there is too much oscillation being generated in
a given region of the computational domain. The emerging spurious oscillation is
then eliminated by suitably lowering the degree of the approximating polynomial.
This region may change throughout the course of a computation, and even if at
one timestep a given element is using a low order approximation, this same element
is allowed to use a higher order approximation later on. However, it is very well
known that this freedom does hurt the convergence to the steady state, since the
iterative sequence typically falls into a limit cycle. To deal with this difficulty we
first use a standard slope limiting method up to a point where the residual ceases
to decrease; thereafter we continue the time stepping but do not allow the degree of
polynomial approximation on a given element to increase once it had been reduced.

Next, we discuss our results. In all our experiments, we keep the choice of E
and N we took for the monotone scheme. For piecewise-constant approximations,
k = 0, we take Ωh = { xj+1/2 }. It is well known that in this case, the DG method
reduces to a monotone scheme; its solution approximates a parabolic regularization
of the conservation law which has nonoscillatory residual. As a consequence, we
expect the numerical results to be similar to those obtained with the monotone
scheme. A glance at Tables 6, 7 and 8 shows that this is indeed the case.

In the case of piecewise polynomial approximation of degree k > 0, as is typical
of finite element approximations, the residual becomes increasingly oscillatory as k
increases. For these kinds of residuals, the effectivity index can grow like (∆x)−1,
as was illustrated in our third analytic example. This is precisely what we ob-
serve in Table 9, where results for k = 1 and smooth solutions are shown. Here
we sampled at Ωh = {xj+1/4, xj+3/4}. To remedy this situation, we post-process
the approximate solution in an effort to filter out the oscillations in the residual
while keeping the order of accuracy of the approximation invariant. We use the
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Table 6. DG method with k = 0 on smooth solution test problems.

Hamiltonian 1/∆x error order eih(u, v)

linear 40 3.9e− 2 – 6.4
80 1.9e− 2 0.99 6.4
160 9.7e− 3 1.00 6.4
320 4.8e− 3 1.00 6.4
640 2.4e− 3 1.00 6.4
1280 1.2e− 3 1.00 6.4

concave 40 1.4e− 1 – 1.0
80 7.4e− 2 0.91 1.0
160 3.8e− 2 0.96 1.0
320 1.9e− 2 0.98 1.0
640 9.8e− 3 0.99 1.0
1280 4.9e− 3 1.00 1.0

nonconvex 40 5.0e− 1 – 1.3
80 3.1e− 1 0.69 1.4
160 1.8e− 1 0.81 1.4
320 9.7e− 2 0.86 1.3
640 5.2e− 2 0.90 1.2
1280 2.7e− 2 0.93 1.1

Table 7. DG method with k = 0 on nonsmooth solution test problems.

Hamiltonian 1/∆x error order eih(u, v)

convex 40 1.5e− 1 – 1.9
80 7.7e− 2 0.97 1.7
160 3.9e− 2 0.99 2.1
320 2.0e− 2 0.99 2.3
640 9.8e− 3 1.00 2.6
1280 4.9e− 3 1.00 2.9

nonconvex 40 3.8e− 2 – 1.5
80 1.9e− 2 0.98 1.8
160 9.6e− 3 0.99 2.3
320 4.8e− 3 1.00 3.5
640 2.4e− 3 1.00 4.6
1280 1.2e− 3 1.00 6.3

convolution kernel 1
∆xK

4,2(x/∆x) defined by

K4,2(y) = − 1
12
ψ(2)(y − 1) +

7
6
ψ(2)(y)− 1

12
ψ(2)(y + 1),

where ψ(2) is the B-spline obtained by convolving the characteristic function of
[−1/2, 1/2] with itself once; see the monograph by Wahlbin [18] and the references
therein. That this strategy works can be seen in Table 10, where we also see that the
computational effectivity indexes remain reasonably small in all three cases. Note
that the DG method converges with order three with or without post-processing.

When the viscosity solution has a kink, there is no essential difference between
the effectivity indexes of the original and the post-processed solutions as can be



A POSTERIORI ERROR ESTIMATES FOR HAMILTON-JACOBI EQUATIONS 69

Table 8. DG method with k = 0 on nonsmooth solution test
problems: The set [ a, b ] for which the parabola test failed and the
optimal value εopt.

Hamiltonian 1/∆x a b | b− a |/∆x εopt εopt/E N · εopt/E

convex 40 .438 .563 5 3.2e− 2 0.24 4
80 .456 .544 7 1.6e− 2 0.21 4
160 .478 .522 7 8.0e− 3 0.18 4
320 .486 .514 9 5.0e− 3 0.20 5
640 .493 .507 9 2.5e− 3 0.18 5
1280 .496 .504 11 1.5e− 3 0.20 6

nonconvex 40 .488 .513 1 3.8e− 2 0.25 4
80 .481 .519 3 2.4e− 2 0.27 5
160 .491 .509 3 1.2e− 2 0.23 5
320 .492 .508 5 9.6e− 3 0.33 8
640 .495 .506 7 6.0e− 3 0.37 10
1280 .497 .504 9 3.9e− 3 0.44 13

Table 9. DG method with k = 1 on smooth solution test problems.

Hamiltonian 1/∆x error order eih(u, v)

linear 40 4.5e− 5 – 89
80 5.6e− 6 3.00 179
160 7.0e− 7 3.00 359
320 8.8e− 8 3.00 717
640 1.1e− 8 2.99 1423
1280 2.7e− 9 2.04 1466

concave 40 2.0e− 5 – 13
80 2.6e− 6 3.00 26
160 3.2e− 7 3.00 51
320 4.0e− 8 3.00 100
640 5.0e− 9 3.00 200
1280 4.8e− 10 3.37 518

nonconvex 40 4.5e− 5 – 34
80 5.9e− 6 2.94 66
160 7.5e− 7 2.97 129
320 9.5e− 8 2.98 256
640 1.2e− 8 2.99 509
1280 1.5e− 9 2.99 1015

seen by comparing Tables 11 and 12. This is because the error concentrates around
the kink. Around it, the DG uses a low-degree polynomial approximation which
gives rise to a locally nonoscillatory residual. As a consequence, we can expect
results similar to the ones obtained with k = 0 in these test problems. That this
is indeed the case can be seen in Tables 12 and 13, where we report the results for
the post-processed DG approximations. Note that the computational effectivity
indexes vary very slowly as the discretization parameter varies a couple of orders
of magnitude.

Comparing the results for the k = 0 approximation in Tables 7 and 8 with the
ones for the k = 1 approximation in Tables 12 and 13, we note that (i) the k = 1
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Table 10. Post-processed DG method with k = 1 on smooth
solution test problems.

Hamiltonian 1/∆x error order eih(u, v)

linear 40 2.7e− 5 – 6.4
80 3.3e− 6 3.00 6.4
160 4.2e− 7 3.00 6.4
320 5.2e− 8 2.99 6.3
640 6.6e− 9 2.98 6.3
1280 2.1e− 9 1.63 3.5

concave 40 4.5e− 6 – 2.2
80 5.8e− 7 2.95 1.9
160 7.5e− 8 2.97 1.7
320 9.4e− 9 2.98 1.7
640 1.2e− 9 2.99 1.6
1280 3.5e− 12 8.41 2.3

nonconvex 40 1.8e− 5 – 4.1
80 1.9e− 6 3.25 4.3
160 2.5e− 7 2.91 3.7
320 3.2e− 8 2.95 3.6
640 4.1e− 9 2.98 3.5
1280 5.2e− 10 2.98 3.5

Table 11. DG method with k = 1 on nonsmooth solution test problems.

Hamiltonian 1/∆x error order eih(u, v)

convex 40 5.4e− 2 – 4.7
80 2.8e− 2 0.93 4.6
160 1.4e− 2 0.97 4.6
320 7.2e− 3 0.99 4.6
640 3.6e− 3 0.99 6.1
1280 1.8e− 3 1.00 6.1

nonconvex 40 7.5e− 3 – 11
80 4.6e− 3 0.72 9

160 2.6e− 3 0.82 10
320 1.3e− 3 1.05 11
640 6.7e− 4 0.91 16
1280 3.5e− 4 0.91 19

approximation produces smaller errors than the k = 0 approximation, and that (ii)
the k = 0 approximation failed the parabola test at points close to the kink whereas
the k = 1 approximation did not. Therefore for the k = 1 approximation, residual
computations were performed closer to the kink than for k = 0. That the resulting
effectivity indexes were larger even though the actual error is smaller could be an
indication that our a posteriori estimate might be measuring a norm different than
the L∞-norm. This important issue falls beyond the scope of this paper, but will
be addressed elsewhere.
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Table 12. Post-processed DG method with k = 1 on nonsmooth
solution test problems.

Hamiltonian 1/∆x error order eih(u, v)

convex 40 5.4e− 2 – 4.7
80 2.8e− 2 0.93 4.6
160 1.4e− 2 0.97 4.6
320 7.5e− 3 0.99 4.6
640 3.6e− 3 0.99 6.1
1280 1.8e− 3 1.00 6.1

nonconvex 40 7.5e− 3 – 11
80 4.6e− 3 0.72 9
160 2.6e− 3 0.82 10
320 1.3e− 3 1.05 11
640 6.7e− 4 0.91 16
1280 3.5e− 4 0.91 19

Table 13. Post-processed DG method with k = 1 on nonsmooth
solution test problems: The set [ a, b ] for which the parabola test
failed and the optimal value εopt.

Hamiltonian 1/∆x a b | b− a |/∆x εopt εopt/E N · εopt/E

convex 40 .431 .569 5.5 2.4e− 2 0.18 3
80 .466 .534 5.5 1.2e− 2 0.16 3
160 .483 .517 5.5 6.0e− 3 0.14 3
320 .491 .509 5.5 3.0e− 3 0.12 3
640 .494 .506 7.5 2.0e− 3 0.14 4
1280 .497 .503 7.5 9.9e− 4 0.13 4

nonconvex 40 .469 .531 2.5 3.8e− 2 0.25 4
80 .484 .516 2.5 1.9e− 2 0.22 4
160 .489 .511 3.5 1.2e− 2 0.23 5
320 .495 .506 3.5 6.0e− 3 0.21 5
640 .496 .504 5.5 4.8e− 3 0.30 8
1280 .498 .502 5.5 2.4e− 3 0.27 8

4.5. Two-dimensional experiments. To give an indication that the results ob-
tained in the one-dimensional case can be obtained in the two-dimensional case, we
study the behavior of the computational effectivity index for the following monotone

Table 14. Two-dimensional test problems.

Hamiltonian H(p) right-hand side f(x, y) viscosity solution u(x, y)

1
2
|p|2 sin(2πx) + cos(2πy)

+2π2(cos2(2π x) + sin2(2π y))
sin(2πx) + cos(2πy)

1
π2 |p|2

−| cos(π x) | − | cos(π y) |
+ sin2(π x) + sin2(π y)

−| cos(π x) | − | cos(π y) |
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scheme:

vi,j +H

(
vi+1,j − vi−1,j

2∆x
,
vi,j+1 − vi,j−1

2∆y

)

− ωx
vi+1,j − 2vi,j + vi−1,j

∆x2
− ωy

vi,j+1 − 2vi,j + vi,j−1

∆y2
= fi,j ,

where we can take, for example,

ωx = sup
(x,y)∈Ω

∆x
2

∣∣∣∣H1

(
∂f

∂x
(x, y),

∂f

∂y
(x, y)

)∣∣∣∣,
ωy = sup

(x,y)∈Ω

∆y
2

∣∣∣∣H2

(
∂f

∂x
(x, y),

∂f

∂y
(x, y)

)∣∣∣∣,
and Hi(p1, p2) = ∂H

∂pi
(p1, p2) for i = 1, 2.

We apply this scheme to the two test problems in Table 14; note that p = (p1, p2).
In our numerical examples, in order to reduce the artificial viscosity of the scheme,
we replace f by the exact solution u in the formulae defining ωx and ωy. Note that
the viscosity solution to the second problem is smooth except when either x = 1/2
or y = 1/2.

The implementation of the a posteriori error estimator here is similar to that
used for the one-dimensional monotone schemes. We choose v to be the piecewise
bilinear interpolant of the numerical solution at the points {xi, yj} and sample at
the points Ωh = {xi+1/2, yj+1/2}. We then have

v(xi+1/2, yj+1/2) =
1
4

(vi+1,j+1 + vi,j+1 + vi+1,j + vi,j),

∂v

∂x
(xi+1/2, yj+1/2) =

1
2∆x

(vi+1,j+1 + vi+1,j − vi,j+1 − vi,j),

∂v

∂y
(xi+1/2, yj+1/2) =

1
2∆y

(vi+1,j+1 + vi,j+1 − vi+1,j − vi,j).

Since there is a well-defined gradient at the points where we are sampling the
solution, application of the a posterior error estimator is straightforward.

We take the same range for ε as in the one-dimensional case, namely,

E = 2ω | ln(1/ω) |,

N = 4 | ln(1/ω) |,

where now we take ω = max{ωx, ωy}.
In Table 15, we show the results for the smooth solution test problem. We see

that the effectivity index remains small and constant as the grid is refined. Since
the optimal value of the auxiliary parameter ε is 0, as expected, no points failed
the paraboloid test.
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Table 15. Monotone scheme on smooth solution test problem.

1∆x error order eih(u, v) % of points that failed the paraboloid test

40 6.0e + 0 0.94 2.2 0
80 3.0e + 0 0.97 2.5 0
160 1.5e + 0 0.99 2.5 0
320 7.7e − 1 0.99 2.6 0

Table 16. Monotone scheme on nonsmooth solution test problem.

1/∆x error order eih(u, v)

40 1.5e − 1 0.99 1.7
80 7.8e − 2 1.00 1.7
160 3.9e − 2 1.00 1.8
320 2.0e − 3 1.00 1.8

Table 17. The optimal ε for the monotone scheme on the non-
smooth solution test problem.

1/∆x εopt εopt/E N ∗ εopt/E % of points that failed the paraboloid test

40 1.6e − 2 0.21 4 19
80 8.0e − 3 0.18 4 10
160 4.0e − 3 0.16 4 5
320 2.0e − 3 0.14 4 2

Tables 16 and 17 show that the a posteriori error estimate works well in the
nonsmooth case. Note, in particular, in Table 17 how the percentage of the grid
which fails the paraboloid test is approximately halved with the grid spacing.

In Figure 4, we have plotted the viscosity solution to the nonsmooth test problem
on an 80× 80 grid, the absolute value of the error and the region which failed the
paraboloid test. Note the rapid variation in the error in the region of the kinks,
corresponding to the singularity of the exact solution. Note also how it corresponds
well to the singularities in the true solution.

These preliminary results indicate that it is reasonable to expect that in several
dimensions the a posteriori error estimate will behave in a manner similar to that
observed in one dimension.

4.6. Conclusions. The numerical experiments show that our a posteriori error es-
timate produces effectivity indexes that remain reasonably constant (and relatively
small) as the discretization parameters vary in several orders of magnitude. This
is the case not only for the classical monotone scheme but also for the modern
finite element high-resolution DG method of Hu and Shu [10]. This shows that
the a posteriori error estimate can be effectively used for quite different types of
numerical schemes even in the difficult cases of nonlinear Hamiltonians when the
viscosity solution displays kinks.
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Figure 4. Nonsmooth solution test problem, monotone scheme
on the 80× 80 grid. Exact solution (top), error (middle), and set
that failed the paraboloid test (bottom). Note that this set forms
a four-element-wide neighborhood around the kinks of the exact
viscosity solution.
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5. Extensions and concluding remarks

Extension of our a posteriori error estimate to more general Hamiltonians, such as
H = H(x, u, p), is straightforward and will not be further discussed. The extension
of this result to the transient case and to second-order nonlinear parabolic equations
will be treated in the forthcoming Parts II and III, respectively, of this series.

Finally, the technique we have used here on Hamilton-Jacobi equations can be
easily carried over to nonlinear hyperbolic scalar conservation laws and, more gen-
erally, to nonlinear convection-diffusion scalar equations with possible degenerate
diffusion. These subjects will also be considered in forthcoming papers.
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