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SMOOTH IDEALS IN HYPERELLIPTIC FUNCTION FIELDS

ANDREAS ENGE AND ANDREAS STEIN

Abstract. Recently, several algorithms have been suggested for solving the
discrete logarithm problem in the Jacobians of high-genus hyperelliptic curves
over finite fields. Some of them have a provable subexponential running time
and are using the fact that smooth reduced ideals are sufficiently dense. We
explicitly show how these density results can be derived. All proofs are purely
combinatorial and do not exploit analytic properties of generating functions.

1. Motivation

The security of the key distribution protocol presented in [DH76] is based on
the discrete logarithm problem in the multiplicative group of a finite prime field.
This problem can be solved by index calculus methods which create a data base
from randomly chosen field elements. Whenever such a field element is smooth,
i.e., given as a product of “small” elements, it is added to the data base, and once
enough data is collected, the discrete logarithm problem is solved by linear algebra.
Elements of the finite fields most popular for implementations, namely, prime fields
and fields of characteristic 2, can be represented by integers, respectively univari-
ate polynomials, over F2. Consequently, the distribution of smooth numbers and
polynomials has received considerable attention in the literature, and it could be
shown that the discrete logarithm problem in the corresponding finite fields can
be solved in subexponential time. Similar attacks exist for the factorization prob-
lem, which underlies the commercially most employed public key cryptosystem,
described in [RSA78]. We see that smoothness of integers and polynomials is an
essential concept in cryptography.

To avoid subexponential algorithms it has been suggested to base cryptosystems
on the discrete logarithm problem in abelian varieties over finite fields. Specifically,
cryptosystems based on the arithmetic in the Jacobians of elliptic and hyperelliptic
curves are investigated in the literature (see [Kob87, Mil86] and [Kob89, SSW96]).
However, in [ADH94] the authors present an attack which is similar in structure
to the algorithm for finite fields and conjecture a subexponential running time for
Jacobians of high genus hyperelliptic curves. Hereby, they assume that the ideal
class group of the hyperelliptic curve is generated by a subexponential number of
prime ideals of small degree. Furthermore, the success of the algorithm depends
on the distribution of smooth principal divisors and appears difficult to analyze
rigorously. The attack in [ADH94] is formulated for curves over finite prime fields;
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a generalization to arbitrary finite fields is provided by [Bau98]. In [MST99], a
provable subexponential method for high-genus hyperelliptic curves defined over
fields of odd characteristic is described. In particular, the authors show that the
ideal class group of such hyperelliptic curves is generated by the prime ideals of
degree at most d2 logq(4g− 2)e where q denotes the size of the finite field and g the
genus of the hyperelliptic curve. These results are generalized to hyperelliptic curves
over arbitrary finite fields in [Eng99], and a different algorithm with better running
time under reasonable assumptions is described in [EG00]. The algorithms have a
provable subexponential running time for hyperelliptic curves of large genus and use
the fact that smooth reduced ideals are sufficiently dense. In this contribution, we
explicitly show how these density results can be derived. Specifically, we provide
effective lower bounds on the number of smooth semireduced divisors as needed
in the subexponential methods in [MST99, Eng99, EG00]. All proofs are purely
combinatorial and do not exploit analytic properties of generating functions.

We now proceed as follows. In Section 2, we introduce the basic terminology of
hyperelliptic function fields and discuss the splitting behavior of prime ideals. In
Section 3 we derive bounds on the number of splitting prime polynomials of fixed
degree which are essential for the rest of the paper. Section 4 is devoted to the
effective lower bounds on the number of smooth semireduced divisors. The influence
of these bounds on the subexponential algorithms in [MST99, Eng99, EG00] is
discussed in Section 5.

2. Hyperelliptic function fields

Let K = Fq be the finite field with q elements. Suppose that

H = Y 2 + hY − f ∈ K[X,Y ]

with h ∈ K[X ] of degree at most g and f ∈ K[X ] monic of degree 2g + 1 or 2g + 2
is irreducible. If the affine curve corresponding to H has no singularities, then its
smooth projective model is called a hyperelliptic curve of genus g.

The ring of polynomial functions on H , the coordinate ring of H , is given by
K[H ] := K[X,Y ]/(H); its function field K(H), which is defined as the field of
fractions of K[H ], is a quadratic extension of K(X). K[H ] is the integral closure
of K[X ] in K(H).

The prime ideals of K[X ] are exactly those prime ideals p which are generated
by a monic irreducible polynomial p. If P is a prime ideal of K[H ] above p, then
its degree is defined by

deg P = [K[H ]/P : K[X ]/p] =
[
K[H ]/P : Fqdeg p

]
.

Three cases can be distinguished (cf. [Art24]):
1. Y 2 + hY − f ≡ 0 (mod p) has two solutions b and −b− h in K[X ]/p. Then

there are two prime ideals in K[H ] which lie over p, given by P = (p, b− Y )
and P = (p,−b− h− Y ), so that pK[H ] = PP. Their degrees are deg p, and
p, p, P and P are called splitting.

2. There is one (double) solution b to the equation in K[X ]/p, corresponding to
a unique prime ideal P = (p, b− Y ) over p, so that pK[H ] = P2. The degree
of P is deg p, and p, p and P are called ramified.

3. There is no solution to the congruence in K[X ]/p, and P = pK[H ] is the only
prime ideal above p in K[H ]. The degree of P is 2 deg p, and p, p and P are
called inert.
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Let A be an ideal of K[H ]. Then A admits a unique decomposition into finitely
many prime ideals

A =
∏
i

P
ei
i .

If A is primitive or semireduced, i.e., has no principal factor, then we clearly have
the following properties:

1. None of the Pi’s is inert, since inert prime ideals are principal.
2. If Pi is splitting, then Pi does not occur in the factorization since PiPi = (pi)

is principal.
3. If Pi is ramified, then ei = 1, since P2

i = (pi) is principal.
The uniqueness of the prime ideal decomposition yields that these conditions are
not only necessary, but also sufficient.

We define deg A by
∑

i ei deg Pi. A semireduced ideal is called reduced if its
degree is at most g. Any semireduced ideal can be uniquely represented in the
form A = (a, b− Y ) with a, b ∈ K[X ], a monic, deg b < deg a and a | b2 + hb − f .
The decomposition of A into prime ideals can be determined as follows: Write
a =

∏
i p
ei
i with monic irreducible polynomials pi. Then none of the pi’s is inert

since b is a solution of H modulo pi. Let b ≡ bi (mod pi) with deg bi < deg pi,
and Pi = (pi, bi − Y ). Then A =

∏
i P

ei
i . Furthermore, deg A =

∑
i ei deg Pi =∑

i ei deg pi = deg a.
The ideal theory presented above describes the affine part of the hyperelliptic

curve: Each prime ideal of K[H ] corresponds to a closed affine point on H and
gives rise to a valuation on K(H). Depending on the splitting behavior of the
“infinite” valuation on K[X ], given by the negative degree, we distinguish two
cases: The infinite valuation may be splitting, i.e., the hyperelliptic curve has two
distinct points at infinity, or it may be ramified, i.e., the curve has a double point
at infinity. In the first case, we call the curve real quadratic, in the second case,
imaginary quadratic. Here and in the sequel, we omit the case that the infinite
place is inert, since in this case a constant field extension of K(H) of degree 2 leads
to a real quadratic curve.

As nicely described in [PR99] (see also [Ste97, Zuc98]), there exists a one-to-one
correspondence between elements of the Jacobian variety and reduced ideals in the
imaginary case. Thus, the result on Jacobian elements required in [Eng99] and
[EG00] can as well be formulated in terms of reduced ideals. The smoothness result
needed in [MST99] already concerns reduced ideals.

Thus, we treat in this paper the number of semireduced ideals of degree n all
of whose prime factors have degree at most m. Such ideals are called m-smooth.
Of special interest is the case n = g, corresponding to the biggest portion of the
m-smooth reduced ideals.

3. Prime ideal densities

The question how many reduced ideals of degree n are m-smooth is basically
combinatorial: Given a certain set of components (prime ideals) of size at most
m, how many objects (ideals) of size n can be composed from them with respect
to certain additional constraints (properties 1) to 3) of Section 2)? Of course, a
crucial point is to determine the number of components of a given size, a problem
we address in this section.
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In our context, we are interested in the number of splitting or ramified prime
ideals of given degree, which is intimately related to the number of points on the
curve with coordinates in extension fields of Fq.

Let π+(k), π0(k) and π−(k) denote the number of monic splitting, ramified and
inert irreducible polynomials of degree k, respectively, π(k) = π+(k)+π0(k)+π−(k)
and Π+(k) =

∑k
i=1 π+(i). Each splitting or ramified prime ideal P = (p, b − Y )

of degree k gives rise to k points on the curve whose coordinates lie in Fqk , but
in no subfield of Fqk . Namely, if x1, . . . , xk are the distinct roots of p in Fqk , then
these points are given by (x1, b(x1)), . . . , (xk, b(xk)). If P = (p) is inert of degree
k, then k is even and p of degree k/2. Let x ∈ Fqk/2 be a root of p. As p is inert,
the equation Y 2 + h(x)Y − f(x) = 0 does not have a solution in Fqk/2 , but two
distinct solutions y, y ∈ Fqk , and (x, y) and (x, y) are two points on H . Thus,
P corresponds to k points on the curve which are defined over Fqk , but over no
subfield. By convention, let π−(i) = 0 for half integral, but not integral i. In
addition to these finite points, we have to take into account η points on the smooth
projective model resulting from the resolution of the singularity of H at infinity.
We have η = 1 for imaginary and η = 2 for real curves, and these additional points
are rational over Fq. Thus, the total number of points on the smooth projective
model of H with coordinates in Fqk is given by

Nk =
∑
i | k

(
2iπ+(i) + iπ0(i) + iπ−

(
i

2

))
+ η.(1)

We remark here that we can also derive this formula in the notation of [Sti93].
Namely, (1) corresponds to [Sti93, (2.23), p. 178], i.e., Nk =

∑k
i=1 iB(k), where Bk

denotes the number of prime divisors of degree k. Since there exists a one-to-one
correspondence between finite prime divisors and prime ideals, we know that Bk
is equal to the number of prime ideals of degree k if k > 1. The number of prime
ideals of degree 1 is given by B(1)− η, where η is 1 or 2, respectively, depending on
whether K(H) is imaginary or real. By the above-mentioned results in [Art24] on
how irreducible polynomials split in K(H), we can proceed as in [SW99, p. 126] to
obtain that

B(k) = 2π+(i) + π0(i) + π− (i/2)

if k > 1, and B(1) = 2π+(1) + π0(1) + η.
On the other hand, Weil’s theorem gives a good approximation of the number

Nk.

Theorem 1 (Weil). The number Nk lies in the interval[
qk − 2gqk/2 + 1, qk + 2gqk/2 + 1

]
.

We obtain the following result:

Theorem 2. The number of monic splitting irreducible polynomials of degree at
most k is given by Π+(k) with

Π+(k) ≥ 1
2k

(
qk − (2g + 2)qk/2 − (2g + 3)

)
.
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If 0 < ε ≤ 1
4 and k ≥ 1

ε logq(2g + 6 +
√

2), then furthermore

1
2k

(
qk − qk( 1

2 +ε)
)
≤ π+(k) ≤ 1

2k

(
qk + qk( 1

2 +ε)
)
.

Proof. Weil’s Theorem and (1) imply

qk − 2gqk/2 −
∞∑
i=1

iπ0(i)−
∑
i | k

iπ−

(
i

2

)
− 1 ≤

∑
i | k

2iπ+(i) ≤ qk + 2gqk/2.

As
∑∞

i=1 iπ0(i) is the summed up degree of all ramified prime polynomials and a
prime polynomial is ramified if and only if it divides the discriminant h2 + 4f of
H , which has degree at most 2(g + 1), we have

∑∞
i=1 iπ0(i) ≤ 2(g + 1). If k is odd,

then
∑
i | k iπ−

(
i
2

)
is zero; otherwise it is∑

i | k2

2iπ−(i) ≤ 2
∑
i | k2

iπ(i) = 2qk/2.

This shows that

qk − (2g + 2)qk/2 − (2g + 3) ≤
∑
i | k

2iπ+(i) ≤ qk + 2gqk/2.(2)

Taking into account that

Π+(k) =
k∑
i=1

π+(i) ≥ 1
2k

∑
i | k

2iπ+(i),

the first assertion is proved.
With g(k) =

∑
i | k 2iπ+(i), Möbius inversion implies 2kπ+(k) =

∑
i | k µ(k/i)g(i),

where the Möbius function µ takes values in {0,±1} and µ(1) = 1. Hence for
k ≥ 1

ε logq(2g + 6 +
√

2) we have

2kπ+(k) ≥ g(k)−
bk/2c∑
i=1

g(i)

≥ qk − (2g + 2)qk/2 − (2g + 3)−
bk/2c∑
i=1

(qi + 2gqi/2) by (2)

≥ qk − (2g + 2)qk/2 − q

q − 1
(qk/2 − 1)− 2

−2g
√
q

√
q − 1

(qk/4 − 1)− 2g − 1

≥ qk − (2g + 4)qk/2 − (2g + 1)(2 +
√

2)qk/4 since q ≥ 2

≥ qk − (2g + 4)qk/2 − (2 +
√

2)qk/2

since 2g + 1 ≤ 2g + 6 +
√

2 ≤ qkε ≤ qk/4

≥ qk − qk( 1
2 +ε).

The upper bound for π+(k) is derived in a similar way.

We remark that the above theorem can be derived from [ST99, Theorem 1.1]
in a similar fashion. We only have to introduce a character χ(p) on the monic
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irreducible polynomials as in [Art24] which is 1, 0, or −1, respectively, depending
on whether p is splitting, ramified or inert. Then we may use the fact that∑

deg(p)=k

(χ(p) + 1) = 2π+(k)− π(k) + π0(k).

4. The proportion of smooth semireduced ideals

Our aim in this section is to derive asymptotic results on the number of smooth
semireduced ideals in hyperelliptic function fields. Hereby, we restrict our atten-
tion to ideals with only splitting prime factors; as the number of ramified prime
ideals is bounded above by 2g+ 2, it is asymptotically negligible. Theorem 2 shows
that the number of splitting prime ideals of degree k is in 1

k (qk + O(qαk)) with
α < 1. For situations without additional constraints, in which the components can
be joined arbitrarily to form elements, Knopfmacher introduced the very general
framework of (additive) arithmetical semigroups in ([Kno75]) and Manstavičius ob-
tained smoothness results within this context in ([Man92b], [Man92a]). The special
cases of univariate polynomials ([Car87], [AD93], [BP98], [PGF98], [Sou98]) and di-
visors in algebraic function fields ([Heß99], Chapter 4) have received considerable
attention in the literature. In our case, an additional complication is introduced by
the fact that the splitting prime ideals come in pairs and at most one of each ideal
can be used to compose semireduced ideals (see condition 2) in Section 2). The
distribution of such reduced objects has been investigated in [Sey87] in the context
of imaginary quadratic number fields. To the best of our knowledge, the present
paper is the first one to deal with reducedness in the function field case.

Let N(n,m) be the number of m-smooth semireduced ideals of degree n in K[H ].
Using similar techniques we obtain the following analogue for hyperelliptic func-

tion fields of Theorem 2.2 in [BP98].

Theorem 3. Let max
{

8 logq
(
2g + 6 +

√
2
)
, 2 logq

((
6 + 10

3

√
2
)
n
)}

+ 2 ≤ m and
u = n

m . Then

N(n,m) ≥ qn

2ndue
.

Proof. Assume first that m ≤ n. Since Theorem 2 shows that the number of
splitting prime ideals grows with their degree, we restrict ourselves to counting
a set of special semireduced ideals all of whose prime factors have a rather large
degree, hoping to cover the biggest part of all semireduced ideals. To ensure a large
degree for all its prime factors, an ideal should have as few of them as possible,
and for an m-smooth ideal of degree n this means due prime factors. We distribute
the degrees of these prime factors as evenly as possible. Thus, let m0 =

⌊
n
due

⌋
,

m1 = m0 + 1, r1 = n− duem0 and r0 = due − r1, and let Ñ(n,m) be the number
of semireduced ideals with r0 distinct splitting prime factors of degree m0 and r1

distinct splitting prime factors of degree m1. As m0r0 + m1r1 = n, these ideals
are of degree n, and as m0 ≤ n

due ≤ m, they are m-smooth unless m0 = m and
m1 = m + 1. In this case, however, due divides n and r1 = 0, so that they are
m-smooth nevertheless. Thus, N(n,m) ≥ Ñ(n,m). To estimate the latter number,
notice that there are

(
π+(mi)
ri

)
possibilities for choosing ri monic splitting irreducible

polynomials of degree mi and that each irreducible polynomial leaves the choice of
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one out of two prime ideals. So the following relations hold:

Ñ(n,m) = 2r0
(
π+(m0)
r0

)
2r1
(
π+(m1)
r1

)
≥ 2r0+r1

(π+(m0)− (r0 − 1))r0

r0!
(π+(m1)− (r1 − 1))r1

r1!

≥
√

2
r0+r1−2

rr00 r
r1
1

2r0+r1

(
qm0 − q 3

4m0 − 2m0(r0 − 1)
)r0

(2m0)r0

·

(
qm1 − q 3

4m1 − 2m1(r1 − 1)
)r1

(2m1)r1

by r! ≤ rr
√

2
r−1 for r ≥ 0 and by Theorem 2 with ε =

1
4

≥
√

2
r0+r1−2

ndue

(
qm0 − q 3

4m0 − 2n
)r0 (

qm1 − q 3
4m1 − 2n

)r1
Theorem 2 is applicable because m1 > m0 >

n
n
m+1 − 1 ≥ 1

2m− 1. Notice now that

m0 ≥ 4 logq(2g+6+
√

2) ≥ 4 logq(8+
√

2) implies q
1
4m0 ≥ 8+

√
2 and q

3
4m0 ≤ qm0

8+
√

2
.

Similarly, q
3
4m1 ≤ qm1

8+
√

2
. Furthermore, letting c = 1− 1

8+
√

2
− 1√

2
, we deduce that

2n ≤ cqm0 ≤ cqm1 as soon as m satisfies the second lower bound. Hence,

Ñ(n,m) ≥
√

2
r0+r1

2ndue
qm0r0

√
2
r0

qm1r1

√
2
r1 =

qn

2ndue
.

Finally, if m > n, then

N(n,m) = N(n, n) ≥ qn

2n
=

qn

2ndue
.

Theorem 3 is not yet sufficient to prove the subexponentiality result of Section 5.
In fact, we need a bound for N(n,m) of about qn

uu , so that we have to improve the
bound of the theorem above by a factor of about mu.

When m is of the order of logn, the desired result can be derived easily from
Theorem 3.

Corollary 4. Suppose that, under the conditions of Theorem 3, we have further-
more m ≤ k logn for some constant k > 0. Then

N(n,m) ≥ qn

uu((1+ 1
u )(1+ log(k logn)

log u )+ log 2
u log u )

∈ qn

uu(1+o(1))
for u→∞.

Proof. In this special case, the denominator of the formula in Theorem 3 satisfies

2ndue = 2mdueudue ≤ 2(k logn)u+1uu+1 = uu((1+ 1
u )(1+ log(k log n)

log u )+ log 2
u log u ).

The asymptotic result follows from n→∞ as u→∞ and log log n
log u ≤ log logn

logn−log(k logn)

→ 0 (n→∞)

For larger m, we need to follow a different approach, since n and u differ consid-
erably. Still, we have to assume that m is not too large compared to n; precisely,
we require m ≤ n1−ε for some ε ∈ (0; 1). As hyperelliptic function fields are the
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function field analogue of quadratic number fields, it can be expected that results
and techniques concerning smooth ideals in quadratic number fields carry over to
our problem. Indeed, this is the case. The following theorem and its proof are
inspired by Theorem 5.2 in [Sey87]. We can use Theorem 3 above to simplify the
proof.

Theorem 5. If there is a constant ε ∈ (0; 1) such that m, n and u = n
m satisfy

max
{

16 logq(2g + 6 +
√

2) + 4, 4 logq

((
6 +

10
3

√
2
)
n

)
+ 4, logn

}
≤ m ≤ n1−ε,

n ≥ 29 and
4
ε
u log u ≥ 1,

then

N(n,m) ≥ qn

u
u

(
1+

log log u+6+log 4
ε

log u + 3
εu

) ∈ qn

uu(1+o(1))
for u→∞.

Proof. For Theorem 3, we counted all ideals with due prime factors all of which
had the degrees m0 or one more. To show a higher number of smooth ideals, we
must allow more flexibility in the size of the components. Thus, we consider ideals
with buc prime factors whose degrees vary within a certain factor of m. To reach
the total degree n, we pad by prime ideals of smaller degree.

Specifically, let m − 1 ≥ w :=
⌊(

1− 1
logn

)
m
⌋
≥
(

1− 1
logn −

1
m

)
m ≥ m

2 for
m ≥ 5 and n ≥ 29. Let P be a set of prime ideals containing exactly one ideal above
each monic splitting irreducible polynomial p with w+1 ≤ deg p ≤ m. We consider
ideals of the form A = A1A2, where A1 has exactly buc (not necessarily distinct)
prime factors from P and A2 is semireduced and w-smooth of degree n − deg A1.
From the construction of P it follows that A1 is semireduced and m-smooth and
that A1 and A2 have no common prime factors. Furthermore, deg A = n, so that
N(n,m) is bounded below by the number of such ideals A. Let I be the set of
possible ideals A1. Then the above discussion implies

N(n,m) ≥
∑

A1∈I
N(n− deg A1, w).

From w ≥ m
2 and the restrictions imposed on m we see that Theorem 3 applies to

the situation, so that

N(n− deg A1, w) ≥ qn−deg A1

2(n− deg A1)d
n−deg A1

w e .

The logarithm of the denominator is bounded above by(
n− deg A1

w
+ 2
)

logn ≤
( n
w
− (u− 1) + 2

)
logn

≤
(

1
1− 1

logn −
1
m

− 1

)
u logn+ 3 logn

≤ 2 logn
logn− 2

u+ 3 logn since m ≥ logn

≤ 6u+
3
ε

log u since logn ≥ 3 and nε ≤ u.
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Hence,

N(n,m) ≥ qn

uu(
6

log u+ 3
εu )

∑
A1∈I

q− deg A1 .

The last sum can be computed using our results on the density of prime ideals of
Section 3. Let P = {P1, . . . ,Pl}.∑
A1∈I

q− deg A1 =
∑

ai≥0, a1+···+al=buc
q−a1 deg P1−···−al deg Pl

≥

(∑l
i=1 q

− deg Pi

)buc
buc!

since by multiplying out

(
l∑
i=1

q− deg Pi

)buc
each term of the

previous sum is obtained at most buc! times

≥ u−buc

 m∑
j=w+1

π+(j)q−j

buc

≥ u−buc

 m∑
j=w+1

1
2j

(
1− 1

qj(
1
2−

1
8 )

)buc

by Theorem 2 with ε =
1
8

≥ u−buc

1
4

m∑
j=w+1

1
j

buc since q
3
8 (w+1) ≥ 2

3
2 > 2

≥ u−buc
(
m− w

4m

)buc
≥ (4u logn)−buc

≥
(

4
ε
u log u

)−buc
≥
(
u1+

log log u+log 4
ε

log u

)−u
.

This achieves the proof of the theorem.

5. Subexponentiality

As mentioned in the introduction, results on smooth ideals are needed for esti-
mating the running time of algorithms for computing discrete logarithms in hyper-
elliptic function fields as described in [MST99, Eng99, EG00]. To prove a subex-
ponential running time of these algorithms, one has to show that one out of a
subexponential number of reduced ideals factors completely over a factor base of
subexponential size, which is composed of prime ideals whose degrees are bounded
by some constant m. To make this statement more precise, let

L(ρ) = eρ
√

(g log q) log(g log q)
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denote the subexponential function with respect to the input size g log q; notice
that a hyperelliptic curve can be specified by O(g log q) bits by the polynomials h
and f of degree O(g) over Fq. Being interested in reduced ideals, we have n = g,
and since there are O(qm) prime ideals of degree at most m in the factor base, we
let

m = dlogq L(ρ)e =

⌈
ρ

√
g log(g log q)

log q

⌉
with a constant ρ > 0 depending on the application. (In fact, rounding up the value
for m may make the factor base exponential. Conditions preventing this situation,
which has no influence on the results of this section, are discussed in [Eng99].) Our
aim is to use Corollary 4 and Theorem 5 to obtain asymptotic results for g → ∞.
Notice that either the conditions of the corollary or of the theorem are fulfilled for
any ε ∈ (0; 1

2 ) and g large enough. Since u→∞ as g →∞, we have

N(g,m) ≥ qg

uu(1+α(g))

with α(g)→ 0 for g →∞. In our special situation,

u =
g

m
≤ 1
ρ

√
g log q

log(g log q)
≤ 1
ρ

√
g log q

and hence

log u ≤ 1
2

log(g log q)− log ρ,

and the logarithm of the denominator of N(g,m) is given by

(1 + α(g))u log u ≤ 1
2ρ

(1 + α(g))
(

1− 2 log ρ
log(g log q)

)√
(g log q) log(g log q)

∈
(

1
2ρ

+ o(1)
)√

(g log q) log(g log q).

This proves the following result:

Theorem 6. Let m = dlogq L(ρ)e for a constant ρ > 0. Then there is a function
β(g) in o(1) for g →∞ such that

N(g,m) ≥ L
(
− 1

2ρ
− β(g)

)
qg.
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