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DISTRIBUTION OF
GENERALIZED FERMAT PRIME NUMBERS

HARVEY DUBNER AND YVES GALLOT

Abstract. Numbers of the form Fb,n = b2
n

+1 are called Generalized Fermat
Numbers (GFN). A computational method for testing the probable primality of
a GFN is described which is as fast as testing a number of the form 2m−1. The
theoretical distributions of GFN primes, for fixed n, are derived and compared
to the actual distributions. The predictions are surprisingly accurate and can
be used to support Bateman and Horn’s quantitative form of “Hypothesis H”
of Schinzel and Sierpiński. A list of the current largest known GFN primes is
included.

1. Introduction

In the past several years the continuous improvement in the cost-performance
of computers coupled with the development of new theory and improved software
packages have resulted in impressive and important advances in computational
number theory. For example, on January 1, 1985, only three primes with more
than 10,000 digits were known, the largest having 38,751 digits. In August 1999,
there were over 5000 known primes with more than 10,000 digits, the largest with
more than 2,000,000 digits.

Most of these large primes are of the form k ·2n±1, and most were found by more
than a hundred people using the “Proth” program for the PC that was developed
and distributed by the second author in the past several years. The Proth program
is effective working with numbers of the above form principally because the base 2
form allows multiple precision divides to be replaced by shifts. However there are
other important numbers that do not have a base 2 form, and consequently prime
searching took about three times longer than for base 2 numbers.

Generalized Fermat Numbers (GFN) are of the form Fb,n = b2
n

+ 1 and are
particularly interesting since they have many characteristics of the heavily studied
standard Fermat numbers Fn = F2,n. The original purpose of this paper was to
report on a method that was incorporated into the Proth program so that the time
to test a GFN for probable primality is faster than for a number of the form k ·2n±1
(k > 1), a major technological accomplishment.

As we started using the new program, it was reasonable to try to estimate the
number of primes that we could expect to find. The predictions were surprisingly
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accurate and further study indicated that our data could be used to support a con-
jecture of Bateman and Horn [1] which in turn supported the famous “Hypothesis
H” of Schinzel and Sierpiński [11].

In this article we describe the new computational method, derive the theoretical
distribution of GFN primes, compare the actual and theoretical distributions, and
list the current largest known GFN primes.

2. GFN software

2.1. History. The “Proth” program was created in 1997 to extend the search for
large factors of Fermat numbers. The fastest known method is to search systemi-
cally for all possible prime factors which have the form k · 2n + 1, for small k [6].
Primality can be determined quickly using the modern form of Proth’s theorem
[7, Theorem 102]. Real-signal Fast Fourier Transforms were used for squaring or
multiplying plus fast modular operations (utilizing the special form of the number)
were also employed. The algorithm of the FFT was totally written in assembler
and optimized to take into account the size of the cache-memory of the computer.
At that time, the program was used to discover the largest known prime of the
form k · 2n + 1 and in 1999 to find the largest known factor of a Fermat number:
3 · 2382449 + 1 divides F382447.

In 1998, the program was expanded to also cover primes of the form k · 2n − 1.
It was used with success to discover the largest known twin primes and the largest
known Sophie Germain prime. But the major “theoretical” improvement was the
ability to test some numbers of the form k · bn + 1, for small b, in about the same
time as a number of the form k · 2n + 1 of the same size.

In 1999, the transform of the program was totally rewritten and the size of the
testable numbers was extended to 5,000,000 digits by using a right-angle convolu-
tion and a balanced representation [4]. Finally an efficient test of the GFN was
implemented, and this algorithm speeds up the search for GFN primes by a factor
of two in comparison with other numbers of the form k · bn + 1.

2.2. FFT multiplication. To multiply numbers N1 and N2 using FFT, first a
base W is selected. The numbers are converted to polynomials P1 and P2, such
that P1(W ) = N1 and P2(W ) = N2 (the cost of this step is negligible if the base
representation ofN1 andN2 isW ). The polynomial product P = P1·P2 is computed
using FFT [2] [3]. Finally N = N1 · N2 is obtained by computing P (W ) (if base
representation of N is W , we just need to adjust the digits of N with add-and-
carry). If the transform is done with floating point arithmetic, we should be sure
that

W 2 · n · log2 n < 2i(2.1)

where n is the length of the transform and i is the number of bits in the floating
mantissa.

This algorithm is used because it reduces the number of word operations to
O(n logn).1 But it has another important property: the computation time of the
polynomial product is independent of W . If W is a power of 2, the conversions are

1The complexity of FFT multiplication is O(n logn log logn) where n is the number of ‘bits’
of N . Only integer schemes, such as Schönhage and Strassen or Nussbaumer methods, reach this
complexity.
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computed quickly, but because the computation time is dominated by the polyno-
mial product, the speed of floating point FFT multiplication is virtually independent
of the base W as long as the base fits in the chosen word size (which is limited by
relation (2.1)).

2.3. Test of numbers of the form k ·bn±1. If a grammar-school or a Karatsuba
multiplication is used, an efficient method for computing x ·y mod N for a fixed N
is to use a steady-state divide [3, p. 9]. The modular multiplication will take about
3 multiplication times. But with FFT multiplication and N = k · bn ± 1, we can
select W = bm for m such that W is the largest possible integer in (2.1). Division
is replaced by shifts, adds and one multiplication and one division by k for the base
W .

If we define Wmax =
√

2i/(n log2 n), the best case occurs for bm ≈Wmax and the
worst case for bm ≈

√
Wmax. Then if b < Wmax and k > 1, the probable primality

test of a number of the form k · bn± 1 is between as fast and two times slower than
the test of a number of the form k · 2n ± 1 of the same size.

2.4. Test of GFN. When arithmetic is to be performed modulo Fermat or
Mersenne numbers, Discrete Weighted Transforms effectively reduce FFT run
length by a factor 2 [4]. Negacyclic convolutions and DWT are independent of
the base representation. Then if W = b2

n/N (N is FFT length), x ·y mod Fb,n can
be computed two times faster than x · y. We have m = 2n/N and if N is a power
of 2, m is also a power of 2. But practically, except for very small b, m = 1 or 2,
this limitation doesn’t slow down the global computation. Then if b < Wmax, the
probable primality test of a GFN is between two times faster and as fast as the test
of a number of the form k · 2n ± 1 (k > 1) of the same size.

2.5. The implementation of the tests. The times for performing probable
prime tests on numbers having about 5000 and 80000 digits are shown in Table 1.
Because the FFT used by the program is a radix-2 FFT, the computation time has
a discontinuity when the number of digits (in base W ) is near a power of 2, where
the time suddenly doubles. To make meaningful comparisons we include tests of
numbers on both sides of the discontinuity.

The implementation of the test of the numbers of the form k · bn + 1 is different
from the test of the GFN. For k · bn + 1, the modular reduction step uses some
signed 32-bit integers and b2m as base representation: it speeds up the reduction
by a factor 2 but b should be smaller than 46340 <

√
231. In Table 1, the values 215

and 216 were chosen to show a discontinuity due to internal base representation:
2152 = 46225 < 46340 then base 46225 is used, but 2162 = 46656 > 46340 then
base 216 should be used. With the GFN, the size of b is just limited by relation
(2.1) and the modular reduction uses directly base b. With this implementation,
the test of the numbers of the form k · bn + 1 is between 12% and 25% slower than
the expected theoretical result and the test of the GFN is between 20% and 40%
slower. With the Proth program, the probable primality test of a GFN can be up
to 70% faster than the test of a number of the form k · 2n ± 1 (k > 1) of the same
size.



828 HARVEY DUBNER AND YVES GALLOT

Table 1. Probable prime test times on a Pentium II 400

N digits W FFT size time
3 · 216300 + 1 4908 65536 1024 13 sec
3 · 216400 + 1 4938 65536 2048 29 sec

6 · 2152000 + 1 4666 46225 1024 16 sec
6 · 2152100 + 1 4899 46225 2048 36 sec
6 · 2162000 + 1 4670 216 2048 36 sec
6 · 2162100 + 1 4904 216 4096 76 sec
655381024 + 1 4933 65538 512 9 sec

2582048 + 1 4939 258 1024 19 sec
3 · 2262000 + 1 78871 65536 16384 83 mn
3 · 2263000 + 1 79172 65536 32768 185 mn

6 · 21532000 + 1 74639 46225 16384 93 mn
6 · 21533000 + 1 76972 46225 32768 205 mn
6 · 21632000 + 1 74704 216 32768 212 mn
6 · 21633000 + 1 77038 216 65536 475 mn
6553816384 + 1 78914 65538 8192 50 mn

25832768 + 1 79024 258 16384 108 mn

2.6. Remarks about the implementation. To obtain some efficient tests, it is
important to optimize the conversion routines in assembler: today, high-level lan-
guages don’t have efficient operators to compute modular operations with floating
point numbers and to convert them to integers.

Initially, the Proth program used a real-signal FFT with zero-padding. When
the GFN test was implemented, a right-angle convolution [4] and a complex FFT
was employed. Both implementations were tested on numbers of the form k · bn± 1
and the right-angle convolution is 20% faster. Theoretically, both methods are
equivalent but today the second one is more adapted to the memory constraints of
modern computers.

The probable primality of the GFN is tested by evaluating 3Fb,n−1 (mod Fb,n)
and comparing the result to 1, a Fermat test. The primality is proved and verified
by applying the Pocklington theorem [8, p. 52] for two different a.

3. Estimated distribution of GFN primes

The form of a Generalized Fermat Number is

Fb,n = b2
n

+ 1 .

It is generally expected that there are an infinite number of primes of this form
for each n. In fact, this is a consequence of the famous “Hypothesis H” in 1958 of
Sierpiński and Schinzel. In 1962, Bateman and Horn indicated a quantitative form
of “Hypothesis H” which could be used to predict the number of primes for given
polynomials [1]. Since then there have been various studies that have heuristically
confirmed the predictions for selected functions. See [8] for interesting details and
history.

Because of the special characteristics of Fb,n we can derive one set of equations
for the expected number of primes for all n. Our approach will be to derive the
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prime probability for each GFN, then add the appropriate GFN probabilities to
determine the prime distribution.

If Fb,n was a random number, the probability of it being prime would be ap-
proximately

Q(b,N) =
1

logFb,n
∼ 1

2n log b
.

But a GFN is not a random number. The probability of being prime is higher than
this because b must be even and it is well known that the prime factors of Fb,n
must be of the form

P (k, n) = k · 2n+1 + 1 for k = 1, 2, 3, . . . .

In a recent paper concerning factors of generalized Fermat numbers, the first author
and Wilfrid Keller determined that the probability of P (k, n) dividing a particular
Fb,n is 2n/P (k, n) [6].

Considering the possible divisors up to a limit k = K, the probability of Fb,n
being prime is decreased and must be multiplied by

t(K,n) =
K∏
k=1

(
1− 2n

k · 2n+1 + 1

)
for k such that k · 2n+1 + 1 is prime.(3.1)

After removing the above factors there are no factors of Fb,n, b even, up to P (K,n).
Then by Mertens’ theorem [7, p. 351], the probability of being prime is increased
and must be multiplied by 1/u(K,n) where

u(K,n) = 2
P (K,n)∏
p prime

(
1− 1

p

)
∼ 2
eγ log(K · 2n+1 + 1)

.(3.2)

The extra factor of 2 is needed to account for the composite Fb,n for b odd.
The new estimated probability for Fb,n being prime becomes

Cn ·Q(b, n) ∼ Cn ·
1

2n log b
(3.3)

where

Cn = lim
K→∞

t(K,n)
u(K,n)

.(3.4)

It is shown in [1] that this limit exists.
Cn is easy to compute from equations (3.1) and (3.2) for moderate or even large

values of K. The value remains virtually unchanged when K changes from 104 to
106 (see Table 2).

For each n the expected number of primes from b = 2 to B is the sum of the
probabilities shown in (3.3),

E(B, n) =
Cn
2n

B∑
b=2

1
log b

∼ Cn
2n

∫ B

2

dt

log t
.(3.5)
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Table 2. Cn as a function of K

n 2n K = 104 K = 106

1 2 1.3719 1.3727
2 4 2.6762 2.6788
3 8 2.0907 2.0927
4 16 3.6699 3.6712
5 32 3.6137 3.6129
6 64 3.9424 3.9424
7 128 3.1064 3.1085
8 256 7.4391 7.4347
9 512 7.4892 7.4888

10 1024 8.0157 8.0187
11 2048 7.2142 7.2256
12 4096 8.4193 8.4259
13 8192 8.4552 8.4676
14 16384 8.0030 8.0102
15 32768 5.7958 5.8026
16 65536 11.192 11.196

4. Results

The derivation for the estimated number of GFN primes was developed at the
same time as the actual results were being compiled. We were hoping that we might
obtain reasonably good prime estimates at least for combinations of large values
of n and B. We were pleasantly surprised to find that we were getting excellent
results for all values of n and B.

The estimated number of primes is computed using equation (3.5). The esti-
mated and actual values are shown in Table 3.

Bateman and Horn’s quantitative form of “Hypothesis H” was previously nu-
merically verified for some polynomials of degree 2, 3 or 4 [8, Ch. 6]. The actual
distribution of GFN primes is in significant agreement with the values predicted by
the conjecture for some polynomials of degree as large as 8192.

Table 3. Comparison between the estimates of the number of
generalized Fermat primes and the actual number of primes found

B = 103 104 105 106

2n Est. Act. Err. Est. Act. Err. Est. Act. Err. Est. Act. Err.
2 121 111 −0.9 855 840 −0.5 6609 6655 +0.6 53970 54109 +0.6
4 118 110 −0.8 834 789 −1.6 6449 6395 −0.7 52659 52610 −0.2
8 46 40 −0.9 326 335 +0.5 2519 2498 −0.4 20568 20886 +2.2

16 41 48 +1.2 286 291 +0.3 2209 2194 −0.3 18041 17907 −1.0
32 20 22 +0.5 141 146 +0.5 1087 1062 −0.8 8877 8963 +0.9
64 11 8 −0.9 77 92 +1.7 593 606 +0.5 4843 4835 −0.1

128 4 7 +1.3 30 25 −1.0 234 242 +0.5 1909 1933 +0.5
256 5 4 −0.5 36 30 −1.0 280 272 −0.5 2283 2322 +0.8
512 3 1 −1.0 18 28 +2.3 141 160 +1.6 1150 1247 +2.9

1024 1 1 −0.3 10 14 +1.4 75 81 +0.6 616 578 −1.5
2048 1 1 +0.5 4 4 −0.2 34 40 +1.0 277 276 −0.1
4096 0 0 −0.6 3 2 −0.4 20 16 −0.9 162 170 +0.6
8192 0 0 −0.4 1 0 −1.1 10 3 −2.2 81 − −

16384 0 0 −0.3 1 0 −0.8 5 1 −1.7 38 − −
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Table 4. The five largest primes found during the GFN search

b 2n digits
48594 65536 307140

167176 32768 171153
509622 16384 93508
506664 16384 93467
498904 16384 93357

Note that we are dealing with 56 separate prime distributions simultaneously.
Fortunately there is a well-known statistical tool, the Chi Square Test, which gives a
measure of how good a set of predictions matches the actual data as in our problem
[5]. We eliminated some of the cases with little or no data, performed a χ2 test on
the remaining 51 cases and found that there was less than a 5% probability that
the match between our estimates and the actual values happened by chance, an
excellent result.

Next, we wanted to present the error between the estimated and actual prime
counts in a meaningful way. Although we do not know the true distribution of
GFN primes we can make the reasonable assumption that this distribution can be
approximated by a Poisson distribution since this is true for almost all distributions
of rare phenomena. We can then present the error between the estimated and actual
number of primes as the number of standard deviations, which effectively normalizes
the error. If Np is the actual number of primes found (for fixed B and n), the error
is defined by

error =
Np − E(B, n)√

E(B, n)
.

These normalized errors are shown in Table 3. We would expect that about 68%
of the errors would be within one standard deviation. This is actually true for
75% of the errors. The largest error is 2.9 standard deviations. Both of these are
statistically reasonable results.

Only 3 primes were found for n = 13 and B ≤ 105, where 10 were expected. The
search was extended for this value of n. For B ≤ 2.5 · 105, 19 primes were found
and 23 were expected.

During the extension of the search, Steve Scott discovered the largest known
GFN prime 48594216

+ 1. Table 4 is a list of the 5 largest primes that were found.

5. Future studies

Historically, the largest known prime has almost always been a Mersenne prime.
Since the DWT (discrete weighted transform) has been used to perform fast arith-
metic modulo numbers of the form 2n±1, the Mersenne numbers have been consid-
ered the best and “only” candidates for the largest known prime. But now, testing
GFN’s takes about the same time as testing Mersenne numbers, and because there
are many more GFN candidates in a fixed range, a properly organized search could
soon change the status of the largest known primes.

It is an open question whether the number of Fermat numbers that are prime is
finite. As more factors of Fermat numbers are found it becomes more likely that
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this is true. It appears worthwhile to try to extend the GFN theory and expand
Table 2 in an attempt to make the probability argument more precise.

In the Bateman and Horn paper [1], the authors heuristically test an important
conjecture by counting the number of primes of the form p2 + p + 1 with p prime
less than 113,000. In 1961 it took 400 minutes on the ILLIAC computer to find 776
primes. We repeated the computation in less than one second on a PII 400 PC! In
1960 Shanks did two related studies; the first concerned the number of primes of
the form n2 +a [9], and the second primes of the form n4 +1 [10]. Modern resources
should be used to extend the results of these excellent papers and of the GFN. We
now have world-wide computing power which can generate very large amounts of
data. There are many reliable statistical programs available for analyzing the data.
There is every reason to expect that properly designed projects could result in more
confidence in existing conjectures as well as the possibility of developing reliable
estimates of second order effects. This might even contribute to a rigorous proof of
such conjectures.
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