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LANDEN TRANSFORMATIONS AND THE INTEGRATION
OF RATIONAL FUNCTIONS

GEORGE BOROS AND VICTOR H. MOLL

Abstract. We present a rational version of the classical Landen transfor-
mation for elliptic integrals. This is employed to obtain explicit closed-form
expressions for a large class of integrals of even rational functions and to de-
velop an algorithm for numerical integration of these functions.

1. Introduction

We consider the space of even rational functions of degree 2p

E2p :=

{
R(z) =

P (z)
Q(z)

∣∣∣ P (z) :=
p−1∑
k=0

bkz
2(p−1−k) and Q(z) :=

p∑
k=0

akz
2(p−k)

}
with positive real coefficients ak, bk ∈ R+ normalized by the condition a0 = ap = 1,
the space

E∞ :=
∞⋃
p=1

E2p

of normalized even rational functions, and the set of 2p− 1 parameters

P2p := {a1, · · · , ap−1; b0, · · · , bp−1}.

We describe an algorithm to determine, as a function of the parameter set P2p,
a closed-form expression of the integral

I :=
∫ ∞

0

R(z) dz(1.1)

for a large class of functions R ∈ E∞. The function R is called symmetric if its
denominator Q satisfies Q(1/z) = z−2pQ(z). This is equivalent to its coefficients
being palindromic, i.e., aj = ap−j for 1 ≤ j ≤ p.

The class of symmetric functions plays a crucial role in this algorithm. Define

Es2p := {R ∈ E2p

∣∣∣ den(R) is symmetric}
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(where den(R) denotes the denominator of R), the class of rational functions with
symmetric denominators of degree 2p, and

E
s
∞ :=

∞⋃
p=1

E
s
2p.

For m ∈ N define

Em2p := {R ∈ E∞

∣∣∣ (den(R))1/(m+1) is even, symmetric of degree 2p}

and E
m,s
2p := Em2p ∩ Es2p, so a function R ∈ E

m,s
2p can be written in the form

R(z) =
P (z)

Qm+1(z)
,

where P (z) is an even polynomial and Q(z) is an even symmetric polynomial of
degree 2p.

The method of partial fractions gives (in principle) the value of I in terms of
the roots of Q. Symbolic computations yield either a closed-form answer, an ex-
pression in terms of the roots of an associated polynomial, or the integral returned
unevaluated.

The algorithm described here allows only algebraic operations on elementary
functions and changes of variables of the same type. In particular, we exclude the
solution of algebraic equations of degree higher than 2. We say that a rational
function R ∈ E∞ is computable if its integral can be evaluated by our algorithm.

The first step in the algorithm is to consider symmetric rational functions. In
Section 2 we prove a reduction formula, i.e., a map Fp : Es2p → Rp that reduces the
computability of the integral of the symmetric function R to that of one of degree
1
2 deg(R). Here Rp is the space of rational functions with denominator of degree p.
These new functions are not necessarily symmetric, and this is the main limitation
of our algorithm. The details of Fp require the evaluation of some binomial sums
which are presented in Appendix A. The classical Wallis’ formula∫ ∞

0

dz

(z2 + 1)m+1
=

π

22m+1

(
2m
m

)
shows that every R ∈ Em2 is computable. The reduction formula now implies that
every R ∈ Em4 is computable. This is described in Section 3. The computability of
R ∈ E4 is also a consequence of the classical theory of hypergeometric functions;
the details are given in [2]. In Section 4 we compute the integral of every function
in E

m,s
8 , where the reduction method expresses these integrals in terms of functions

in Em4 . The algorithm does not, in general, provide a value for the integral of a
nonsymmetric function of degree 8.

The final piece of the algorithm is described in Section 5: for R ∈ E2p, the
symmetrization of its denominator produces a (symmetric) rational function in E4p

with the same integral as R. The reduction formula now yields a new function in
E2p with the same integral as R. We thus obtain a map T2p : E2p → E2p such that∫ ∞

0

R(z) dz =
∫ ∞

0

T2p(R(z)) dz.(1.2)

In particular, the class of computable rational functions of degree 2p is invariant
under forward and backward iteration of T2p. This map is the rational analog of
the original Landen transformation for elliptic integrals described in [4, 13]. The
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map T2p can also be interpreted as a map on the coefficients Φ2p : O
+
2p → O

+
2p

where O
+
2p = R+

p−1 × R+
p.

The case of Φ6 is described in detail in Section 6 and is given explicitly by

a1 → 9 + 5a1 + 5a2 + a1a2

(a1 + a2 + 2)4/3
,(1.3)

a2 → a1 + a2 + 6
(a1 + a2 + 2)2/3

,

b0 → b0 + b1 + b2
(a1 + a2 + 2)2/3

,

b1 → b0(a2 + 2) + 2b1 + b2(a1 + 3)
a1 + a2 + 2

,

b2 → b0 + b2
(a1 + a2 + 2)1/3

.

Let x0 := (a1, a2; b0, b1, b2). Then Φ6 : O
+
6 → O

+
6 is iterated to produce a

sequence xn+1 := Φ6(xn) of points in O
+
6 that yield a sequence of rational functions

with constant integral. We have proved in [3] the existence of L ∈ R+, depending
upon the initial point x0 = (a1, a2; b0, b1, b2), such that xn → (3, 3;L, 2L,L). Thus∫ ∞

0

b0z
4 + b1z

2 + b2
z6 + a1z4 + a2z2 + 1

dz = L(x0)× π

2
.(1.4)

This establishes a numerical method to compute the integral in (1.4).
Numerical studies on integrals of even degree 2p suggest the existence of a lim-

iting value L = L(x0) such that the sequence xn+1 := Φ2p(xn) satisfies

xn →
((

p

1

)
,

(
p

2

)
, · · · ,

(
p

p− 1

)
;
(
p− 1

0

)
L,

(
p− 1

1

)
L, · · · ,

(
p− 1
p− 1

)
L

)
.

The integral of the original rational function is thus π
2 × L(x0). The proof of

convergence remains open for p ≥ 4. Examples are given in Section 7.
The most important issues left unresolved in this paper are the convergence of

the iteration of the map Φ2p discussed above and the geometric interpretation of the
Landen transformation T2p. Finally, the question of integration of odd functions
has not been addressed at all.

Some history. The problem of integration of rational functions R(z) = P (z)/Q(z)
was considered by J. Bernoulli in the 18th century. He completed the original
attempt by Leibniz of a general partial fraction decomposition of R(z). The main
difficulty associated with this procedure is to obtain a complete factorization of
Q(z) over R. Once this is known the partial fraction decomposition of R(z) can be
computed. The fact is that the primitive of a rational function is always elementary:
it consists of a new rational function (itsrational part) and the logarithm of a second
rational function (its transcendental part). In his classic monograph [9] G. H. Hardy
states: The solution of the problem (of definite integration) in the case of rational
functions may therefore be said to be complete; for the difficulty with regard to the
explicit solution of algebraical equations is one not of inadequate knowledge but of
proved impossibility. He goes on to add: It appears from the preceding paragraphs
that we can always find the rational part of the integral, and can find the complete
integral if we can find the roots of Q(z) = 0.
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In the middle of the last century Hermite [10] and Ostrogradsky [15] developed
algorithms to compute the rational part of the primitive of R(z) without factor-
ing Q(z). More recently Horowitz [11] rediscovered this method and discussed its
complexity. The problem of computing the transcendental part of the primitive
was finally solved by Lazard and Rioboo [12], Rothstein [17] and Trager [18]. For
detailed descriptions and proofs of these algorithms the reader is referred to [5] and
[6].

2. The reduction formula

In this section we present a map Fp : E
m,s
2p → Emp that is the basis of the

integration algorithm described in Section 5. The proof is elementary and the
binomial sums discussed in the Appendix are employed.

Let Dp(z) be the general symmetric polynomial of degree 4p. We express the
integral of z2n/Dm+1

p as a linear combination of integrals of z2j/Em+1
p where Ep is

a polynomial of degree 2p whose coefficients are determined by those of Dp.

Theorem 2.1. Let m,n, p ∈ N. Define

Dp(d1, d2, · · · , dp; z) =
p∑

k=0

dp+1−k(z2k + z4p−2k)(2.1)

and

Ep(d1, d2, · · · , dp; z) =

p+1∑
j=1

dj

 z2p

+
p∑
i=1

22i−1z2(p−i)
p−i+1∑
j=1

j + i− 1
i

(
j + 2i− 2
j − 1

)
dj+i,

(2.2)

for di ∈ R+. Then for 0 ≤ n ≤ (m+ 1)p− 1,∫ ∞
0

z2n dz

(Dp(d1, · · · , dp; z))m+1

= 2−m
(m+1)p−n−1∑

j=0

4j
(

(m+ 1)p− n− 1 + j

2j

)

×
∫ ∞

0

z2((m+1)p−1−j)

(Ep(d1, · · · , dp; z) )m+1 dz,

(2.3)

and for (m+ 1)p− 1 < n < 2p(m+ 1)− 1 we employ the symmetry rule

Nn,p = N2p(m+1)−1−n,p.(2.4)

Proof. First observe that (2.4) follows from the change of variable z → 1/z. Now
consider

Nn,p(d1, · · · , dp;m) :=
∫ ∞

0

z2n dz

(
∑p

k=0 dp+1−k(z4p−2k + z2k) )m+1(2.5)
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for 0 ≤ n ≤ (m+ 1)p− 1. The substitution z = tan θ yields

Nn,p =
∫ π/2

0

(1 − C2)nC4(m+1)p−2n−2 dθ

(
∑p
k=0 dp+1−k {(1− C2)2p−kC2k + (1− C2)kC4p−2k} )m+1 ,

where C = cos θ. Letting ψ = 2 θ and D = cosψ = 2C2 − 1 then gives

Nn,p =
∫ π

0

(1−D2)n(1 +D)2(m+1)p−2n−1 dψ

(
∑p
k=0 dp+1−k(1−D2)k {(1−D)2p−2k + (1 +D)2p−2k} )m+1 .

Now observe that the integrals of the odd powers of cosine vanish when we expand
(1 +D)2(m+1)p−2n−1, producing

Nn,p = 2−m
∫ π/2

0

(1−D2)n
∑(m+1)p−n−1

j=0

(
2(m+1)p−2n−1

2j

)
D2j dθ{∑p

k=0 dp+1−k(1−D2)k
∑p−k

j=0

(
2p−2k

2j

)
D2j

}m+1 .

A second double angle substitution ϕ = 2ψ gives

Nn,p = 2−m
∫ π

0

(1− E)n
∑(m+1)p−n−1
j=0

(
2(m+1)p−2n−1

2j

)
2p(m+1)−n−j−1(1 + E)j dϕ{∑p

k=0 dp+1−k(1− E)k
∑p−k

j=0

(
2p−2k

2j

)
2p−k−j(1 + E)j

}m+1 ,

where E = cosϕ = 2D2 − 1. The change of variable z = tan(ϕ/2) then yields

Nn,p = 2−m
∫ ∞

0

z2n
∑(m+1)p−n−1
j=0

(
2(m+1)p−2n−1

2j

)
(1 + z2)(m+1)p−n−j−1 dz{∑p

k=0 dp+1−kz2k
(∑p−k

j=0

(
2p−2k

2j

)
(1 + z2)p−k−j

)}m+1 .

(2.6)

Finally, we modify (2.6) using Lemma A.2 and Lemma A.4 with N = (m+1)p−n−1
to produce (2.3).

Note that the previous theorem associates to each rational function of symmetric
denominator

R1(z) =
bsz

2s + bs−1z
2(s−1) + · · ·+ b0

( z4p + dpz4p−2 + · · ·+ 2d1z2p + · · ·+ 1 )m+1

a new rational function

R2(z) = 2−m
(m+1)p−1∑

n=0

bn

(m+1)p−n−1∑
j=0

4j

×
(

(m+ 1)p− n− 1 + j

2j

)
z2((m+1)p−1−j)

(Ep(d1, · · · , dp; z))m+1

such that ∫ ∞
0

R1(z) dz =
∫ ∞

0

R2(z) dz.
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3. The quartic case

In this section we describe the computability of rational functions R ∈ Em4 .
These are functions of the form

R(z) =
P (z)

(z4 + 2az2 + 1)m+1
,

where P (z) is an even polynomial of degree 4m+2. Observe that the normalization
a0 = a2 = 1 makes the denominator of R automatically symmetric. It suffices to
evaluate

Nn,4(d1;m) :=
∫ ∞

0

z2n dz

(z4 + 2d1z2 + 1)m+1
,(3.1)

where 0 ≤ n ≤ 2m+1 is required for convergence. From (2.4) we haveNn,4(d1;m) =
N2m−1−n,4(d1;m), so we may assume 0 ≤ n ≤ m. We now employ Theorem 2.1 to
obtain a closed form expression for Nn,4(d1;m).

Theorem 3.1. Let m ∈ N and assume 0 ≤ n ≤ m. Then

Nn,4(d1;m) :=
∫ ∞

0

z2n dz

(z4 + 2d1z2 + 1)m+1(3.2)

=
π

23m+3/2(1 + a)m+1/2
×
m−n∑
j=0

2j(1 + d1)j

×
(

2m− 2j − 1
m− j

)(
m− n+ j

2j

)(
2j
j

)(
m

j

)−1

.

For m+ 1 ≤ n ≤ 2m+ 1 we have∫ ∞
0

z2n dz

(z4 + 2d1z2 + 1)m+1(3.3)

=
π

23m+3/2(1 + d1)m+1/2

×
n−m−1∑
j=0

2j(1 + d1)j ×
(

2m− 2j − 1
m− j

)(
m− n+ j

2j

)(
2j
j

)(
m

j

)−1

.

Proof. We apply the result of the Theorem 2.1 with D1(d1; z) = z4 + 2d1z
2 + 1 and

E1(d1; z) = (1 + d1)z2 + 2, so that∫ ∞
0

z2n dz

(z4 + 2d1z2 + 1)m+1
= 2−m

m−n∑
j=0

4j
(
m− n+ j

2j

)∫ ∞
0

z2(m−j) dz

((1 + d1)z2 + 2)m+1
.

The change of variable u = (1 + d1)z2/2 then yields∫ ∞
0

z2(m−j) dz

( (1 + d1)z2 + 2 )m+1

= 2−(j+3/2)(1 + d1)−m+j−1/2

∫ ∞
0

um−j−1/2 du

(1 + u)m+1

= π

(
2m− 2j
m− j

)(
2j
j

)(
m

j

)−1

2−(2m+j+3/2)(1 + d1)−(m−j+1/2),



TRANSFORMATIONS AND INTEGRATION OF RATIONAL FUNCTIONS 655

where we have used∫ ∞
0

ur−1/2

(1 + u)s
du =

π

22(s−1)

(
2r
r

)(
2(s− r − 1)
s− r − 1

)(
s− 1
r

)−1

.

The algorithm also requires a scaled version of N0,4(d1;m).

Corollary 3.2. Let b > 0, c > 0, a > −
√
bc, m ∈ N, and 0 ≤ n ≤ m. Define

Nn,4(a, b, c;m) :=
∫ ∞

0

z2n dz

(bz4 + 2az2 + c)m+1 .

Then for 0 ≤ n ≤ m,

Nn,4(a, b, c;m)

= π

(
c(c/b)m−n

{
8(a+

√
bc)
}2m+1

)−1/2

×
m−n∑
k=0

2k
(

2m− 2k
m− k

)(
m− n+ k

2k

)(
2k
k

)(
m

k

)−1(
a√
bc

+ 1
)k

,(3.4)

and for m+ 1 ≤ n ≤ 2m+ 1,

Nn,4(a, b, c;m)

= π

(
c(c/b)m−n

{
8(a+

√
bc)
}2m+1

)−1/2

×
n−m−1∑
k=0

2k
(

2m− 2k
m− k

)(
m− n+ k

2k

)(
2k
k

)(
m

k

)−1(
a√
bc

+ 1
)k

.(3.5)

Proof. Let 0 ≤ n ≤ m. The substitution u = z(b/c)1/4 yields

Nn,4(a, b, c;m) =
1

cm−n/2+3/4bn/2+1/4
Nn,4

(
a√
bc

;m
)
,(3.6)

so (3.4) then follows from Theorem 3.1. From (2.4) we have Nn,4(a, b, c;m) =
N2m+1−n,4(c, b, a;m) for m+ 1 ≤ n ≤ 2m+ 1, giving (3.5).

4. The symmetric case of degree 8

In this section we prove the computability of the set E
m,s
8 of symmetric rational

functions with denominator of degree 8 and establish an explicit formula for the
integral

Nn,8(a1, a2;m) =
∫ ∞

0

z2n dz

(z8 + a2z6 + 2a1z4 + a2z2 + 1)m+1

where 0 ≤ n ≤ 4m+ 3 is required for convergence. Observe that (2.4) reduces the
discussion to the case 0 ≤ n ≤ 2m+ 1. The expression (2.2), with p = 2, produces
E2(a1, a2; z) = (1 + a1 + a2)z4 + 2(a2 + 4)z2 + 8.
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Theorem 4.1. Every function in E
m,s
8 is computable. More specifically, define

c1 := a2 + 4, c2 := 1 + a1 + a2, and

tk,j(m,n; a1, a2) := π2−(3m+2+k+j)/2c
(m−k−j)/2
2 (c1 +

√
8c2)j−m−1/2

×
(

4m− n− k + 2
k − n

)(
2m− 2j
m− j

)(
m− k + j

2j

)(
2j
j

)(
m

j

)−1

.

Then for m+ 1 ≤ n ≤ 2m+ 1, 1 + a1 + a2 > 0 and a2 + 4 > −8
√

8(1 + a1 + a2),∫ ∞
0

z2n dz

(z8 + a2z6 + 2a1z4 + a2z2 + 1)m+1
=

2m+1∑
k=n

k−m−1∑
j=0

tk,j(m,n; a1, a2),

and for 0 ≤ n ≤ m,∫ ∞
0

z2n dz

(z8 + a2z6 + 2a1z4 + a2z2 + 1)m+1

=
m∑
k=n

m−k∑
j=0

tk,j(m,n; a1, a2) +
2m+1∑
k=m+1

k−m−1∑
j=0

tk,j(m,n; a1, a2).

Proof. The reduction formula yields∫ ∞
0

z2n dz

(z8 + a2z6 + 2a1z4 + a2z2 + 1)m+1
(4.1)

= 23m+2
2m+1∑
k=n

2−2k

(
4m− n− k + 2

k − n

)∫ ∞
0

z2k dz

(c2z4 + 2c1z2 + 8)m+1
.

We then use Corollary 3.2 to evaluate (4.1).

5. A sequence of Landen transformations

The transformation theory of elliptic integrals was initiated by Landen in 1771.
He proved the invariance of the function

G(a, b) :=
∫ π/2

0

d θ√
a2 cos2 θ + b2 sin2 θ

(5.1)

under the transformation

a1 = (a+ b)/2, b1 =
√
ab,(5.2)

i.e., that

G(a1, b1) = G(a, b).(5.3)

Gauss [7] rediscovered this invariance while numerically calculating the length of a
lemniscate. An elegant proof of (5.3) is given by Newman in [14]. Here, the sub-
stitution x = b tan θ converts 2G(a, b) into the integral of

[
(a2 + x2)(b2 + x2)

]−1/2

over R; the change of variable t = (x− ab/x)/2 then completes the proof.
The Gauss-Landen transformation can be iterated to produce a double sequence

(an, bn) such that 0 ≤ an−bn < 2−n. It follows that an and bnconverge to a common
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limit, the so-called arithmetic-geometric mean of a and b, denoted by AGM(a, b).
Passing to the limit in G(a, b) = G(an, bn) produces

π

2 AGM(a, b)
=

∫ π/2

0

d θ√
a2 cos2 θ + b2 sin2 θ

.(5.4)

The reader is referred to [4] and [13] for details.
The goal of this section is to produce a map T2p : E2p → E2p that preserves the

integral, i.e., ∫ ∞
0

R(z) dz =
∫ ∞

0

T2p(R(z)) dz.(5.5)

This map is the rational analog of the original Landen transformation (5.2).

Theorem 5.1. Let R(z) = P (z)/Q(z) with

P (z) =
p−1∑
j=0

bjz
2(p−1−j) and Q(z) =

p∑
j=0

ajz
2(p−j).(5.6)

Define aj = 0 for j > p, bj = 0 for j > p− 1,

dp+1−j =
j∑

k=0

ap−kaj−k(5.7)

for 0 ≤ k ≤ p− 1,

d1 =
1
2

p∑
k=0

a2
p−k,(5.8)

cj =
2p−1∑
k=0

ajbp−1−j+k(5.9)

for 0 ≤ j ≤ 2p− 1, and also

αp(i) =

{
22i−1

∑p+1−i
k=1

k+i−1
i

(
k+2i−2
k−1

)
dk+i if 1 ≤ i ≤ p,

1 +
∑p
k=1 dk if i = 0.

(5.10)

Let

a+
i =

αp(i)
22iQ(1)2(1−i/p)(5.11)

for 1 ≤ i ≤ p− 1, and

b+i = Q(1)2i/p+1/p−2 ×
[
p−1−i∑
k=0

(ck + c2p−1−k)
(
p− 1− k + i

2i

)]
(5.12)

for 0 ≤ i ≤ p− 1. Finally, define the polynomials

P+(z) =
p−1∑
k=0

b+i z
2(p−1−i) and Q+(z) =

p∑
k=0

a+
i z

2(p−i).(5.13)

Then T2p(R(z)) := P+(z)/Q+(z) satisfies (5.5), i.e.,∫ ∞
0

P (z)
Q(z)

dz =
∫ ∞

0

P+(z)
Q+(z)

dz.(5.14)



658 GEORGE BOROS AND VICTOR H. MOLL

Proof. The first step is to convert the polynomial Q(z) to its symmetric form:

I :=
∫ ∞

0

P (z)
Q(z)

dz =
∫ ∞

0

C(z)
D(z)

dz

with

C(z) = P (z)× z2pQ(1/z) :=
2p−1∑
k=0

ckz
2k,

D(z) = Q(z)× z2pQ(1/z) :=
p∑
k=0

dp+1−k(z2k + z2(2p−k)).

Then

I =
2p−1∑
k=0

ck

∫ ∞
0

z2k dz

Qs(z)
.

Now employ the reduction formula in Section 2 to evaluate

Lk :=
∫ ∞

0

z2k dz

Qs(z)
.

Observe that one needs to evaluate Lk only for 0 ≤ k ≤ p − 1. Indeed, the usual
symmetry rule yields Lk = L2p−1−k. The reduction formula now gives

Lk =
p−1−k∑
j=0

22j

(
p− 1− k + j

2j

)∫ ∞
0

z2(p−1−j) dz∑p
i=0 αp(i)z2(p−i)

=
1

αp(p)

p−k∑
j=1

22(j−1)

(
p− k + j − 2

2j − 2

)
λ2p−2j+1

∫ ∞
0

z2(p−j) dz∑p
i=0 b

+
i z

2(p−i)

with αp(i) as in (5.10) and λ = [αp(p)/αp(0)]1/2p.

Note. The extension of this transformation to the case of∫ ∞
0

P (z)
Qm+1(z)

dz

requires explicit formulae for the coefficients of P (z) ×
(
z2pQ(1/z)

)m+1 and
Qm+1(z)×

(
z2pQ(1/z)

)m+1.

An algorithm for integration. Let x = (a,b) with a = (a1, · · · , ap−1), b =
(b0, · · · , bp−1), and let O

+
2p = R+

p−1 × R+
p. We then have a map

Φ2p : O
+
2p → O

+
2p

x := (a,b) → x+ := (a+,b+)

where a+
i and b+i are given in (5.11), (5.12). Iteration of this map, starting at x0,

produces a sequence xn+1 := Φ2p(xn) of points in O
+
2p. The rational functions

formed with these parameters have integrals that remain constant along this orbit.
Numerical studies suggest the existence of a number L = L(x0) ∈ R+ such that

xn →
((

p

1

)
,

(
p

2

)
, · · · ,

(
p

p− 1

)
;
(
p− 1

0

)
L,

(
p− 1

1

)
L, · · · ,

(
p− 1
p− 1

)
L

)
.

Thus the integral of the original rational function is π
2 × L.
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6. The sixth degree case

We discuss the map T2p : E2p → E2p for the case p = 3. The effect of T6 on
the coefficients P6 = {b0, b1, b2, a1, a2} is denoted by Φ6 : O

+
6 → O

+
6 and is given

explicitly by

a1 → 9 + 5a1 + 5a2 + a1a2

(a1 + a2 + 2)4/3
,(6.1)

a2 → a1 + a2 + 6
(a1 + a2 + 2)2/3

,

b0 → b0 + b1 + b2
(a1 + a2 + 2)2/3

,

b1 → b0(a2 + 2) + 2b1 + b2(a1 + 3)
a1 + a2 + 2

,

b2 → b0 + b2
(a1 + a2 + 2)1/3

using Theorem 5.1. The map Φ6 preserves the integral

U6(a1, a2, b0; b1, b2) :=
∫ ∞

0

b0z
4 + b1z

2 + b2
z6 + a1z4 + a2x2 + 1

dz(6.2)

and the convergence of its iterations has been proved in [3], the main result of which
is the following theorem.

Theorem 6.1. Let x0 := (a0
1, a

0
2; b00, b

0
1, b

0
2) ∈ R5

+. Define xn+1 := Φ6(xn). Then
U6 is invariant under Φ6. Moreover, the sequence {(an1 , an2 )} converges to (3, 3) and
{(bn0 , bn1 , bn2 )} converges to (L, 2L,L), where the limit L is a function of the initial
data x0. Therefore∫ ∞

0

b0z
4 + b1z

2 + b2
z6 + a1z4 + a2z2 + 1

dz = L(x0)× π

2
.

This iteration is similar to Landen’s transformation for elliptic integrals that has
been employed in [4] in the efficient calculation of π. Numerical data indicate that
the convergence of xn is quadratic. The proof of convergence is based on the fact
that Φ6 cuts the distance from (a1, a2) to (3, 3) by at least half.

A sequence of algebraic curves. The complete characterization of parameters
(a1, a2) in the first quadrant that yield computable rational functions

R(z) :=
b0z

4 + b1z
2 + b2

z6 + a1z4 + a2z2 + 1

of degree 6 remains open. The polynomial z6 + a1z
4 + a2z

2 + 1 factors when
a1 = a2 so the diagonal ∆ := {(a1, a2) ∈ R+ ×R+ : a1 = a2} produces computable
functions. In view of the invariance of the class of computable functions under
iterations by Φ6, the curves Xn := Φ(−n)

6 (∆), with n ∈ Z, are also computable.
The curve X1 has equation

(9 + 5a1 + 5a2 + a1a2)3 = (a1 + a2 + 2)2(a1 + a2 + 6)3

and consists of two branches meeting at the cusp (3, 3). In terms of the coordinates
x = a1 − 3 and y = a2 − 3 the leading order term is T1(x, y) = 1728(x− y)2. This
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curve is rational and can be parametrized by

a1(t) = t−2(t5 − t4 + 2t3 − t2 + t+ 1),(6.3)
a2(t) = t−3(t5 + t4 − t3 + 2t2 − t+ 1).

The rationality of Xn for n 6= 1 and its significance for the integration algorithm
remains open. The complexity of these curves increases with n. For example, the
curve X2 := Φ(−2)

3 (∆) is of total degree 90 in x = a1−3 and y = a2−3 with leading
term

T2(x, y) := 2121335(x − y)18
[
−163(x4 + y4) + 668xy(x2 + y2)− 1074x2y2

]
.

The diagonal ∆ can be replaced by a 2-parameter family of computable curves
X(c, d) that are produced from the factorization of the sextic with a1 = c+ d and
a2 = cd+ 1/d. All the images Φ(−n)

6 X(c, d) with n ∈ Z are computable curves. The
question of whether these are all the computable parameters remains open.

7. Examples

In this section we present a variety of closed-form evaluations of integrals of
rational functions.

Example 1. The integral∫ ∞
0

z2

(z4 + 4z2 + 1)9
dz =

23698523 π
12230590464

√
6

is computed by Mathematica 3.0 using (3.2) in .01 seconds. The direct calculation
took 12.27 seconds and 6.4 extra seconds to simplify the answer.

Example 2. The integral of any even rational function with denominator a power
of an even quartic polynomial can be computed directly by using Corollary 3.2. For
example: ∫ ∞

0

z6 dz

(2z4 + 2z2 + 3)11
=

11π(14229567 + 4937288
√

6)
440301256704 (1 +

√
6 )21/2

.

Example 3. The case n = 0 in (3.2) deserves special attention:

N0,4(a;m) =
π

2m+3/2(a+ 1)m+1/2
Pm(a)(7.1)

where

Pm(a) = 2−2m
m∑
k=0

2k
(

2m− 2k
m− k

)(
m+ k

m

)
(a+ 1)k.(7.2)

The polynomial Pm(a) has been studied in [1] and [2].

Example 4. The case n = m in (3.2) yields

Nm,4(a;m) =
∫ ∞

0

z2m dz

(z4 + 2az2 + 1)m+1
=

π

23m+3/2(1 + a)m+1/2
×
(

2m
m

)
.

The change of variable z →
√
z converts this integral to

Nm,4(a;m) =
1
2

∫ ∞
0

zm−1/2 dz

(z2 + 2az + 1)m+1
,

which is [8] 3.252.9.
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Table 1.

n an1 an2 bn0 bn1 bn2
0 1 3000 45 25000 1230
1 .415786 14.4465 126.233 63.2884 88.3741
2 2.06562 3.17262 42.2607 156.015 83.6896
3 2.98142 3.00338 75.3541 137.717 65.1111
4 2.99999 3. 69.6338 139.925 70.2771
5 3. 3. 69.9589 139.914 69.9555
6 3. 3. 69.9572 139.914 69.9572
7 3. 3. 69.9572 139.914 69.9572

Example 5. A symmetric function of degree 6. The integral

I =
∫ ∞

0

x8

(x6 + 4x4 + 4x2 + 1)5
dx =

∫ ∞
0

x8

[(x2 + 1)(x4 + 3x2 + 1)]5
dx

can be computed by decomposing the integrand into partial fractions as

− 1
(x2 + 1)5

− 1
(x2 + 1)4

− 6
(x2 + 1)3

− 11
(x2 + 1)2

− 31
(x2 + 1)

+
1

(x4 + 3x2 + 1)5
+

2x2

(x4 + 3x2 + 1)5
− 4

(x4 + 3x2 + 1)4
− 3x2

(x4 + 3x2 + 1)4

+
12

(x4 + 3x2 + 1)3
+

6x2

(x4 + 3x2 + 1)3
− 32

(x4 + 3x2 + 1)2
− 14x2

(x4 + 3x2 + 1)2

+
73

(x4 + 3x2 + 1)
+

31x2

(x4 + 3x2 + 1)
.

Each of these terms is now computable yielding

I =
1407326

√
5− 3146875

160000
× π.

Example 6. Nonsymmetric functions of degree 6. In this case we can use the
scheme (6.1) to produce numerical approximations to the integral. For example,
the evaluation of ∫ ∞

0

45z4 + 25000z2 + 1230
z6 + z4 + 3000z2 + 1

dz

is shown in Table 1. Thus L ∼ 69.9572 and∫ ∞
0

45x4 + 25000x2 + 1230
x6 + x4 + 3000x2 + 1

dx ∼ 69.9572× π

2
∼= 109.889.

Example 7. Symmetric functions of degree 8. These integrals can be evaluated
using Theorem 4.1. For example:∫ ∞

0

dz

(z8 + 5z6 + 14z4 + 5z2 + 1)4
=

(14325195794 + 2815367209
√

26 )π
14623232 (9 + 2

√
26 )7/2

.
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Example 8. As in the case of degree 6 we can provide numerical approximations
to nonsymmetric integrals of degree 8. The iteration (6.1) is now replaced by

an+1
1 =

an2 (an1 + an3 ) + 4an1an3 + 10(an1 + an3 ) + 8(an2 + 2)
(an1 + an2 + an3 + 2)3/2

,

an+1
2 =

an1a
n
3 + 6(an1 + an3 ) + 2(an2 + 10)

an1 + an2 + a3
3 + 2

,

an+1
3 =

an1 + an3 + 8
(an1 + an2 + an3 + 2)1/2

,

bn+1
0 =

bn0 + bn1 + bn2 + bn3
(an1 + an2 + an3 + 2)3/4

,

bn+1
1 =

bn3 (3an1 + an2 + 6) + bn2 (an1 + 4) + bn1 (an3 + 4) + bn0 (3an3 + an2 + 6)
(an1 + an2 + an3 + 2)5/4

,

bn+1
2 =

bn3 (an1 + 5) + bn2 + bn1 + bn0 (an3 + 5)
(an1 + an2 + an3 + 2)3/4

,

bn+1
3 =

bn0 + bn3
(an1 + an2 + an3 + 2)1/4

,

with initial conditions a0
1, a

0
2, a

0
3, b

0
0, b

0
1, b

0
2, b

0
3. Then

U8(a1, a2, a3, b0, b1, b2, b3) :=
∫ ∞

0

b0x
6 + b1x

4 + b2x
2 + b3

x8 + a1x6 + a2x4 + a3x2 + 1
dx(7.3)

is invariant under these transformations.

Note. Numerical calculations show that (an1 , a
n
2 , a

n
3 ) → (4, 6, 4) and that

(bn0 , b
n
1 , b

n
2 , b

n
3 )→ (1, 3, 3, 1)L for some L depending upon the initial conditions.

Example 9. A symmetric function of degree 12. We use Theorem 2.1 to evaluate

I :=
∫ ∞

0

z18 dz

(z12 + 14z10 + 15z8 + 4z6 + 15z4 + 14z2 + 1)3

as

I =
25π(25

√
56− 54)

301989888
.(7.4)

Here p = 3, n = 9, and m = 2, so n > (m + 1)p− 1 and we need to apply the
transformation z → 1/z to reduce the value of n. Indeed, we have

I =
∫ ∞

0

z16 dz

(z12 + 14z10 + 15z8 + 4z6 + 15z4 + 14z2 + 1)3
,

and Theorem 2.1 now yields

I = 2−17

∫ ∞
0

z16 dz

131072(1 + z2)3(1 + 4z2 + z4)3
.

The new integrand is expanded in partial fractions in the variable t = z2 to produce
(7.4).

Example 10. We use Theorem 2.1 to evaluate

I :=
∫ ∞

0

z10 dz

Q2(z)
,
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where

Q(z) = z20 + 6z18 + 93z16 − 24z14 + 162z12

+ 548z10 + 162z8 − 24z6 + 93z4 + 6z2 + 1.

The factorization

Q(z) = (1 + z2)2T (z)T (−z)

with

T (z) = z8 − 2z7 + 4z6 + 14z5 + 6z4 − 14z3 + 4z2 + 2z + 1

leads to a partial fraction expansion containing the term

72− 501z + 1994z2 − 2617z3 + 1228z4 − 43z5 + 34z6 − 55z7

8388608(1− 2z + 4z2 + 14z3 + 6z4 − 14z5 + 4z6 + 2z7 + z8)2
,

which we were unable to integrate; furthemore, the roots of T (z) = 0 cannot be
evaluated by radicals. The procedure described in Theorem 2.1, however, shows
that

I =
∫ ∞

0

z10(4 + z2)(z6 + 36z4 + 96z2 + 64) dz
524288(z2 + 1)2 (z8 + 3z6 + 8z4 + 3z2 + 1)2

,

the integrand of which can be expanded to yield

I = − 9
8388608

∫ ∞
0

dz

(z2 + 1)2
− 75

8388608

∫ ∞
0

dz

z2 + 1

+
∫ ∞

0

1921z6 + 10815z4 + 4111z2 + 1462
2097152 (z8 + 3z6 + 8z4 + 3z2 + 1)2

dz

+
∫ ∞

0

91z6 + 719z4 + 1259z2 − 5764
8388608(z8 + 3z6 + 8z4 + 3z2 + 1)

dz.

Every piece is now computable, with the final result

I =
(6480− 509

√
15)π

24159191040
.

Example 11. The symmetric functions of degree 16 have denominator

D4(d1, d2, d3, d4; z) = z16 + d4z
14 + d3z

12 + d2z
10

+ 2d1z
8 + d2z

6 + d3z
4 + d4z

2 + 1,

the integral of which is computed in terms of

E4(d1, d2, d3, d4; z) = (1 + d1 + d2 + d3 + d4)z8 + 2(16 + d2 + 4d3 + 9d4)z6

+8(20 + d3 + 6d4)z4 + 32(8 + d4)z2 + 128.

This new integral is symmetric provided[
d1

d2

]
=

[
15
112

]
+
[

3
−4

]
d3 +

[
−8
7

]
d4.(7.5)

Introduce the new parameters

ej = dj −
(

8
5− j

)
for 2 ≤ j ≤ 4 and e1 = d1 − 1

2

(
8
4

)
.
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Then (7.5) yields [
e1

e2

]
=

[
3
−4

]
e3 +

[
−8
7

]
e4.(7.6)

Thus, if the original denominator has the form

D4(z) = (z16 + 1) + d4(z14 + z2) + d3(z12 + z4) + (112− 4d3 + 7d4)(z10 + z6)
+2(15 + 3d3 − 8d4)z8,

the integral ∫ ∞
0

P (z)
( D4(z) )m+1 dz

is reduced to an integral with symmetric denominator of degree 8 and these are
computable. We can thus evaluate a 2-parameter family of symmetric integrals of
degree 16.

For example, take d3 = d4 = 1 to obtain

R1(z) =
z4

(z16 + z14 + z12 + 115z10 + 20z8 + 115z6 + z4 + z2 + 1)2
.(7.7)

The main theorem yields

R2(z) =
1024z4 + 2304z6 + 1792z8 + 560z10 + 60z12 + z14

27(16z8 + 36z6 + 27z4 + 36z2 + 16)2
(7.8)

so that ∫ ∞
0

R1(z) dz =
∫ ∞

0

R2(z) dz.

Letting f [n] := Nn,8[1, n, 27/32, 9/4] we obtain∫ ∞
0

R1(z) dz = 2−15 (f [0] + 60f [1] + 1584f [2] + 4096f [3])

and conclude that∫ ∞
0

z4 dz

(z16 + z14 + z12 + 115z10 + 20z8 + 115z6 + z4 + z2 + 1)2

=
(149288517 + 12947003

√
131)π

1124663296
√

54925 + 4798
√

131
.

Example 12. We classify the symmetric denominators of degree 32 that yield
computable integrals. These functions depend on 8 parameters

D8(d1, · · · , d8; z) =
8∑

k=0

d9−k(z2k + z2(16−k))(7.9)

and the main theorem expresses the integral in terms of E8. The conditions for E8

to be symmetric yield

d1 = −3441 + 35d5 + 64d6 − 312d7 − 3264d8,

d2 = 34720− 56d5 − 110d6 + 560d7 + 4565d8,

d3 = −3472 + 28d5 + 64d6 − 329d7 − 2240d8,

d4 = 4960− 8d5 − 19d6 + 80d7 + 938d8,
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and the symmetric E8 is

E8(d5, d6, d7, d8; z) = 32768(1 + z16) + (131072 + 8192d8)(z2 + z14)

+ (212992 + 2048d7 + 28672d8)(z4 + z12)

+ (180224 + 512d6 + 6144d7 + 39424d8)(z6 + z10)

+ (84480 + 128d5 + 1280d6 + 6912d7 + 26880d8)z8.

The symmetry of E8 now determines d5, d6 in terms of d7, d8 and we obtain
d1

d2

d3

d4

d5

d6

 = −31


63475
−100800

47936
−13664

2220
−224

+


9166
−14392

6895
−1964

322
−28

 d7 +


54640
−86645
41664
−11471

2000
−189

 d8.(7.10)

The function (z2 + 1)16 is a symmetric polynomial of degree 32 and yields a par-
ticular solution to (7.10).

As before let

ej = dj −
(

16
9− j

)
for 2 ≤ j ≤ 8 and e1 = d1 − 1

2

(
16
8

)
.

Then 
e1

e2

e3

e4

e5

e6

 =


9166
−14392

6895
−1964

322
−28

 e7 +


54640
−86645
41664
−11471

2000
−189

 e8(7.11)

and as in the case of degree 16 we can compute a 2-parameter family of symmetric
integrals of degree 32.

Appendix A. Two binomial sums

The closed-form evaluation of sums involving binomial coefficients can be ob-
tained by traditional analytical techniques or by using the powerful WZ-method
as described in [16]. We discuss two sums used to simplify expressions in later
sections, presenting one proof in each style.

Lemma A.1. Let k,N be positive integers with k ≤ N . Then

N−k∑
j=0

(
2N + 1

2j

)(
N − j
k

)
=

(
2N − k

k

)
4N−k.(A.1)
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Proof. Multiply the left-hand side of (A.1) by xk and sum over k to produce
N∑
k=0

N−k∑
j=0

(
2N + 1

2j

)(
N − j
k

)
xk =

N∑
j=0

(
2N + 1

2j

)N−j∑
k=0

(
N − j
k

)
xk

=
N∑
j=0

(
2N + 1

2j

)
(x+ 1)N−j

=
(1 +

√
x+ 1)2N+1 − (1 −

√
x+ 1)2N+1

2
√
x+ 1

=
N∑
k=0

(
2N − k

k

)
4N−kxk.

In order to justify the last step we start with the well-known result

1√
1− 4y

(
1−
√

1− 4y
2y

)i
=

∑
k

(
2k + i

k

)
yk(A.2)

(see WILF [19], page 54). Letting x = −4y and i = 2N + 1 in (A.2) gives

(1−
√
x+ 1 )2N+1

2
√
x+ 1

=
∞∑
k=0

(−1)k+1

(
2N + 1 + 2k

k

)
4−(N+1+k)x2N+1+k;

similarly x = −4y and i = −2N − 1 yields

(1 +
√
x+ 1 )2N+1

2
√
x+ 1

=
∞∑

k=2N+1

(−1)k+1

(
2N + 1 + 2k

k

)
4−(N+1+k)x2N+1+k.

Thus

(1 +
√
x+ 1 )2N+1 − (1 −

√
x+ 1 )2N+1

2
√
x+ 1

=
2N∑
k=0

(−1)k
(
−(2N + 1− 2k)

k

)
4N−kxk

=
N∑
k=0

(
2N − k

k

)
4N−kxk.

Lemma A.2. Let N ∈ N. Then
N∑
j=0

(
2N + 1

2j

)
(1 + z2)N−j =

N∑
j=0

(
N + j

2j

)
4jz2(N−j).

Proof. The coefficient of z2k on the left-hand side is
N−k∑
j=0

(
2N + 1

2j

)(
N − j
k

)
,

and the corresponding coefficient on the right-hand side is
(

2N−k
k

)
4N−k. The result

then follows from Lemma A.1.

Lemma A.3. Let k,N ∈ N with k ≤ N . Then
k∑
j=0

(
2N
2j

)(
N − j
N − k

)
=

22k−1N

k

(
k +N − 1
N − k

)
.
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Proof. This lemma could be proven in the same style as Lemma A.1. Instead we
use the WZ-method as explained in [16]. Indeed, let

F (k; j) =
k
(

2N
2j

)(
N−j
N−k

)
N22k−1

(
k+N−1
N−k

) ,
and define, with the package EKHAD, the function

G(k; j) = F (k; j)× j(2j − 1)
2(N + k)(k − j + 1)

.

Then F (k; j)−F (k+ 1; j) = G(k; j+ 1)−G(k; j), and summing over j we see that
the sum of F (k; j) over j is independent of k. The case k = N produces 1 as the
common value.

Lemma A.4. Let p ∈ N, d1, d2, · · · , dp be parameters, and define dp+1 := 1. Then

p∑
k=0

dp+1−kz
2k

p−k∑
j=0

(
2p− 2k

2j

)
(1 + z2)p−k−j

=

p+1∑
j=1

dj

 z2p +
p∑
i=1

22i−1z2(p−i)

p+1−i∑
j=1

j + i− 1
i

(
j + 2i− 2
j − 1

)
dj+i

 .

(A.3)

Proof. For fixed 0 ≤ i ≤ p− 1 the coefficient of z2i on the right-hand side of (A.3)
is

[RHS] (2i) =
22(p−i)−1

p− i

p+1∑
r=p−i+1

(r − 1)
(
r + p− i− 2
r − p+ i− 1

)
dr,

and for i = p we have [RHS] (2p) = 1 +
∑p

j=1 dj . Similarly, for the left-hand side
of (A.3),

[LHS] (2i) =
p+1∑

r=p+1−i
dr

p−i∑
j=0

(
2r − 2

2j

)(
r − j − 1

r − j − 1 + i

) .

It is easy to check that the coefficients of z2p match. It suffices to show that for
each i such that 0 ≤ i ≤ p − 1 and for each r such that p + 1 − i ≤ r ≤ p + 1 we
have

p−i∑
j=0

(
2r − 2

2j

)(
r − 1− j

r − 1− p+ i

)
=

22(p−i)−1

p− i (r − 1)
(
r + p− i− 2
r − p+ i− 1

)
.

This follows from Lemma A.1 with k = p− i and N = r − 1.

The suggestions of the referees and the editor are gratefully acknowledged.
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