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ON THE SPATIAL DISTRIBUTION OF SOLUTIONS
OF DECOMPOSABLE FORM EQUATIONS

G. EVEREST, I. GAÁL, K. GYÖRY, AND C. RÖTTGER

Abstract. We study the distribution in space of the integral solutions to an
integral decomposable form equation, by considering the images of these so-
lutions under central projection onto a unit ball. If we think of the solutions
as stars in the night sky, we ask what constellations are visible from the earth
(the unit ball). Answers are given for a large class of examples which are then
illustrated using the software packages KANT and Maple. These pictures high-
light the accuracy of our predictions and arouse interest in cases not covered
by our results. Within the range of applicability of our results lie solutions to
norm form equations and units in abelian group rings. Thus our theory has a
lot to say about where these interesting objects can be found and what they
look like.

0. Introduction

Let F (x) = F (x1, . . . , xn) ∈ Z[x1, . . . , xn] denote a decomposable form. This
is a homogeneous polynomial with coefficients in Z which factorises over C as a
product of linear forms. It is known that there are q ∈ Q∗, finite extension fields
M1, . . . ,Mt of Q and linear forms φi(x) with coefficients in Mi, i = 1, . . . , t, such
that

F (x) = q

t∏
i=1

NMi|Q(φi(x)).(0.1)

In (0.1), NMi|Q : Mi → Q, i = 1, . . . , t, denotes the field norm. Given a nonzero
a ∈ Z, the decomposable form equation

F (x) = a, x ∈ Zn,(0.2)

is a very general equation with many important examples.

Examples of decomposable form equations.

(1) If d > 0 is a nonsquare integer, then Pell’s Equation

x2
1 − dx2

2 = 1

is a decomposable form equation, with t = 1 and M1 = Q(
√
d).
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(2) A generalisation of Pell’s equation, also with t = 1, is the norm form equation.
Here q = 1, φ1(x) =

∑
i aixi and the ai lie in the ring of integers of M1. See [Sc1],

[Sc2] and [Sc3] for background to this equation. Schmidt made some fundamental
breakthroughs in the study of the norm form equation, using powerful techniques
from diophantine approximation. In this case, when a = ±1 and the ai form a
Z-basis for the ring of integers, the solutions correspond to units of the number
field M1. Our results are new, even in this special case.

(3) A less well known example of a decomposable form equation arises with the
study of units in abelian group rings. Let Γ denote a finite abelian group with ZΓ
denoting the integral group ring. This is the set of all expressions∑

γ∈Γ

xγγ, xγ ∈ Z.

This set forms a ring with component-wise addition, and with multiplication re-
specting both the operation in Γ and the distributive law. There is considerable
interest in the group of units of this ring; see [K] and [Se] for details. In [EG], we
showed that the group of units can be identified with the integral solutions to two
decomposable form equations. Our methods give refined information about where
the units in group rings lie and what they look like.

This paper is about the internal structure of the set of solutions of the decom-
posable form equation under the following assumptions (A):

(A1) F contains n linearly independent forms among its factors;
(A2) equation (0.2) has infinitely many solutions x ∈ Zn.
Let |x| denote the “max”-norm defined by |x| = max1≤i≤n{|xi|}. Given any

positive real number T , let F (a, T ) denote the set

F (a, T ) = {x ∈ Zn : x satisfies (0.2) and |x| < T }.(0.3)

Since it is clear that F (a, T ) is a finite set, the two questions that follow are natural:
Q1 What is the asymptotic behaviour of |F (a, T )|, the cardinality of the set, for

large T ?
Q2 For every x ∈ F (a, T ), let c(x) = x/|x| denote the central projection of x

onto the unit ball centred at 0. We ask what is the asymptotic distribution of
the images of the elements of F (a, T ) under this projection? In other words, can
this set of points be described when T is large? One imagines the solutions of the
equation as corresponding to the stars in the night sky. Standing upon the earth
(the unit ball) and looking up, what constellations would be visible?

Write P (T ) for the cardinality of F (a, T ). In [EG], we showed there is a two-
term asymptotic formula for P (T ) and we specified a large class of examples where
a three-term asymptotic formula holds. This class of examples will now be defined.
We say F is of CM type if the Mi in (0.1) are totally real fields or totally imaginary
quadratic extensions of totally real fields and none of them has a (not necessarily
proper) subfield of unit rank 1. If n =

∑t
i=1[Mi : Q], then the condition on the

subfields of M1, . . . ,Mt can be omitted. This condition is very slightly broader
than the one in Theorem 2 of [EG]. There we insisted that the unit ranks all be
greater than 1 but this is not necessary. It is only rank equal to 1 that we wish to
avoid.

Theorem A ([EG]). Under assumptions (A):
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(i) (See also [EvG].) There is a positive integer r, defined by (1.2), and a constant
ρ1 > 0 depending on F and a such that

P (T ) = ρ1(logT )r +O((log T )r−1), T →∞.(0.4)

(ii) If F is of CM type, then r > 1 and there are constants ρ1 > 0, ρ2 depending
on F and a such that

P (T ) = ρ1(logT )r + ρ2(logT )r−1 + o((log T )r−1), T →∞.(0.5)

Thus Q1 is answered fairly successfully. Of particular note is the three-term
formula (0.5) in the CM case. Question Q2 was posed to try to understand better
the implications of this three-term formula in the CM case and because our curiosity
was aroused as to what can happen in the non-CM case. The method of proof of
Theorem A has already implicit within it statements about distribution of the kind
in Q2. We are now going to bring these to the fore in Theorem 1.

Let S denote the surface of the unit ball, S = {x ∈ Rn : |x| = 1}. If R ⊂ S,
write

PR(T ) = #{x ∈ F (a, T ) : c(x) ∈ R}.
Given any point Q on S and ε > 0, let Q(ε) denote the ε-neighbourhood of Q on
S. If R ⊂ S, let R(ε) denote the union of the Q(ε) for Q ∈ R.

Theorem 1. Under assumptions (A), if F is of CM type:
(i) There is a finite set of points V = {Q1, . . . , Qm} ⊂ S such that for any ε > 0,

with ρ1 and r as in (0.4),

PV (ε)(T ) = ρ1(logT )r +O((log T )r−1), T →∞.(0.6)

(ii) Let W denote the union of the projections to S of the straight lines joining
the Qi, i = 1, . . . ,m. Then for any ε > 0, with ρ2 as in (0.5),

PW (ε)(T ) = ρ1(logT )r + ρ2(log T )r−1 + o((log T )r−1), T →∞.(0.7)

Formulae (0.6) and (0.7) say that most of the images of the solutions cluster
around the lines comprising W and most of these cluster more densely around the
points in V . In astronomical terms, the formulae posit the existence of finitely
many “Milky Ways” which contain finitely many brighter clusters of stars.

Our second theorem gives, in the CM case, the distribution of the projections of
solutions of (0.2) which fall outside V (ε), in terms of a “potential”. Examples 1, 2
and 4 in Section 3 suggest that the distribution is not uniform around the set W .
For any R ⊂ S, write R′ for S −R, the set-theoretic complement.

Theorem 2. Under assumptions (A) suppose F is of CM type. There is a con-
tinuous monotone decreasing function f : (0,∞) → [0,∞) depending on F and a,
such that

PV (ε)′(T ) = f(ε)(logT )r−1 + o((log T )r−1), T →∞.(0.8)

For ε ∼ 0, f(ε) ∼ ρ3 log(1/ε) for a constant ρ3 > 0 and f vanishes for all large ε.

Note. Theorems 1 and 2 can be proved with other choices of norm in (0.3).
For example, the Euclidean norm |x| = (

∑
x2
i )

1
2 saves us from a flat earth but is

messier to work with.
Geometric explanation of cluster regions. A natural question to ask is for

the relation between the set V and the form F . In the sequel, we work mainly with
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forms dual to the factors of F so the answer to the question is not obvious. Suppose
first that all of the fields Mi, i = 1, . . . , t, are totally real. Our analysis in Section
1 (see (1.8)) shows that, for most of the solutions of (0.2), one factor of F is about
as large as it could be and these solutions lie close to the hyperplanes determined
by the remaining factors. The intersections of these hyperplanes with the unit ball
then determine the points in V . When at least one of the fields Mi, i = 1, . . . , t, has
complex embeddings, the set V is potentially larger. When F is of CM type, the set
V is finite because at most two factors of F dominate and the real and imaginary
parts of the remaining factors yield enough hyperlanes to intersect in a finite set
of points on S. In the non-CM case, this argument can break down. Example 3 in
Section 3 is a cubic norm form equation corresponding to a number field with two
complex conjugate embeddings. When the two complex conjugate forms dominate,
the real form yields a hyperplane which intersects S in a line, along which the
projections are uniformly distributed. When the real form dominates, the real and
imaginary parts of the complex forms yield two hyperplanes which intersect on S
in two points. In this example, formula (0.6) holds with V consisting of one line
and two points (see Figure 2 in Section 3). More generally, in the non-CM case, the
distribution of the solutions under projection depends in quite subtle ways upon
the arithmetic of the fields M1, . . . ,Mt (see Figures 2, 4, 5 and 6 in Section 3).

To help understand the issues in the non-CM case, note first that there is some
laxity in the definitions of V and W , because we can add arbitrary points to V and
lines to W without changing the formulae in (0.6) and (0.7). If R is a subset of
V or W but the formulae do not change when it is removed, we say R is virtual,
otherwise actual. For arbitrary F , formula (0.4) always holds and formula (0.6)
holds for certain subsets V ⊂ S. One can ask what is the actual subset V , that
is, the smallest subset—assuming it exists—of S for which (0.6) holds. Potentially
there will be examples where formula (0.5) holds. For these examples, it is a
challenge to describe the actual regions V and W . Formula (0.5) does not always
hold; an example is given by the equation

(x2
1 − d1x

2
2)(x2

3 − d2x
2
4) = 1,(0.9)

where d1 and d2 are positive nonsquare integers. Example 5 in Section 3 (see
(3.4)) is a norm form equation which does not satisfy (0.5). In examples like these,
probably the best formula is one of the shape

P (T ) = PW (ε)(T ) + o((logT )r−1), T →∞.(0.10)

One can always take W to be the convex hull of V ; then it is a challenge to describe
the actual region W . The reader can verify that, for equation (0.9), the actual V is
a finite set of points. The actual W is a finite set of lines unless d1/d2 is a rational
square. In the latter case, the actual W is an infinite set of points lying on finitely
many lines with only a finite set of limit points, and the set of limit points is the
actual V . To see the comparison, refer to Figures 5 and 6 in Section 3.

It was proved in [G] that the set of solutions of (0.2) is the union of finitely many
families of solutions (to be defined in Section 1). In [EG] this was combined with
a new variant of the Hardy-Littlewood method to give a very accurate formula
in answer to Q1: Theorem A above. The diophantine input to this method is
Schmidt’s Subspace Theorem, which is a powerful generalisation of Roth’s Theorem
(see [Sc2], [Sc3]). In Section 1, the results from [EG] will be recalled then recast in
geometric terms to prove Theorem 1. We suggest that Section 1 is read in tandem
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with Section 3 at the end of the paper. Here computational results are presented
in the form of pictures, which give a convincing account of the phenomena in
[EG]. Examples are also included of cases not covered by our results. Besides
their aesthetic appeal, we found these pictures inspired both our curiosity and our
understanding. Theorem 2 is an explanation of some of the pictures on view in
Section 3 and it is proved in Section 2, using the theory of uniform distribution.

We are indebted to the referee for many helpful comments on an earlier version
of this paper.

1. Proof of Theorem 1

In order to prove Theorem 1, we will need to go into the background to the
proof of Theorem A. The solutions of (0.2) lie in a finite number of classes which
are orbits of unit groups. The technical term for a class is family of solutions and
we begin by defining this term. Let A denote the algebra

A = M1 ⊕ · · · ⊕Mt.

This is the Q-algebra direct sum of the number fields M1, . . . ,Mt formed with
componentwise operations. Thus, 1A = (1, . . . , 1) is the unity of A, and A∗, the
multiplicative group of invertible elements of A, is {(α1, . . . , αt) ∈ A : α1 . . . αt 6=
0}. The norm NA|Q(α) of α = (α1, . . . , αt) ∈ A is defined to be the usual algebra
norm, that is, the determinant of the Q-linear map x 7→ αx from A to itself. The
norm is multiplicative and

NA|Q(α) =
t∏
i=1

NMi|Q(αi).

Therefore rewrite equation (0.2) as

qNA|Q(c) = a, c ∈M,(1.1)

where M is defined to be M = {c = (φ1(x), . . . , φt(x)) ∈ A : x ∈ Zn}. Now M is
a finitely generated Z-module. Let V = QM denote the Q-vector space generated
by M. For any subalgebra B of A with 1A ∈ B, denote by OB the integral closure
of Z in B and by O∗B the multiplicative group of invertible elements of OB . Let

V B = {v ∈ V : vB ⊆ V } and MB = V B ∩M.

Obviously V B is closed under multiplication by elements of B. Now define

UM,B = {u ∈ O∗B : uMB = M
B, NA|Q(u) = 1}.

This is a subgroup of finite index in O∗B . If c ∈MB is a solution of (1.1), so is every
element of cUM,B. Such an orbit is called an (M, B)-family of solutions of (1.1),
and hence of (0.2) as well. It is a fundamental result in this subject (see [G]) that
the set of solutions of (1.1) is a union of finitely many families of solutions.

The group O∗B is finitely generated; let rB denote the torsion-free rank. Use r
to denote the maximum of the rB,

r = max
B
{rB},(1.2)

taken over all Q-subalgebras B of A with 1A ∈ B for which (1.1) has an (M, B)-
family of solutions. Assumption (A1) guarantees that r > 0 and the CM assumption
guarantees that r > 1. Any (M, B)-family with r = rB is called a maximal family.
In the CM case, we may replace UM,B by a subgroup UM,B of finite index consisting
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of elements (u1, . . . , ut) with totally real and totally positive units u1, . . . , ut from
M1, . . . ,Mt, respectively. When this is done, we refer to real families and maximal
real families with the obvious abuse of language. (A real family does not necessarily
consist of real numbers, but rather, of numbers which are the orbit of a group
consisting of real numbers.) Note, in the CM case, that the solutions of (0.2) are
contained in a union of finitely many real families. It is therefore sufficient to do
any counting within a fixed, maximal real family of solutions.

Let F denote a fixed maximal real family as above and write U for the associated
UM,B . For each Mi, i = 1, . . . , t, let σij : Mi → C, j = 1, . . . , [Mi : Q] denote the
distinct embeddings into C. Write φij(x) for the conjugates of the forms φi(x),
i = 1, . . . , t. We are assuming that these

∑t
i=1[Mi : Q] forms contain n linearly

independent forms. By (1.1) and the definition of the algebra norm, there are
algebraic numbers bij such that for all x ∈ F

φij(x) = bijuij , i = 1, . . . , t; j = 1, . . . , [Mi : Q],(1.3)

with algebraic units uij = σij(ui). Write (uij) = (uk)1≤k≤m for the vector of the
uij , i = 1, . . . , t, j = 1, . . . , [Mi : Q], where m =

∑t
i=1[Mi : Q], and similarly for

(bij) = (bk). Then we obtain a system of m linear equations

Φx = (bkuk),(1.4)

where the coefficients of the m× n matrix Φ are those of the linear forms φij . The
system in (1.4) is (left) invertible by the assumption being made about the linear
factors of F . Writing Ψ for the left inverse of Φ gives

x = Ψ(bkuk).(1.5)

If u = (u1, . . . , ut) ∈ U , then define

H(u) = max
i,j
{σij(ui)},(1.6)

the largest value of any conjugate of any ui, i = 1, . . . , t. Write H∗(u) for the
second largest element of the set in (1.6), where complex conjugate embeddings are
identified. It follows from (1.4), (1.5) and the triangle inequality that |x| and H(u)
are commensurate; that is, they are bounded by constant multiples of each other.
Theorems 1 and 2 exploit that fact, enabling the counting of solutions of (0.2) in a
particular family to be effected by counting elements u ∈ U with respect to H .

Proof of Theorem 1. Fix indices (i, j) with H(u) = uij . Using (1.5), there is a
vector c depending on F and the (i, j) only (via Ψ and b) such that, for all u with
H(u) = uij ,

x = cH(u) +O(H∗(u)),(1.7)

where the big O term denotes a vector whose norm is O(H∗(u)). It follows from
(1.7) that |x| will have the shape

|x| = |dH(u) +O(H∗(u))|.
Writing I(u) = H∗(u)/H(u), c(x) will have the shape

c(x) = e+O(I(u)).

A fundamental result from [EG] (see Lemma 6(i)) is that in the CM case, for all
0 < ε < 1, asymptotically all u ∈ U have I(u) < ε. In other words,

|{u ∈ U : ε ≤ I(u), H(u) < T }| = O((log T )r−1).(1.8)
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Formula (0.6) in Theorem 1 follows from (1.7) and (1.8), by varying the indices
(i, j) and the maximal real family F. Each vector e in (1.7) gives rise to an element
of V and all elements of V arise in this way. Note that e is guaranteed to be real.

Formula (0.7) comes about by refining (0.6) together with a more delicate inter-
play between H and |.|. Write H∗∗(u) for the third largest element of {σij(ui)},
where complex conjugate embeddings are identified. Fix indices (i, j) and (k, l)
with H(u) = uij and H∗(u) = ukl. There is a vector c∗ with

x = cH(u) + c∗H∗(u) +O(H∗∗(u)).(1.9)

It follows from (1.9) that |x| will have the shape

|x| = |dH(u) + d∗H∗(u) +O(H∗∗(u))|.
Writing J(u) = H∗∗(u)/H(u), c(x) will have the shape

c(x) = e+ e∗I(u)/|1 + eI(u)|+O(J(u)).(1.10)

In [EG] (see Lemma 6(ii)), we proved that, for all 0 < ε < 1,

|{u ∈ U : ε ≤ J(u), H(u) < T }| = O((log T )r−2).(1.11)

Formula (0.7) in Theorem 1 follows from (1.10) and (1.11), by varying the indices
(i, j), (k, l) (and hence the vectors e, e∗) and the maximal real family F. Each pair
of vectors e and e∗ in (1.9) gives rise to a line in W and all the lines in W arise in
this way.

This section closes with the explicit determination of the set V for Example 3
from Section 0. In [EG], we showed that if Γ is a finite abelian group, then the
units of ZΓ yield a form of CM type if and only if the following property holds:

no quotient of Γ is cyclic of order 5, 8 or 12.(1.12)

Thus, formulae (0.4) and (0.6) hold always but (0.5) and (0.7) hold only under
condition (1.12). Let χ ∈ Γ̂ denote a character and define

eχ = |Γ|−1
∑
γ∈Γ

χ(γ)γ ∈ CΓ.

The eχ for χ ∈ Γ̂ form a system of n = |Γ| independent, orthogonal idempotents
for CΓ. The results in [E1] and [E2] show that the set V in formula (0.6) comes
from the elements

eχχ(γ) + eχχ(γ) ∈ RΓ for χ ∈ Γ̂, γ ∈ Γ.

These elements give virtual points in V if and only if Q(χ), the field generated over
Q by the values of χ, is Q or an imaginary quadratic extension of Q.

2. Proof of Theorem 2

Formula (1.10) from Section 1 gives

|c(x)− e| = |e∗|I(u)/|1 + eI(u)|+O(J(u)).

There are only finitely many possibilities for e, e∗ and e. From (1.11), we can regard
the last term as vanishingly small. Thus, for solutions x of (0.2) lying in a fixed
maximal real family, with i, j, k, l fixed as in Section 1, the condition c(x) /∈ V (ε)
yields finitely many inequalitities of the form I(u)/|1 + eI(u)| > κε for κ > 0.
Inverting each of these inequalities locates I(u) within an open interval in [0, 1] and
c(x) /∈ V (ε) corresponds to the intersection of these intervals. For all small ε > 0,
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this interval is of the form (ε/(λε + θ), 1) for constants λ and θ > 0. Thus, it is
sufficient to count units u with i, j, k, l fixed and I(u) above a fixed bound. Let
C > 0 denote a constant and suppose i, j, k, l are fixed. That is, consider those
u ∈ U with H(u) = uij and H∗(u) = ukl. Define

UC(T ) = |{u : e−C < ukl/uij, uij < T }|.(2.1)

We claim there is a positive constant ν, which depends upon i, j, k, l only, such that
UC(T ) satisfies the following asymptotic formula:

UC(T ) = Cν(log T )r−1 + o((log T )r−1), as T →∞.(2.2)

From (2.2), a formula like (0.8) holds with f(ε) = ν log(λ + θ/ε) for all small ε.
Theorem 2 follows by summing over all maximal real families and all i, j, k, l.

To prove formula (2.2), use the notation in Section 1. Note that U is a free abelian
group of rank r. Taking logarithms of the uij gives rise to a family of linear forms
L1, . . . , Ls on U . Each form corresponds to the logarithm of a conjugate of some
component of u. After choosing a basis of U , we may regard the Li, i = 1, . . . , s,
as linear forms on Zr. Assuming that forms are not counted if they are identically
zero, the CM condition (in particular, the prohibition of the rank 1 case) guarantees
that at least two of the coefficients of each Li are linearly independent over Q. The
following relation is satisfied by this family of forms:

L1(y) + · · ·+ Ls(y) = 0, for all y ∈ Zr.(2.3)

This comes from the fact that the underlying quantity is a unit so the product of
all the conjugates of all the components is equal to 1. Taking logarithms gives the
relation in (2.3). Clearly each of the forms extends to Rr and the same relation
(2.3) holds. Counting heights of elements u ∈ U with H(u) < T is equivalent to
counting lattice points y ∈ Zr satisfying L(y) = maxi{Li(y)} < X = logT .

Let L∗(y) denote the second largest component of the vector (Li(y))1≤i≤s. The
inequalities defining UC(T ), in (2.1), become (X = log T ),

L(y) < X, −C < L∗(y)− L(y).(2.4)

To take account that i, j, k, l are fixed, we must fix L = Lv and L∗ = Lw for some
1 ≤ v, w ≤ s. Define the following counting function:

AC(X) = |{y : Lv(y) < X, Lw(y) < Lv(y) < Lw(y) + C}|.(2.5)

Formula (2.2) is a direct consequence of the following asymptotic formula:

AC(X) = CνXr−1 + o(Xr−1), as X →∞,(2.6)

where ν depends only upon L1, . . . , ls, v and w.
The best approach to proving (2.6) is the direct one of comparing the number of

lattice points being counted with the volume of the region defined by the inequalities
in (2.4). But note that the volume of the boundary of the region has the same order
of magnitude as the main term of the asymptotic formula so it cannot be used as
the error term. However, the boundary is of the type to allow a uniform distribution
argument to estimate the error. Let SC(X) denote the region of Rr defined by the
inequalities in (2.4) and let µr denote Lebesgue measure in Rr.

Lemma 2.2. There is a positive constant ν such that

µr(SC(X)) = CνXr−1 +O(Xr−2).
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Proof. This is obtained by multiple integration as follows. The region of integration
subdivides according to the possible orderings on the forms. After relabelling, it is
sufficient to consider the region T (X) defined by L(y) = Lv(y) ≤ X and

Lw(y) + C ≥ Lv(y) ≥ Lw(y) ≥ · · · ≥ Ls(y).

To avoid discussing trivial cases, assume that T (X) has positive volume. For 0 <
γ ≤ C, let Tγ(X) be the region defined by L(y) = Lv(y) ≤ X and

Lw(y) + γ = Lv(y) ≥ Lw(y) ≥ · · · ≥ Ls(y).

A special property of the linear forms Li is that any two of them are linearly
dependent if and only if they are equal (disregarding forms which are identically
zero). Hence we may assume that Lv and Lw are linearly independent, and this
guarantees that Tγ(X) is an (r−1)-dimensional polytope. The inequalities defining
Tγ(X) are such that

µr−1 (Tγ(X)) = Xr−1µr−1

(
T γ
X

(1)
)

(2.7)

with µr−1 denoting (r − 1)-dimensional Lebesgue measure. Therefore we want
to calculate the (r − 1)-dimensional volume of Tγ(1) for small γ. Again because
L1 and L2 are independent, this volume is a differentiable function of γ in the
neighbourhood of γ = 0:

µr−1 (Tγ(1)) = µr−1 (T0(1)) +O(γ).(2.8)

Now substitute γ/X for γ in (2.8) and put this into (2.7). Integrating γ over
0 < γ ≤ C gives the required estimate.

Lemma 2.3. For every choice of L and L∗, the linear form L−L∗ has the property
that at least two of its coefficients are linearly independent over Q.

Proof. First, do the case where t = 1. The linear forms L and L∗ correspond to
embeddings σ and σ∗ of the field M1. The identification of complex conjugate
embeddings makes it sufficient to assume σ and σ∗ differ on M+

1 , the maximal real
subfield of M1. If the allegation in Lemma 2.3 is false, then L−L∗ is a real multiple
of an integral linear form whose integral zeros are a lattice of rank r − 1. There
are finitely many lattices coming from units belonging to proper subfields of M+

1

and the rank of each one is bounded by r+1
2 − 1. This is strictly less than r − 1

because 1 < r. There exists an integer vector y with L(y) = L∗(y) that does not
belong to any of these lattices. This vector y corresponds to a unit of M+

1 which
does not lie in any proper subfield of M+

1 . Thus σ and σ∗ agree on this unit and
hence on M+

1 , a contradiction. The general case is entirely similar. Now σ and σ∗

correspond to vectors of embeddings. Assuming they differ on one component, we
can use the equation L(y) = L∗(y) to find a unit u ∈ U upon which σ and σ∗ agree
on every component, a contradiction.

Now we complete the proof of (2.6). The region SC(X) is defined by inequalities
involving finitely many linear forms. Thus the boundary consists of a finite union
of hyperplanes. Write ∆SC(X) for the boundary of the region. For lattice points
y ∈ Zr, write Cy for the unit ball centred at y. Let ZC(X) denote the lattice points
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y ∈ Zr such that Cy has nonempty intersection with ∆SC(X). Write

S1 =
∑

Cy⊂SC(X)

1,(2.9)

S2 =
∑

y∈ZC(X)∩SC(X)

µr(Cy ∩SC(X)),(2.10)

S3 =
∑

y∈ZC(X)−SC(X)

µr(Cy ∩SC(X)).(2.11)

The volume in Lemma 3.2 decomposes as follows:

µr(SC(X)) = S1 + S2 + S3.(2.12)

In S2, the boundary conditions guarantee that the distances between the y and the
boundary are uniformly distributed. We sum the values of a continuous function
of those distances. The function clearly has integral 1/2. Similar remarks hold for
the sum S3. From the theory of uniform distribution (see [KN]) and the symmetry,
each of S2 and S3 is

1
2

 ∑
y∈ZC(X)∩SC(X)

1

+ o(Xr−1).(2.13)

Thus, (2.9), (2.12) and (2.13) give

µr(SC(X)) =
∑

y∈SC(X)

1 + o(Xr−1) = AC(X) + o(Xr−1).

Now (2.6) follows from Lemma 2.2.

3. Computational results

In this section, we will present some pictures to illustrate the clustering phe-
nomena for some decomposable form equations in a small number of variables.
Examples in both the CM and non-CM cases are included. For generating the
pictures, we used the software packages KANT from the TU Berlin ([Ka]) for the
calculations of number field data and Maple for plotting.

The first example, for motivation, is Pell’s equation with d = 2, x2
1 − 2x2

2 = 1.
The field is K1 = Q(

√
2) and the solutions (x1, x2) correspond to units of norm 1

in the ring Z[
√

2] via (x1, x2) 7→ x1 + x2

√
2. The solutions all lie on a hyperbola

with asymptotes x1 = ±
√

2x2 so the distribution is obvious. The set V consists of
four points (±1,±1/

√
2) on the unit square.

For cubics and quartics, we can still visualize the different types of behaviour.
Consider the norm form equation for the totally real cubic K2 of discriminant 49,
which is the maximal real subfield of the cyclotomic number field generated by a
primitive 7th root of unity ζ. As a field, K2 is generated over Q by θ = ζ + ζ6,
the minimal polynomial of θ is x3 + x2 − 2x − 1, and the ring of integers is Z[θ].
Choosing 1, θ, θ2 as the basis of Z[θ], every unit of norm 1 corresponds to a solution
x ∈ Z3 of the norm form equation

x3
1 + x3

2 + x3
3 − x2

1x2 + 5x2
1x3 − 2x1x

2
2 + 6x1x

2
3 − x2

2x3 − 2x2x
2
3 − x1x2x3 = 1.

(3.1)
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Figure 1. Projection of solutions of (3.1)

After central projection, those solutions look like Figure 1. In this example,
there are four maximal real families of solutions, each contributing to three of the
six points in V . Theorem 2 describes precisely the distribution of points close to
W .

For the third example, takeK3 = Q(2
1
3 ) which has ring of integers Z[2

1
3 ]. Choos-

ing the basis 1, 2
1
3 , 2

2
3 for the ring of integers gives the non-CM, norm form equation

x3
1 + 2x3

2 + 4x3
3 − 6x1x2x3 = 1.(3.2)
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0
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Figure 2. Projection of solutions of (3.2)
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Figure 2 shows the distribution of the projected solutions: essentially a line and
two isolated points. Due to the limited resolution, many images are printed on top
of each other—out of 800 points in the whole picture, 261 are closer than 0.01 in
distance to the isolated points! Note that, this time, the projections around the
line are uniformly distributed. Formula (0.6) holds with V consisting of the union
of a line and two points.

Next come two quartic cases: one is CM and the other is not. For a totally real
quartic, take K4 = Q(α), where α is a root of x4−2x3 +3x+2. The ring of integers

-1

0

1

x2
-1

-0.5
0

0.5
1

x3

-1

-0.5

0

0.5

1

x4

Figure 3A. Projection of solutions of (3.3)
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Figure 3B. Projection of solutions of (3.3)—face 2
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of K4 is Z[α] and we choose the powers of α as basis. Then we consider the norm
form equation

NK4|Q(x1 + x2α+ x3α
2 + x4α

3) = 1.(3.3)

Figure 3A shows one face (a 3-dimensional cube) of the corresponding 4-
dimensional unit ball with the projection of the smallest 700 solutions with re-
spect to Euclidean norm. Figure 3B shows another face, with the projection of
4217 solutions and two points of V . It is clearly visible that the images of solutions
cluster densely around the lines in W , and yet more densely around the points

-1

0

1

x2
-1

-0.5
0

0.5
1

x3
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-0.5

0

0.5

1

x4

Figure 4A. Projection of solutions of (3.4)
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Figure 4B. The same face as Figure 4A, tilted upwards
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in V . Once again, Theorem 2 goes beyond this in describing this phenomenon
quantitatively.

For the next example, let K5 denote the field K5 = Q(2
1
4 ). The ring of integers

here is Z[2
1
4 ], and we have chosen the powers of 2

1
4 as basis. The norm form

equation is

NK5|Q(x1 + x22
1
4 + x32

2
4 + x42

3
4 ) = 1.(3.4)

There are 3000 solutions represented in Figure 4A. This example is not CM and the
clustering behaviour is different. Formula (0.6) holds with the actual V consisting
of two points (both of which are captured on the face shown) and one line which
appears very curiously “dashed”. However, it is possible to show that the distribu-
tion around this line is uniform. This line corresponds to units where the complex
conjugates dominate in absolute value. The points correspond to units where one
of the real conjugates dominates. Another new phenomenon appears when we tilt
the picture upwards—see Figure 4B. The solutions are nearly all confined to two
planes determined by the line and one of the points. If we tilted the face a little
bit more, we could shrink the line to a point on the paper, and the planes would
appear as lines. Formula (0.10) holds with the actual W consisting of finitely many
planes and a discrete set of points which lie on finitely many lines.

The last two examples arise from the product of two Pellian equations (see (0.9)).
First

(x2
1 − 2x2

2)(x2
3 − 3x2

4) = 1.(3.5)

Figure 5 shows one 3-dimensional face of the 4-dimensional unit cube containing
the projections of 4121 solutions which belong to two different families. Each family
contributes two V-shapes. In many respects, the distribution is the same as in the
2nd and 4th examples. Formulae (0.5) and (0.7) do not hold but (0.6) holds with V
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0

0.5

1
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Figure 5. Projection of solutions of (3.5)
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Figure 6. Projection of solutions of (3.6)

a finite set of points. Formula (0.8) holds and formula (0.10) holds with the actual
W consisting of a finite union of lines.

Now consider the equation

(x2
1 − 3x2

2)(x2
3 − 3x2

4) = 1.(3.6)

Figure 6 shows one 3-dimensional face of the 4-dimensional cube. The distribution
is markedly different. The projections of some 4000 solutions are on view but the
picture appears to contain far fewer points due to the limited resolution. The
solutions belong to two families, each one contributing two V-shapes. Formulae
(0.5), (0.7) and (0.8) do not hold. Formula (0.6) holds with V a finite set of points.
Formula (0.10) holds but, in contrast to the previous example, the actual W is an
infinite set of points which lie on finitely many lines and have V as the only limit
points.
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[G] K. Györy, On the number of families of solutions of systems of decomposable form equa-
tions, Publ. Math. Debrecen 22 (1993), 65-101. MR 94e:11027

[K] G. Karpilovsky, Unit Groups of Classical Rings, Oxford University Press, 1988. MR
90e:20007
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