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EFFECTS OF UNCERTAINTIES
IN THE DOMAIN ON THE SOLUTION

OF NEUMANN BOUNDARY VALUE PROBLEMS
IN TWO SPATIAL DIMENSIONS

IVO BABUŠKA AND JAN CHLEBOUN

Abstract. An essential part of any boundary value problem is the domain
on which the problem is defined. The domain is often given by scanning or
another digital image technique with limited resolution. This leads to signif-
icant uncertainty in the domain definition. The paper focuses on the impact
of the uncertainty in the domain on the Neumann boundary value problem
(NBVP). It studies a scalar NBVP defined on a sequence of domains. The
sequence is supposed to converge in the set sense to a limit domain. Then the
respective sequence of NBVP solutions is examined. First, it is shown that
the classical variational formulation is not suitable for this type of problem as

even a simple NBVP on a disk approximated by a pixel domain differs much
from the solution on the original disk with smooth boundary. A new definition
of the NBVP is introduced to avoid this difficulty by means of reformulated
natural boundary conditions. Then the convergence of solutions of the NBVP
is demonstrated. The uniqueness of the limit solution, however, depends on
the stability property of the limit domain. Finally, estimates of the difference
between two NBVP solutions on two different but close domains are given.

1. Introduction

The analysis presented in this paper has been motivated by the discrepancy
between the shape of a real body and its computer description (called geometrical
model or briefly model).

Any real-life data contain some uncertainty due to measurements and simplifi-
cations. It is common to represent a real-life body by the geometrical model and
to neglect the fact that the model is obtained by postprocessing the raw data from
scanning, for example. Instead of the true body, the model is used for solving par-
tial differential equations. However, natural questions arise: Are we authorized to
choose a particular geometrical model as the representative of the body? Should
we take a whole family of models into consideration? Can we get rid of assump-
tions we added to the raw data by a particular postprocessing method? How does
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Figure 1. Original digital image

the discrepancy between the body and its geometrical model influence a boundary
value problem (BVP) we wish to solve?

These questions are closely related to the problem of model validation (see [R]).
Though natural, they are not mathematically analyzed.

Let us restrict ourselves to the problems stemming from digital imaging and
image processing. A digital image of a real-life body bears some inaccuracy, the
source of which is both the scanning and pixel-limited resolution. Setting the
scanning aside and concentrating only on the digital image, we still face uncertainty
regarding the boundary of a digital domain. We can color black the pixels lying
fully inside the domain and white the fully outside pixels. Then a boundary layer
can remain. A layer of gray pixels indicates that these pixels are partly “in” and
partly “out”. Thus the boundary is not known exactly and any approximation
or smoothening can be problematic. (We refer to [BPHN] for more about data
smoothening.)

Example 1.1. Figure 1 shows a rather fuzzy digital image. Since pixels are rough,
contrast low, and data noisy, we can hardly define the boundary separating the
supposedly white domain and a supposedly black background. The image can be
postprocessed in various ways.

We can set a threshold brightness value to suppress the gray color and to strictly
define sets above (white pixels) and below (black pixels) the threshold (see Figure
2 (left)).

We could also apply a sophisticated algorithm to guess and approximate the
boundary by a piecewise polynomial curve (see Figure 2 (right)). These algorithms
use various heuristic approaches based on additional assumptions usually not jus-
tified in relation to the solved problem (see [BCL], [BPHN]).

The reader probably agrees that low quality images pose difficulties. But even
analysis based on high quality images can lead to incorrect results.

For example, the common formulation of the Neumann boundary condition could
be misleading if an uncertain boundary is taken into account without realizing
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Figure 2. Postprocessing: Black and white image (left), smoothed
boundary (right)

further consequences. We illustrate this in the following example showing what
happens if a naive approximation of the Neumann problem is used.

Example 1.2. Let Ω be a disc with the center at the origin and the unit radius.
We consider the weak solution u ∈ H1(Ω) of the Neumann problem −∆u+ u = 0
in Ω and ∂u/∂ν = 1 on ∂Ω, ν is the outward normal unit vector. In detail,∫

Ω

(∇u · ∇v + uv) dx =
∫
∂Ω

v ds ∀v ∈ H1(Ω).(1.1)

To fix ideas, let us consider the physical interpretation of (1.1). The disk Ω
represents a thin cylinder after dimensional reduction. The part of the cylinder
boundary represented by ∂Ω is in contact with a heat producing coil. The heat
enters Ω through ∂Ω with the flux equal to 1. In this setting, (1.1) can be viewed
as the equation modeling a time independent heat flow.

Let us suppose we have an infinite sequence of digital images of Ω at our disposal
and assume that Ω is approximated by a sequence

{
Ωn
}∞
n=1

of pixel-formed domains
Ωn, Ωn ⊂ Ωn+1 ⊂ Ω ⊂ R2, Ωn ↗ Ω, i.e., the larger the n, the tinier the pixels.
Then it seems to be natural to approximate (1.1) by∫

Ωn

(∇un · ∇v + unv) dx =
∫
∂Ωn

v ds ∀v ∈ H1(Ωn)(1.2)

and seek the respective solution un ∈ H1(Ωn). Let us mention that the pixels are
sometimes used as a natural mesh for the finite element method.

Will un tend to u if Ωn → Ω? The answer is “no”.
A simple reason is that the length of ∂Ωn does not converge to the length of

∂Ω. Indeed, if the diameter of a pixel domain Ωn is close to 2, then the sum of
all vertical and horizontal boundary segments of Ωn is close to 8. Denoting ln the
length of ∂Ωn, we thus get limn→∞ ln = 8.

Let us consider v = 1 in (1.1) and (1.2). Then ∇v = 0 and we get

(meas Ω)1/2‖u− un‖L2(Ωn) +
∫

Ω\Ωn
|u| dx

≥
∫

Ωn

(un − u) dx−
∫

Ω\Ωn
u dx =

∫
Ωn

un dx−
∫

Ω

u dx =
∫
∂Ωn

ds−
∫
∂Ω

ds.

Consequently,

lim inf
n→∞

‖u− un‖L2(Ωn) ≥ (8− 2π)/
√
π.(1.3)
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It is possible to prove that solutions un converge to a function u0 solving a Neumann
problem on Ω but with a different boundary condition, i.e., ∂u0/∂ν = g0 6= 1 on
∂Ω.

Let us compare three problems:

−∆ua + ua = 0 in Ω,
∂ua
∂ν

= 1 on ∂Ω;(1.4)

−∆ub + ub = 1 in Ω,
∂ub
∂ν

= 0 on ∂Ω;(1.5)

−∆uc + uc = 1 in Ω,
∂uc
∂ν

= 1 on ∂Ω.(1.6)

Problem (1.4) coincides with (1.1). If (1.5) and its pixel approximation were con-
sidered instead of (1.1) and (1.2), respectively, approximate solutions ubn would
perfectly converge to ub. On the other hand, (1.6) encounters difficulties similar to
those in Example 1.2. This indicates that the toothy boundary and its length are
not the only culprits. We must also take into account the type of the boundary
condition.

Let us pay attention to the right-hand side of (1.2). We were wrong setting
∂un/∂ν = 1. Is it possible to replace the classical formulation so that the above-
mentioned difficulty will be avoided?

Let us suppose that we know the heat produced by the coil and entering Ω
through ∂Ω. We can get it with the aid of a voltameter and an amperemeter. The
same amount enters each Ωn. We know the length of ∂Ωn and thus we are able
to calculate an averaged heat flux along ∂Ωn. Obviously, the longer Ωn, the lower
average we get.

In general, the right-hand side of (1.1) and (1.2) has the form
∫
∂Ω gv ds and∫

∂Ωn
gnv ds, respectively. Functions gn depend on Ωn. Let us assume that we have

two points P1, P2, and that P1, P2 ∈ ∂Ω and P1, P2 ∈ ∂Ωn. Then∫ P2

P1

g dsΩ =
∫ P2

P1

gn dsΩn

because the amount of heat flowing between P1 and P2 does not depend on the
path connecting P1 and P2. It resembles the Stieltjes integral. The idea is to find a
function G and to substitute

∫
∂Ω v dG for

∫
∂Ω gv ds and

∫
∂Ωn

v dG for
∫
∂Ωn

gnv ds.
Pixel domains are fuzzy and their boundaries do not coincide with ∂Ω; therefore
G should be defined at least on a strip containing ∂Ω. In other words, here we
are working with resultants as we often do in elasticity theory. It is not difficult to
construct function G on the basis of such physical considerations (see also Example
1.3 and Example 2.1).

We observe that g = ∂G/∂s = curlG · ν along ∂Ω, curlGdef=(∂G/∂x2,−∂G/∂x1)
and ∂/∂s stands for the tangential derivative. If G is sufficiently smooth and defined
on Ωn, then ∫

∂Ωn

vg ds =
∫

Ωn

curlG · ∇v dx v ∈ H1(Ω).

The equality suggests that we can substitute the domain integral for the boundary
one.

Remark 1.1. Going back to the physics, we can see how massively our model relies
on averaging and scanning. The interaction of the coil and the body Ω is a contact
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problem. Its local features are not known. Does the coil touch Ω at all points or are
there gaps?

We focus on global features expressed via the energy or energy-like norms defined
on Ω. Also, the scale of Ω is much greater than the scale of the local contact
uncertainty. That is why we neglect the local view and prefer the global one which
is based on resultants rather than on pointwise loads. This corresponds to the
well-known Saint-Venant principle used in mechanics.

Using the above defined G, we get
∫
∂Ω dG = 0, which implies

∫
∂Ω g ds = 0. As

a consequence, we cannot find G corresponding to problem (1.1). We will see a
remedy in Section 2, however. We can simply seek two functions G1, G2, or we can
reformulate the BVP.

Another natural construction of G appears in the next example.

Example 1.3. The torsion of a general noncircular cylinder of cross section Ω is
treated in almost any textbook on the theory of elasticity (see, e.g., [NH, Section
10.5]). In textbooks, the final goal is to derive the Dirichlet BVP for the Prandtl
potential function. Before the Prandtl potential can be established, one has to
study the following Neumann BVP:

∆ϕ = 0 in Ω,
∂ϕ

∂ν
= g

def=x2ν1 − x1ν2 on ∂Ω.(1.7)

Defining G(x)def=(x2
1 +x2

2)/2, x = (x1, x2) ∈ R2, we get g = curlG ·ν along ∂Ω. The
weak formulation of (1.7) reads: Find ϕ ∈ H1(Ω), up to a constant, such that∫

Ω

∇ϕ · ∇v dx =
∫

Ω

curlG · ∇v dx ∀v ∈ H1(Ω),(1.8)

where we used the Green theorem to get rid of the boundary integral. Let us notice
that G is unique (up to a constant), defined in R2, and is given in a straightfor-
ward way by the boundary condition in (1.7) because the condition applies to any
admissible domain Ω.

Unlike (1.7), where g cannot be defined if ∂Ω is fuzzy, G is defined irrespectively
of the fuzziness. As the fuzziness is limited to a thin boundary layer, (1.8) enables
us to assess the effect that the uncertain boundary has on the solution ϕ (see
Section 4).

We can draw a general conclusion from Examples 1.1 and 1.2. It is necessary to
extend the notion of well-posed problems to a continuous dependency of the BVP
solution on the domain of definition, i.e., to generalize Hadamard’s ideas (see [H]).

We already saw (Example 1.2) that a sequence of pixel-based problems can have
little in common with the seemingly natural limit BVP.

Though we do not have an infinite sequence of pixel domains in practice, we
should ask what the limit solution could be if our digital camera delivered a sequence
of domains Ωn converging to a limit Ω. It means that the stability of the domain
Ω with respect to the Neumann BVP comes in the forefront.

The stability issue was studied in [B1], [B2] for rather general Dirichlet prob-
lems and the Neumann BPV with the homogeneous boundary condition. Roughly
speaking, if Ω is stable, then solutions of equations on Ωn converge to the function
which solves a natural limit problem on Ω, i.e., the solution is not sensitive to the
approximation of the domain. It is known that if ∂Ω is Lipschitz, then Ω is stable
(see also Section 3).
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If Ω is unstable, then, in general, the limit depends on the sequence {Ωn}∞n=1.
This means that the solution is significantly influenced by the uncertainty in the
approximation of the boundary ∂Ω.

The circle is stable with respect to the classical Neumann BVP with the homoge-
neous boundary condition and is unstable for nonhomogeneous boundary conditions
(cf. (1.1)-(1.2)). Nevertheless, we can reformulate the nonhomogeneous boundary
conditions so that the stability (i.e., the nonsensitivity of the solution to the bound-
ary) occurs (see Section 2).

In real life, we are limited to a few digital images of the true body so we do not
know the limit domain Ω. We only assume that the images give us a lower and an
upper bound of (possibly unstable) Ω; namely, two domains Ωlow and Ωup such that
Ωlow ⊂ Ω ⊂ Ωup.

Our goal is to show that the Neumann problem for a nonhomogeneous boundary
condition can be reformulated so that it is stable in contrast to the classical (weak)
formulation, and to assess the solution of the Neumann BVP on the unknown
domain Ω by means of the solutions of the Neumann BVP on Ωlow and Ωup.

This paper is organized as follows. Section 2 is devoted to the reformulation of
the Neumann boundary condition, i.e., function G is introduced. In Section 3, we
show that if a monotone sequence of domains is considered, then solutions of the
Neumann problem in respective domains converge to the solution of a naturally
defined Neumann boundary problem on the limit domain, where a proper space of
test and trial functions is given. Also, the stability issue for the Neumann problem
is discussed. Estimates concerning the distance between solutions on Ωlow, Ω and
Ωup are presented in Section 4. Section 5 deals with the stability of the domain
which is the limit of a nonmonotone sequence of domains. Further comments on
Example 1.1 together with some conclusions constitute Section 6.

2. The Neumann problem defined on a set of domains

In this section, we formulate the Neumann problem in a way transferring a
boundary integral into a domain integral. First we introduce an equality and then
we will show its connection to the standard Neumann problem with a nonhomo-
geneous boundary condition. As stated in the Introduction, we focus on plane
problems.

Throughout the paper, we assume any domain Ω (or Ωn), i.e., an open con-
nected set, as well as its closure Ω (or Ωn) embedded into a fixed bounded domain.
Without loss of generality, we can suppose B is such a superdomain. If not stated
otherwise, the domains we deal with have Lipschitz boundary. We also suppose that
the domain and its closure have identical boundaries, i.e., ∂Ω = ∂Ω. Exceptions
(domains with cracks) will be noted.

Let us start with some notation. The symbol Hk(Ω), k = 1, 2, stands for
the standard Sobolev space of square integrable functions, the generalized par-
tial derivatives up to the order k of which are square integrable on Ω. The norm
and the kth seminorm in Hk(Ω) is denoted by ‖ · ‖k,Ω and | · |k,Ω, respectively. In
the space [L2(Ω)]m, m = 1, 2, of m-tuples of square integrable functions, the norm
will be indicated by ‖ · ‖0,Ω regardless of m. The subspace of all functions from
H1(Ω) with traces vanishing on ∂Ω is labeled by H1

0 (Ω). We will also make use
of the factor space H1(Ω)/P , the element of which is an affine set constructed as
a function from H1(Ω) and all constants on Ω. H1(Ω)/P , with the scalar product
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(·, ·)1,Ω inducing the Sobolev seminorm | · |1,Ω, is a Hilbert space and, moreover,
| · |1,Ω becomes its norm. C1(Ω) and C∞(Ω) will denote functions continuous on Ω
up to the first derivative, and functions infinitely smooth on Ω, respectively. The
space of all measurable functions bounded in Ω and its norm will be symbolized by
L∞(Ω) and ‖ · ‖∞,Ω, respectively.

To define the problem we will study, we assume a second order elliptic operator
the coefficients aij of which form a 2 × 2 symmetric matrix A. We suppose aij ∈
L∞(B) and

2∑
i,j=1

aij(x)ξiξj ≥ cA|ξ|2R2 ,(2.1)

for each ξ ∈ R2 and a.a. x ∈ B, cA > 0 is a constant independent of x and ξ. We
also consider a function b ∈ L∞(B). Let us introduce the following continuous and
symmetric bilinear forms:

a0
Ω(u, v)def=

∫
Ω

A∇u · ∇v dx, u, v ∈ H1(Ω);

aΩ(u, v)def=a0
Ω(u, v) +

∫
Ω

buv dx, u, v ∈ H1(Ω).
(2.2)

It holds that cA|u|21,Ω ≤ a0
Ω(u, u) independently of u and Ω. We assume b guaran-

teeing that a constant cAb > 0 independent of u and Ω exists such that

cAb‖u‖21,Ω ≤ aΩ(u, u), u ∈ H1(Ω).(2.3)

Let us have a function G ∈ H1
0 (B)∩H2(B) and a Lipschitz domain Ω. We define

the conjugate gradient of G (two dimensional rotation) by

∇?G def= curlG def=
(
∂G/∂x2,−∂G/∂x1

)
.

Applying the Green theorem and the orthogonality of the unit outward normal
ν = (ν1, ν2) to the unit tangential vector t = (−ν2, ν1), we infer∫

Ω

∇?G · ∇v dx =
∫
∂Ω

∇?G · νv ds−
∫

Ω

( ∂2G

∂x2∂x1
− ∂2G

∂x1∂x2

)
v dx

=
∫
∂Ω

∇G · tv ds, v ∈ H1(Ω),
(2.4)

because the terms with second mixed derivatives in the sense of distributions cancel
each other. It holds that ‖∇?G‖0,Ω = ‖∇G‖0,Ω = |G|1,Ω.

The following definition will help us to avoid a boundary integral in the Neumann
problem with a nonhomogeneous boundary condition.

Let G ∈ H1
0 (B) be fixed. We define the linear continuous functional

∫
∂Ω
v dG

operating on the space H1(Ω):∫
∂Ω

v dG def=
∫

Ω

∇?G · ∇v dx, v ∈ H1(Ω).(2.5)

Let us notice that
∫
∂Ω v dG = 0 if v ∈ H1

0 (Ω). It is a consequence of (2.4).
The Neumann boundary value problem reads (see (2.5)): Find u ∈ H1(Ω) such

that

aΩ(u, v) =
∫
∂Ω

v dG ∀v ∈ H1(Ω).(2.6)
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Remark 2.1. If G is continuously differentiable on Ω, we can define g = ∂G/∂s a.e.
on ∂Ω. Then ∇?G · ν = ∇G · t = ∂G/∂s = g on the boundary, i.e.,∫

Ω

∇?G · ∇v dx =
∫
∂Ω

vg ds ∀v ∈ H1(Ω).

The solution of problem (2.6) fulfills, in the weak sense, the equation − div(A∇u)
+ bu = 0 with the boundary condition ∂u/∂νA = g, where ∂u/∂νA stands for the
conormal derivative.

Problem (2.6) can be considered rather strange because
∫
∂Ω dG = 0 indicates

that a0
Ω would fit (2.6) better than aΩ. We chose (2.6) with demonstrative purposes

in mind though it would make the analysis simpler if b and ∇?G were avoided.
The latter happens if

∫
∂Ω g ds 6= 0 is to be treated. Then we need two functions

G1, G2 ∈ H1
0 (B). We define G = (G1, G2) and∫
∂Ω

v dG def=
∫

Ω

G · ∇v dx+
∫

Ω

(
∂G1

∂x1
+
∂G2

∂x2

)
v dx, v ∈ H1(Ω).(2.7)

An analogy to Remark 2.1 is G · ν = g on ∂Ω.
Let us point out thatG orG are viewed as primal quantities defining the problem,

and g is only a derived quantity which, of course, can be beneficial for an insight
into the modeled problem. Functions G, G should reflect the physical background
of the problem.

Example 2.1. Let us construct G for problem (1.1) in Example 1.2. For ∂Ω is the
unit radius circle, it is easy to get the unit normal ν = (ν1, ν2)

ν1(x) =
x1

r
, ν2(x) =

x2

r
, r =

√
x2

1 + x2
2, x ∈ ∂Ω.

As g = G · ν, we directly check

G1(x) = cx1r
j , G2(x) = cx2r

j ⇒ g = crj+1, j = . . . ,−1, 0, 1, . . . ,(2.8)

where c is a constant.
Functions G, g are well defined in R2 except for the origin, where a singularity

might be. We can get rid of the singularity by multiplying G by a smooth function
χ, 0 ≤ χ ≤ 1, such that χ = 0 in a neighborhood of the origin and χ = 1 outside a
circle with the center at the origin and radius, say 1/2.

If c = 1 in (2.8), then any choice results in g = 1 on ∂Ω. To pick up a specific
function, we realize the fact that the greater r, the lower heat flux because the total
amount of heat remains constant (see the Introduction). On that basis, j = −2
seems to be a realistic choice in (2.8).

The particular choice of G, G has no impact on convergence results achieved in
Section 3. However, it determines some values in error estimates (Section 4) and
this is the reason why physical background is to be taken into account.

Let us point out two facts. First, constructing G, we can limit ourselves to the
vicinity of ∂Ω because the fuzziness will reside right there. That is why χG does not
cause any harm as χ = 1 there. Second, we can leave toothy, nonsmooth boundaries
∂Ωn out of consideration. If the boundary condition has the form (2.5) or (2.7)
and if Ω is stable (see the Introduction and Section 3), then Ωn → Ω implies the
convergence of the respective solutions of the BVP regardless of the smoothness
of ∂Ωn. It explains why the naive approximation of (1.5) is harmless (G = 0).
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Convergence details will be given in the next section. Thus, in the course of setting
G or G, we can pay attention to smooth boundaries only.

Remark 2.2. A different approach to Example 1.2–2.1 would be to split u into two
parts u = u0+u1, where u1 is a function chosen in such a way that

∫
∂Ω
∂u1/∂ν ds =∫

∂Ω
g ds. As a consequence, (1.1) is transformed into a new equation for unknown

u0. It holds
∫
∂Ω ∂u0/∂ν ds = 0. ThenG is found for this BVP. Choosing u1 = χ ln r,

we get ∂u1/∂ν = 1/r = 1 on ∂Ω (cf. Example 2.1), i.e., we can set G equal to 0 or
any constant.

Remark 2.3. We can also add a volume load to the problem, i.e., to seek u ∈ H1(Ω)

aΩ(u, v) =
∫

Ω

fv dx+
∫
∂Ω

v dG ∀v ∈ H1(Ω),(2.9)

where f ∈ L2(Ω). If a0
Ω is considered in (2.9), then the compatibility condition∫

Ω
f dx +

∫
∂Ω
v dG = 0 must be assumed. We can meet difficulties in keeping the

condition if Ω is approximated by Ωn. If, moreover, G stays instead of G in (2.9),
then

∫
∂Ω

1 dG = 0. In this case, the compactness in Ω of the support of f is
supposed too. The latter is not necessary for the existence of a solution to (2.9)
with G but it simplifies arguments when a sequence of domains approaching Ω is
considered (see Section 3).

In our analysis, we will only use (2.6) because (2.9) brings nothing but longer
formulae as the term

∫
Ω fv dx can be treated in a similar way as the right-hand

side of (2.6) (see Sections 3 and 4).

Lemma 2.1. For any G ∈ H1
0 (B), problem (2.6) has a unique solution u ∈ H1(Ω).

Proof. The bilinear form aΩ is continuous and H1(Ω)-elliptic (see (2.3)). The right-
hand side of (2.6) is a continuous linear functional on H1(Ω) as follows from (2.5).
The existence and uniqueness is due to the Lax-Milgram lemma.

Remark 2.4. If a0
Ω is considered in (2.6), then the solution u is unique in H1(Ω)/P .

Indeed, the right-hand side of (2.6) fulfills the compatibility condition by (2.5).
It equals zero if v is a constant. The bilinear form a0

Ω is continuous and
H1(Ω)/P -elliptic. Again, the Lax-Milgram lemma finishes the proof.

Introducing the Neumann problem in the form (2.6), we have made the Neumann
boundary condition easily definable on a family of subdomains of B.

Formulation (2.6) is advantageous for theoretical purposes. It is clumsy, however,
to use (2.5) in practical computation since it would mean computing ∇G and
integrating over the whole domain Ω. That is why we will show some relationship
between (2.5) and the Stieltjes integral.

To make use of the classical definition of the Stieltjes integral, we suppose for
brevity that Ω is simply connected and we introduce the arc mapping β : [0, l]→ ∂Ω,
β(0) = β(l), l > 0 is the length of ∂Ω. Then we define the Stieltjes integral of v
along ∂Ω with respect to dSG as∫

∂Ω

v dSG
def=
∫ l

0

v ◦ β d(G ◦ β),

where the integral on the right-hand side is the usual Stieltjes integral on [0, l].

Lemma 2.2. Let Ω be a simply connected domain and let Gβ = G◦β be absolutely
continuous on the segment [0, l], gβ = dGβ/dt, and g = gβ ◦ β−1 : ∂Ω → R1
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belong to L2(∂Ω). Assume that {ϕn}∞n=1, ϕn ∈ C1(Ω), is a sequence converging
to a function v in H1(Ω). Then sn =

∫
∂Ω
ϕn dSG exists in the classical Stieltjes

sense and limn→∞ sn =
∫
∂Ω v dG, where the value on the right-hand side is given

by (2.5).

Proof. By virtue of the Lipschitz boundary ∂Ω, the existence of the sequence
{ϕn}∞n=1 is guaranteed due to the density of C∞(Ω) in H1(Ω).

We get

sn =
∫
∂Ω

ϕn dSG =
∫ l

0

(ϕn ◦ β)gβ dt =
∫
∂Ω

ϕng ds.

We find that limn→∞ sn = s0 ∈ R1 because, due to the trace theorem,

|sn − sm| =
∣∣∣∣∫
∂Ω

(ϕn − ϕm)g ds
∣∣∣∣ ≤ ‖ϕn − ϕm‖0,∂Ω‖g‖0,∂Ω → 0

if n and m tend to infinity.
It remains to prove that we can also arrive at s0 via (2.5).
The function G possesses the tangential derivative ∂G/∂s = g almost everywhere

on ∂Ω. By (2.4) we deduce∫
Ω

∇?G · ∇ϕn dx =
∫
∂Ω

ϕng ds =
∫
∂Ω

ϕn dSG = sn.

Applying the convergence ϕn → v in H1(Ω) and sn → s0 in R1, we finish the proof
by the equality ∫

Ω

∇?G · ∇v dx = s0.

Remark 2.5. Lemma 2.2 allows us to define
∫
∂Ω
v dSG for v ∈ H1(Ω) as the limit

of values sn. If Ω is Lipschitz but not simply connected, then
∫
∂Ω v dSG can be

defined as a finite sum of Stieltjes integrals over all maximal connected components
of ∂Ω.

Remark 2.6. The above definitions and lemmas can be generalized even to non-
Lipschitzian domains. An example is a domain Ω with a cut used to model a
crack. Then G,G1, G2 /∈ H1(B), as they have discontinuity along the crack, but
G,G1, G2 ∈ H1(Ω). The Neumann boundary condition is defined along both sides
of the crack. Calculating the Stieltjes integral, we have to follow one side of the
crack to its tip and go back integrating the values on the other side.

We will consider a sequence of Neumann problems dependent on a domain.
Our goal is to prove the convergence of solutions if domains converge to a limit
Ω. Since we do not suppose either smooth boundaries of the domains or uniform
cone property, we can hardly apply the material derivative approach widely used
in optimal shape design (see [HN], [HCK]).

3. Convergence analysis

Let us suppose that we have a sequence {Ωn}∞n=1 converging to a domain Ω in
the set sense, i.e., x ∈ Ω implies ∃nx ∀n ≥ nx x ∈ Ωn, and ∃y, ny ∀n ≥ ny y ∈ Ωn
implies y ∈ Ω. We assume ∂Ω = ∂Ω.
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We confine ourselves to monotone sequences of domains because, as we will
show later, it is sufficient to analyze the stability of Ω with respect to them. They
correspond to those studied in [B1], [B2].

First we prove some convergence properties for solutions of the Neumann bound-
ary problem defined on a sequence of monotonically expanding or shrinking do-
mains. Then we set sufficient conditions guaranteeing that the limit functions
coincide with the solution of a naturally defined problem on the limit domain (see
the Introduction for the stability of a domain).

We consider almost the same equation as in (2.6):

u ∈ H aΩ(u, v) =
∫

Ω

∇?G · ∇v dx ∀v ∈ H,(3.1)

except for the space H which will be defined later.
Let us have a sequence of subdomains Ωn such that Ωn ↗ Ω, n = 1, 2, . . . , i.e.,

Ωn ⊂ Ωn+1 ⊂ Ωn+1 ⊂ Ω and
⋃∞
n=1 Ωn = Ω. We assume each Ωn has the Lipschitz

boundary but no such assumption is put on Ω. Following the proof of [B2, Theorem
9.1], we define the sets Φ1 = Ω1, Φn+1 = Ωn+1 \ Ωn, Ψn =

⋃∞
k=n+1 Φk.

Through the sets

Ĥn =
{
v ∈ L2(Ω) : v|Ωn ∈ H

1(Ωn), v|Φk ∈ H
1(Φk), k = n+ 1, . . .

}
,

n = 1, 2, . . . , and the scalar products

[u, v]n =
∞∑
k=1

∫
Φk

(∇u · ∇v + uv) dx, n = 1, 2, . . . ,

inducing the norms ‖ · ‖n, we define the spaces

Hn =
{
v ∈ Ĥn : ‖v‖n <∞

}
, n = 1, 2, . . . .

One can see that Hn is a Hilbert space for any n and that Hn+1 ⊂ Hn.
As in the proof of [B2, Theorem 9.1], it can be shownH↑def=

⋂∞
n=1Hn is equivalent

to H1(Ω). Though [B2] uses a sequence of domains with a smooth boundary and a
factor space norm, the proof is applicable to our case too. Moreover, the subset of
functions infinitely smooth in Ω is dense in H↑ (see [M, Theorem 1.1.5/1, 1.1.5/2]).

Lemma 3.1. Let Ωn ↗ Ω and let un ∈ H1(Ωn) solve the equation

aΩn(un, v) =
∫
∂Ωn

v dGn ∀v ∈ H1(Ωn),(3.2)

where Gn = G|Ωn , n = 1, 2, . . . , G ∈ H1
0 (B). If ũn stands for a function from Hn

equal to un on Ωn and to zero on Ψn, then ũn ⇀ uG (weakly) in any space Hk,
k = 1, 2, . . . , uG ∈ H↑ and uG solves equation (3.1) where H = H↑.

Proof. For the sake of brevity, we will write u instead of uG in the proof.
We have

cAb‖un‖21,Ωn ≤ aΩn(un, un) ≤ |Gn|1,Ωn‖un‖1,Ωn
which further implies

cAb‖un‖1,Ωn ≤ |G|1,B = C,(3.3)

where C is a positive constant independent of n. Passing to the sequence {ũn}∞n=1,
we see that it is also bounded in any fixed space Hk if n ≥ k is considered (otherwise
ũn /∈ Hk in general).
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This means that a weak limit uk ∈ Hk exists for a subsequence {ũni}
∞
i=1 of

{ũn}∞n=1. We can see, however, that also uk ∈ Hk+j , j = 1, 2, . . . .
Indeed, setting j = 1, taking v ∈ Hk+j−1 and focusing on ∂Ωk+j−1 = ∂Ωk+j−1∩

∂Φk+j , we can define u1
k+j , v

1 as the trace of uk
∣∣
Ωk+j−1

, v|Ωk+j−1
on ∂Ωk+j−1 and

u2
k+j , v

2 as the trace of uk
∣∣
Φk+j

, v|Φk+j
on ∂Ωk+j−1, respectively. Defining the

linear continuous functional on Hk+j−1

F (v) =
∫
∂Ωk+j−1

(u1
k+j − u2

k+j)(v
1 − v2) ds,

we have F (ũn) = 0 for n ≥ k + j as ũn ∈ Hn ⊂ Hk+j−1, n ≥ k + j, has no jumps
on ∂Ωk+j−1. Thus

0 = lim
i→∞

F (ũni) = F (uk) = ‖u1
k+j − u2

k+j‖20,Γk+j
.

Then we can add 1 to j and repeat the above argument.
By this we deduce that the subsequence {ũni}

∞
i=1 converges to a function u ∈ H↑.

The convergence is weak in Hk for any fixed k.
We need to prove that u solves (3.1) with H = H↑ = H1(Ω).
To this end we employ the technique which has proven itself useful in optimal

shape design, cf. [HN].
Let us choose an arbitrary v ∈ H↑ and define a subdomain Ωm ⊂ Ω,

Ωm = {x ∈ Ω : dist (x, ∂Ω) > 1/m} .(3.4)

If ni is sufficiently large, we have

I1(i) ≡ aΩni
(uni , v)

=
∫

Ωni\Ωm
(A∇uni · ∇v + buniv) dx+ aΩm(uni , v)

≡ I11(i,m) + aΩm(uni , v).

By the boundedness of A, b and uni , we can estimate

|I11(i,m)| ≤ C1‖uni‖1,Ωni‖v‖1,Ω\Ωm ≤ C2‖v‖1,Ω\Ωm ≡ C2I(m),(3.5)

where C2 > 0 does not depend on i, m.
For v fixed, aΩm(uni , v) is a linear continuous functional on Hk, k arbitrary. By

the weak convergence of uni and H↑ ⊂ Hk,

lim
i→∞

aΩm(uni , v) = aΩm(u, v).(3.6)

On the basis of (3.5) and (3.6),

−C2I(m) + aΩm(u, v) ≤ lim inf
i→∞

I1(i) ≤ lim sup
i→∞

I1(i) ≤ C2I(m) + aΩm(u, v).

The parameter m can be arbitrarily large causing I(m)→ 0 and, consequently,

lim
i→∞

I1(i) = aΩ(u, v).(3.7)

We also have

lim
i→∞

∫
Ωni

∇?G · ∇v dx =
∫

Ω

∇?G · ∇v dx.(3.8)

Combining (3.2), (3.7), and (3.8), we get (3.1) for a fixed but arbitrary function
v ∈ H↑, i.e., u solves problem (3.1).
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We also deduce that the limit function of any weakly convergent subsequence of
{ũn}∞n=1 is a solution to (3.1). The solution is unique in H1(Ω), thus the whole
sequence converges weakly to u.

We can even prove convergence in a stronger sense.

Lemma 3.2. Under the assumptions of Lemma 3.1,

lim
n→∞

aΩn(uG − un, uG − un) = 0.

Proof. Again, we abbreviate u = uG in the proof. Using (3.2) and (3.1), we estimate

I(n) ≡ aΩn(u− un, u− un) ≤ aΩ(u, u)− 2aΩn(u, un) + aΩn(un, un)

=
∫

Ω

∇?G · ∇u dx− 2
∫

Ωn

∇?G · ∇u dx+
∫

Ωn

∇?G · ∇un dx

≡ I1 − 2I2(n) + I3(n).

(3.9)

As in the proof of Lemma 3.1 (cf. (3.8)), we have

lim
n→∞

I2(n) =
∫

Ω

∇?G · ∇u dx.(3.10)

Integrating separately over Ωm and Ωn \ Ωm (see (3.4) for Ωm), we get

lim sup
n→∞

I3(n) ≤ C|G|1,Ω\Ωm +
∫

Ωm
∇?G · ∇u dx,(3.11)

where C > 0 does not depend on m. To infer (3.11) we made use of the weak
convergence and boundedness of {un}∞n=1.

Taking into account (3.9)-(3.11), we can estimate

0 ≤ lim sup
n→∞

I(n) ≤ −
∫

Ω

∇?G · ∇u dx+ C|G|1,Ω\Ωm +
∫

Ωm
∇?G · ∇u dx

= −
∫

Ω\Ωm
∇?G · ∇u dx+ C|G|1,Ω\Ωm .

Since the magnitude of m is arbitrary, lim
n→∞

I(n) = 0.

Remark 3.1. Lemmas 3.1 and 3.2 remain valid even if Ω is a domain with a crack
approached by an increasing sequence of subdomains Ωn. If Ωn ↗ Ω, then we do
not need to assume ∂Ω = ∂Ω. The Neumann problem is stable from inside for any
Ω.

Remark 3.2. To reformulate Lemmas 3.1 and 3.2 if a0
Ω is substituted for aΩ, we

have to define Hn as factor spaces with respect to the space of constants, omit the
nondifferentiated term in the definition of [u, v]n, and use the seminorm |un|1,Ωn
instead of ‖un‖1,Ωn in (3.3). The proofs remain basically unchanged.

We will focus on a sequence Ωn ↘ Ω now, i.e., Ω ⊂ Ωn+1 ⊂ Ωn+1 ⊂ Ωn and⋂∞
n=1 Ωn = Ω.
Unlike the previous case, we simply define Hn = H1(Ωn). The Hilbert space H↓

is defined as the ‖ · ‖1,Ω-closure of all functions continuous together with their first
derivatives on a neighborhood of Ω. In general, H↓ ⊂ H↑ = H1(Ω).
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Lemma 3.3. Let Ωn ↘ Ω and un ∈ Hn solve equation (3.2). Then

lim
n→∞

aΩ(uG − un, uG − un) = 0,(3.12)

where uG ∈ H = H↓ solves (3.1).

Proof. As before, we will simply write u instead of uG hereafter. By an argument
similar to that used to infer (3.3),

cAb‖un‖1,Ω ≤ cAb‖un‖1,Ωn ≤ C,(3.13)

where C > 0 is independent of n. Again, a sequence {uni |Ω}
∞
i=1 converging weakly

to a function u ∈ H↓ exists. Indeed, any un falls into the H1(Ωn)-closure of smooth
functions on Ωn, i.e., un|Ω ∈ H↓ because Ω ⊂ Ωn.

To prove that u solves (3.1), we choose an arbitrary function ϕ such that it
is continuous together with its first partial derivatives on a domain Ωδ ⊃ Ω, i.e.,
ϕ|Ω ∈ H↓.

If i is sufficiently large, then we have Ωni ⊂ Ωδ which implies ϕ|Ωni ∈ H
1(Ωni).

We introduce

I1(ni) ≡ aΩni
(uni , ϕ) = aΩni\Ω(uni , ϕ) + aΩ(uni , ϕ).

Following the proof of (3.7), we deduce from the weak convergence of {uni |Ω}∞i=1

lim
i→∞

I1(ni) = aΩ(u, ϕ).(3.14)

We also have

lim
i→∞

∫
Ωni

∇?G · ∇ϕdx =
∫

Ω

∇?G · ∇ϕdx

which, together with (3.14), proves equality (3.1) for an arbitrary smooth test
function ϕ. By virtue of the density argument, we conclude that u is the solution
of problem (3.1) with H = H↓.

Using the uniqueness argument, we infer that the whole sequence {un}∞n=1 con-
verges to u weakly in H .

Let us focus on (3.12), i.e., on

0 ≤ I(n) ≡ aΩ(u− un, u− un) ≤ aΩ(u, u)− 2aΩ(u, un) + I2(n),(3.15)

where

I2(n) ≡ aΩn(un, un)

=
∫

Ωn\Ω
∇?G · ∇un dx+

∫
Ω

∇?G · ∇un dx ≡ I21(n) + I22(n).

We get

lim
n→∞

I2(n) =
∫

Ω

∇?G · ∇u dx = aΩ(u, u)(3.16)

as a consequence of |I21(n)| ≤ Ca−1
Ab |G|1,Ωn\Ω (see (3.13)) and the weak convergence

un ⇀ u.
Using the latter, (3.16), and passing to the limit in (3.15), we finish the proof by

lim
n→∞

I(n) = 0.
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We have shown that Ω is stable from outside and H↓ ⊂ H↑. The latter admits
H↓ 6= H↑.

If H↓ = H↑, then uG = uG and Ω is stable in the sense that the limit of solutions
coincides with the unique solution of the Neumann problem on the limit domain Ω.

If Ω is stable with respect to monotone sequences of domains, then it is also
stable with respect to any (including nonmonotone) sequence {Ωn}∞n=1 converging
to Ω in the set sense. We postpone the proof because we will need some results
contained in Section 4. The general stability issue will be treated in Section 5.

Our next goal is to ensure the continuity of solutions of the Neumann problem
with respect to a sequence of domains Ωn. We wish to characterize the stable
domain.

We use different definitions of the space H in Lemma 3.1 and Lemma 3.3, re-
spectively, and we need to get an identical space in both cases. To guarantee that
Ω is stable with respect to the Neumann problem (N-stable), it is not sufficient to
have only ∂Ω = ∂Ω (see [M, page 14] or [K] for a counterexample).

Let us remind the σ property as defined in [B2, Definition 5.3].

Definition 3.1. A domain Ω ⊂ Ω ⊂ B has the σ property if for any point X ∈ ∂Ω
there exist an open ball BX ⊂ BX ⊂ B with the center X and a vector 0 6= vX ∈ R2

such that (BX ∩ Ω)tvX ⊂ Ω for any t ∈ (0, 1], where (BX ∩ Ω)tvX =
{
x ∈ R2 :

x+ tvX ∈ BX ∩ Ω
}

.

If the boundary of a domain can be locally defined by a function, then the domain
has the σ property (see [B2, Remark 3, p. 170]).

Let us recall that a domain Ω is called starshaped if a point z ∈ Ω exists such
that any ray with origin z has a unique common point with ∂Ω.

The following theorem addresses the stability problem.

Theorem 3.1. Let us have sequences {un1}
∞
n1=1 and {un2}

∞
n2=1 of solutions of the

Neumann problem on domains Ωn1 ↗ Ω and Ωn2 ↘ Ω, respectively. Let ∂Ω = ∂Ω
and Ω be starshaped or have the σ property. Then for any G ∈ H1

0 (B), uG = uG

in Lemmas 3.1–3.3.

Proof. If Ω is starshaped, then, due to [M, Theorem 1.1.6/1], the space C∞(Ω) is
dense in H1(Ω), i.e., H↓ = H↑ (see also [B2, Theorem 9.3]).

According to [B2, Theorem 9.4], Ω is N-stable with respect to a k-harmonic op-
erator if it belongs to the Nikodym family of domains and possesses the σ property.
The proof refers to [B2, Theorem 5.5] and is directly applicable to the operator
defined through aΩ from (2.2). In that case, the σ property alone is sufficient to en-
force the N-stability because the Nikodym domain assumption is no longer needed
as the space H↓ is the closure in the H1-norm (see also Remark 3.3).

Remark 3.3. As regards a0
Ω, Lemma 3.3 holds with a0

Ω in (3.12) and the first semi-
norms in (3.13). The space H↓ is given as the closure in | · |1,Ω seminorm which
becomes a norm in spaces factored with respect to constants. In general, elements
of H↓ can be distributions the first partial derivatives of which are square integrable
functions.

Then Theorem 3.1 is also valid under the assumption that ∂Ω = ∂Ω, Ω has the
σ property, and Ω belongs to the Nikodym family of domains (see [B2, Theorem
9.4]). Let us recall that Ω is a Nikodym domain if any function, the first generalized
derivatives of which are square integrable, is also square integrable on Ω. A sufficient
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condition for being a domain of the Nikodym type is the cone property (see [B2,
Remark 1, p. 200]), which is obviously satisfied if Ω is Lipschitz, for instance.

Remark 3.4. The technique used in this section to prove convergence can be directly
applied to problem (2.9) with volume loads and (2.7) instead of (2.5). Functions f ,
G1 and G2 can be treated in a similar way as function G.

Remark 3.5. In our formulation, the stability of the domain with respect to the
Neumann boundary value problem is the same for homogeneous and nonhomoge-
neous boundary conditions. It is not true for the classical formulation (cf. Exam-
ple 1.2).

4. Estimates

In the previous section, we proved convergence of solutions of the Neumann
problem. In the current one, we will estimate the difference between solutions on
different but “close” domains. To make ideas more lucid, we start with a general
estimate and then temporarily confine ourselves to a rather special class of domains.
Besides the norm ‖ · ‖1,Ω we will also use the energy norm ‖ · ‖A,Ωdef=

(
aΩ(·, ·)

)1/2
and seminorm | · |A,Ωdef=

(
a0

Ω(·, ·)
)1/2. By (2.2)-(2.3) both norms are equivalent.

Let domains Ωlow, Ωup and Ω, Ωlow ⊂ Ω ⊂ Ω ⊂ Ωup ⊂ Ωup ⊂ B ⊂ R2, be
given such that ∂Ωlow, ∂Ωup are Lipschitz and ∂Ω = ∂Ω but Ω is not necessarily
N-stable. If Ω is unstable, then H↓ $ H↑ = H1(Ω), where H↓ is defined by means
of a sequence {Ωn}∞n=1, Ωn ↘ Ω. Approaching Ω by a nonmonotone sequence
Ωm → Ω, we could get that the respective solutions um either do not converge or
converge to a function ũ ∈ H̃ solving (3.1) with H = H̃ , where H̃ is a space such
that H↓ ⊂ H̃ ⊂ H↑. It can be uG 6= ũ 6= uG. Though Ω could be N-unstable, it can
still be approximated by reasonable domains Ωlow and Ωup. This offers a possibility
to approximate ũ by the solution of the Neumann boundary value problem on Ωlow

or Ωup.
Having Ωm → Ω, we observe that Ωlow ⊂ Ωm ⊂ Ωm ⊂ Ωup for sufficiently large

m. As in the previous paragraph, we can ask what the difference between um and
the solution on Ωup (or Ωlow) might be.

We denote the solution of (3.1) defined for Ω1
def=Ωlow, H = H1(Ω1), and Ω3

def=Ωup,
H = H1(Ω3) by u1 and u3, respectively. Let u2 be the solution of (3.1) on a domain
between Ω1 and Ω3.

We can choose between several possibilities. If Ω is N-unstable and the above-
mentioned space H̃ is considered, then we can set Ω2 = Ω and u2 equivalent to the
solution of (3.1) with H = H̃ , H↓ ⊂ H̃ ⊂ H↑. If Ω is N-stable, then Ω2 = Ω and
u2 solves (3.1) with H = H̃ = H1(Ω). If Ωm is in focus instead of Ω, then we can
put Ω2 = Ωm and u2 ∈ H solves (3.1) with H = H1(Ωm).

As the estimates will depend neither on the stability assumption nor on our
particular choice of Ω2 and u2, any fixation of Ω2 and u2 is the matter of formalism.
We stick to Ω2

def=Ω and u2 ∈ H̃.
We will also need u12 and u23, solutions to auxiliary problems on Ω12

def=Ω2 \ Ω1

and Ω23
def=Ω3 \ Ω2, respectively. We define Ω13

def=Ω3 \ Ω1.
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We seek u12 ∈ H1(Ω12), u23 ∈ H1(Ω23) such that∫
Ω12

(A∇u12 · ∇v + bu12v) dx =
∫

Ω12

∇?G · ∇v dx ∀v ∈ H1(Ω12),∫
Ω23

(A∇u23 · ∇v + bu23v) dx =
∫

Ω23

∇?G · ∇v dx ∀v ∈ H1(Ω23).
(4.1)

Based on (4.1), the estimate

‖ui‖2A,Ωi =
∫

Ωi

∇?G · ∇ui dx ≤ |G|1,Ωi |ui|1,Ωi , i = 12, 23,(4.2)

provides us with some assessment of u12, u23 if we put an assumption on G ∈ H1(B)
and apply the Schwarz inequality to (4.2).

Lemma 4.1. Assume ∇G ∈ [L∞(Ωi)]2, i = 12, 23. Then

‖ui‖A,Ωi ≤
√

2 (meas Ωi)
1/2

c
−1/2
Ab ‖∇G‖∞,Ωi ,(4.3)

where ‖∇G‖∞,Ωi = max
(
‖∂G/∂x1‖∞,Ωi , ‖∂G/∂x2‖∞,Ωi

)
.

Let us introduce the space H12 = H1(Ω1) × H1(Ω12) and H23 = H1(Ω2) ×
H1(Ω23) endowed with the scalar product and the norm induced by the scalar
product and the norm on respective component spaces. We can use the same
symbols as for the scalar product and the norm on H1(Ω2) as well as H1(Ω3)
because

meas(Ω2 \ (Ω1 ∪ Ω12)) = 0 = meas(Ω3 \ (Ω2 ∪ Ω23)).

The following lemma shows a relationship between solutions of the Neumann
problems on embedded domains. The couple (u1, u12) belongs to H12 and (u2, u23)∈
H23.

Lemma 4.2. Assume G ∈ H1(Ω3). Let PΩ2 : H12 → H̃ and PΩ3 : H23 → H1(Ω3)
be the (·, ·)A,Ω2-orthogonal and the (·, ·)A,Ω3-orthogonal projection mapping, respec-
tively. Then PΩ2(u1, u12) = u2, PΩ3(u2, u23) = u3, and

‖u2‖2A,Ω2
≤ ‖u1‖2A,Ω1

+ ‖u12‖2A,Ω12
, ‖u3‖2A,Ω3

≤ ‖u2‖2A,Ω2
+ ‖u23‖2A,Ω23

.(4.4)

Proof. Let us notice that if v ∈ H̃ , then v|Ω1
∈ H1(Ω1) and v|Ω12

∈ H1(Ω12) as
H̃ ⊂ H1(Ω2). It is easy to show u2 = PΩ2(u1, u12); i.e., for any v ∈ H̃(

(u1, u12)− u2, v
)
A,Ω2

= aΩ1(u1, v) + aΩ12(u12, v)− aΩ2(u2, v)

=
∫

Ω1

∇?G · ∇v dx+
∫

Ω12

∇?G · ∇v dx−
∫

Ω2

∇?G · ∇v dx = 0.

Similarly, u3 = PΩ3(u2, u23) as
(
(u2, u23)−u3, v

)
A,Ω3

= 0 due to v|Ω2
∈ H↓ ⊂ H̃

if v ∈ H1(Ω3).
The norm of the projection mappings PΩ2 , PΩ3 is equal to 1, which implies

inequalities (4.4).
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We can derive one simple observation from Lemma 4.2. Since (u1, u12)− u2 and
u2 are orthogonal with respect to (·, ·)A,Ω2 and (4.4) holds, we get

‖u2 − u1‖2A,Ω1
≤
∥∥(u1, u12)− u2

∥∥2

A,Ω2

= ((u1, u12), (u1, u12))A,Ω2
− (u2, (u1, u12)− u2 + u2)A,Ω2

= ‖u1‖2A,Ω1
+ ‖u12‖2A,Ω12

− ‖u2‖2A,Ω2

≤ ‖u1‖2A,Ω1
− ‖u3‖2A,Ω3

+ ‖u12‖2A,Ω12
+ ‖u23‖2A,Ω23

.

(4.5)

Remark 4.1. Estimate (4.5) gives a hint for computation. We can approximate the
unknown domain Ω2 from inside and outside by Ω1 and Ω3, respectively. Then we
approximate u1, u3 by a numerical solution and estimate ‖u12‖2A,Ω12

+ ‖u23‖2A,Ω23

by Lemma 4.1.

We will be interested in the value ‖u2 − u1‖A,Ω1 . We already know that, under
some assumptions, ‖u12‖2A,Ω12

and ‖u23‖2A,Ω23
can be “small” quantities (see Lemma

4.1). We also feel that if Ω1 and Ω3 are not much different, then the same should
hold for respective norms of u1 and u3. Plugging such results into (4.5), we would
arrive at a desired estimate.

The previous paragraph describes our goal for what follows. First, however, we
confine ourselves to a particular family of domains. To simplify the notation, we also
assume that b as well as all entries of the matrix A are constants. A generalization
to nonconstant A and b is straightforward and only technical.

Starshaped domains. Throughout this subsection, we deal with domains Ω1, Ω2,
and Ω3 having the following properties: Ω1 is a domain starshaped with respect to
the origin of the coordinate system,

Ω3 =
{
y ∈ R2 : y/α ∈ Ω1

}
,

where α > 1 is a given constant, and Ω1 ⊂ Ω2 ⊂ Ω2 ⊂ Ω3 ⊂ Ω3 ⊂ B. Domain Ω2

can be N-unstable.
As in previous paragraphs, we use subscripts 1, 2, 3 to tag the solution u of (3.1)

respective to the domains just introduced.
We define mapping κ(x) = αx, y = κ(x), which maps Ω1 onto Ω3. If a function

u is differentiable on Ω1 and v(y) = v(κ(x)) = u(x), then elementary calculus leads
to

∂v

∂y1
=
(
∂u

∂x1

∂κ2

∂x2
− ∂u

∂x2

∂κ2

∂x1

)
/D,

∂v

∂y2
=
(
∂u

∂x2

∂κ1

∂x1
− ∂u

∂x1

∂κ1

∂x2

)
/D,(4.6)

where D = ∂y1/∂x1 ∂y2/∂x2 − ∂y2/∂x1 ∂y1/∂x2.
In our particular case,

D = α2, ∂v/∂y1 = α−1∂u/∂x1, ∂v/∂y2 = α−1∂u/∂x2.(4.7)

As a consequence, we can infer, using the substitution theorem, that if v ∈ H1(Ω3),
v(y) = v(κ(x)) = u(x), u ∈ H1(Ω1), then

|v|1,Ω3 = |u|1,Ω1 , |v|A,Ω3 = |u|A,Ω1 ,

‖v‖21,Ω3
= |u|21,Ω1

+ α2|u|0,Ω1 ,(4.8)

‖v‖2A,Ω3
= |u|2A,Ω1

+ α2b|u|20,Ω1
≥ ‖u‖2A,Ω1

.
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We can transform the solution u1 into u1α(y) = u1α(κ(x)) = u1(x) and compare
it to u3 because both functions are defined on Ω3. To this end we define G1α(y) =
G1α(κ(x)) = G1(x), G1 ≡ G|Ω1

and formulate a few auxiliary lemmas.

Lemma 4.3. Function u1α ∈ H1(Ω3) solves the equation∫
Ω3

(A∇u1α · ∇v + α−2bu1αv) dy =
∫

Ω3

∇?G1α · ∇v dy ∀v ∈ H1(Ω3).(4.9)

Proof. We introduce v̂(x) = v(κ(x)). Then (4.7) and the substitution theorem give∫
Ω3

(A∇yu1α · ∇yv + α−2bu1αv) dy

=
∫

Ω1

[A(α−1∇xu1) · (α−1∇xv̂)α2 + bu1v̂] dx

= aΩ1(u1, v̂) =
∫

Ω1

∇?xG1 · ∇xv̂α2/α2 dx =
∫

Ω3

∇?yG1α · ∇yv dy,

where subscripts x and y indicate the variable we use in differentiation.

Referring to the equalities

aΩ3(u3 − u1α, v)

=
∫

Ω3

[A∇(u3 − u1α) · ∇v + b(u3 − u1α)v] dy

=
∫

Ω3

∇?G · ∇v dy

−
∫

Ω3

[A∇u1α · ∇v + α−2bu1αv] dy − (α2 − 1)α−2

∫
Ω3

bu1αv dy

=
∫

Ω3

∇?G · ∇v dy −
∫

Ω3

∇?G1α · ∇v dy − (α2 − 1)α−2

∫
Ω3

bu1αv dy

and to the inequality

‖u1‖2A,Ω1
=
∫

Ω1

∇?G · ∇u1 dx ≤ c−1/2
Ab |G|1,Ω1‖u1‖A,Ω1 ,

we can estimate∣∣aΩ3(u3 − u1α, v)
∣∣ ≤ |v|1,Ω3 |G−G1α|1,Ω3 + (α2 − 1)α−2b‖u1α‖0,Ω3‖v‖0,Ω3

≤ ‖v‖1,Ω3

(
|G−G1α|1,Ω3 + (α2 − 1)b‖u1‖0,Ω1

)
≤ ‖v‖1,Ω3

(
|G−G1α|1,Ω3 + (α2 − 1)

√
b‖u1‖A,Ω1

)
≤ ‖v‖1,Ω3

(
|G−G1α|1,Ω3 + (α2 − 1)

√
bc
−1/2
Ab |G|1,Ω1

)
.

(4.10)

Before we make the next step in estimating (4.10), let us formulate Lemma 4.4,
which takes its motivation from [M].

Lemma 4.4. Let ϕ ∈ L1(Ω3) ∩ C(Ω3) be a nonnegative function, and let ε0 =
(α− 1)d0, d0 = supx∈Ω1

‖x‖R2 . Then∫
Ω1

(∫ αx

x

ϕ(z) dz
)

dx ≤ ε0

∫
Ω3

ϕ(x) dx.
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Proof. We follow an idea which can be found in the proof of [M, Lemma 1.4.6].
We reformulate the integral on the left-hand side. To this end we define the

function ε(x) = (α − 1)‖x‖R2 . Its value at x is equal to the length of the segment
(x, αx). It holds ε0 ≤ (α − 1)diamΩ1. We can define ϕ(x) = 0 if x /∈ Ω3 and
estimate ∫

Ω1

(∫ αx

x

ϕ(z) dz
)

dx =
∫

Ω1

(∫ ε(x)

0

ϕ
(
x+ t

x

‖x‖R2

)
dt
)

dx

≤
∫

Ω1

(∫ ε0

0

ϕ
(
x+ t

x

‖x‖R2

)
dt
)

dx ≡ I.

To estimate I, we define φ(x, t) ≡ ϕ
(
x+ t x

‖x‖R2
)
, Iφ(t) ≡

∫
Ω1
φ(x, t) dx, and circles

c(r) with the center at the origin and the radius r ∈ (0, d0). Then

Iφ(t) =
∫ d0

0

∫
c(r)

φ(s, t) ds dr ≤
∫ d0

0

∫
c(r+t)

φ(s, 0) ds dr

≤
∫ d0+t

0

∫
c(r)

φ(s, 0) ds dr ≤
∫

Ω3

φ(x, 0) dx.

The first inequality is due to the fact that φ(·, t) and φ(·, 0) have identical values
along c(r) and c(r + t), respectively, but the length of the circles is different. Thus

I =
∫ ε0

0

Iφ(t) dt ≤
∫ ε0

0

(∫
Ω3

ϕ(x) dx
)

dt = ε0

∫
Ω3

ϕ(x) dx.

Lemma 4.5. Let G ∈ H2(Ω3) and d0 be defined as in Lemma 4.4. Then

|G−G1α|21,Ω3
≤ 2α2(α− 1)2

(
d0|G|2,Ω3 + |G|1,Ω1

)2

.(4.11)

Proof. We will write Gα instead of G1α. First we suppose G ∈ C∞(B). Then Gα
is also smooth. As regards Gα, we will distinguish between differentiating with
respect to y = (y1, y2) ∈ Ω3 and x = (x1, x2) ∈ Ω1, i.e., if we confine ourselves to
x1, y1 only,

Gα,y1(ỹ) ≡ ∂Gα(ỹ)
∂y1

=
∂Gα(y(x̃))

∂y1
=

1
α

∂G(x̃)
∂x1

, ỹ = αx̃.

If fixed G and nonexpanded Ω1 are considered, then we can write

∂G(x)
∂x1

∣∣∣∣
x=x̃

=
∂G(y)
∂y1

∣∣∣∣
y=x̃

, x̃ ∈ Ω1 ⊂ Ω3.(4.12)

It is sufficient to show only an estimate for G,y1 and Gα,y1 . We use ε0 as in
Lemma 4.4. Making use of the above equalities, we obtain

G,y1(ỹ)−Gα,y1(ỹ) = G,y1(αx̃)− 1
α
G,x1(x̃)

= G,y1(αx̃)−G,y1(x̃) +
α− 1
α

G,x1(x̃), ỹ ∈ Ω3, x̃ ∈ Ω1, ỹ = αx̃.
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Thus we have

I ≡
∫

Ω3

(G,y1 −Gα,y1)2 dy

=
∫

Ω1

[(
G,y1(αx) −G,y1(x)

)2
+ 2
(
G,y1(αx) −G,y1(x)

)
G,x1(x)

α − 1
α

+
(
G,x1(x)

α− 1
α

)2]
α2 dx

≡ I1 + I2 + I3.

(4.13)

Taking into account

|G,y1(αx) −G,y1(x)| ≤
∫ αx

x

|∇G,y1(z)| dz,

the Schwarz inequality, and Lemma 4.4, we deduce

I1 ≤
∫

Ω1

(∫ αx

x

|∇G,y1 | dz
)2

α2 dx

≤ α2

∫
Ω1

ε0

(∫ αx

x

|∇G,y1 |2 dz
)

dx ≤ α2ε2
0

∫
Ω3

|∇G,y1 |2 dx.
(4.14)

By the Schwarz inequality and α > 1,

|I2| ≤ 2α2(α− 1)ε0

(∫
Ω3

|∇G,y1 |2 dx
)1/2(∫

Ω1

G2
,x1

dx
)1/2

.(4.15)

We estimate I3 by

I3 = (α − 1)2

∫
Ω1

G2
,x1

dx ≤ α2(α − 1)2

∫
Ω1

G2
,x1

dx.(4.16)

Combining (4.13)-(4.16) and the definition of ε0, we get

I ≤ α2(α − 1)2
[
d0

(∫
Ω3

|∇G,y1 |2 dx
)1/2

+
(∫

Ω1

G2
,x1

dx
)1/2]2

.

We can infer a similar estimate for G,y2 − Gα,y2 and, consequently, (4.11) for
smooth G. Since smooth functions are dense in H2(Ω3), the proof is finished.

Lemma 4.6. Under the assumptions of Lemma 4.5,

‖u3 − u1α‖A,Ω3 ≤ (α− 1)θ,(4.17)

where

θ =
√

2c−1/2
Ab α

(
d0|G|2,Ω3 + |G|1,Ω1

)
+
√
bc−1
Ab (α + 1)|G|1,Ω1 .

Proof. Applying (4.10) with v = u3 − u1α and (4.11), we estimate

‖u3 − u1α‖2A,Ω3
≤ ‖u3 − u1α‖1,Ω3

(
|G−G1α|1,Ω3 + (α2 − 1)

√
bc
−1/2
Ab |G|1,Ω1

)
≤ c−1/2

Ab ‖u3 − u1α‖A,Ω3

[√
2α(α − 1)

(
d0|G|2,Ω3 + |G|1,Ω1

)
+ (α2 − 1)

√
bc
−1/2
Ab |G|1,Ω1

]
.

Cancelling ‖u3 − u1α‖A,Ω3 on both sides, we get (4.17).



1360 IVO BABUŠKA AND JAN CHLEBOUN

We can start to estimate the right-hand side of (4.5).

Lemma 4.7. Under the assumptions of Lemma 4.5,

‖u1‖2A,Ω1
− ‖u3‖2A,Ω3

≤ (α− 1)θc−1/2
Ab (|G|1,Ω1 + |G|1,Ω3) .

Proof. The inequality in (4.8), the triangle inequality, and (4.17) lead to

‖u1‖A,Ω1 ≤ ‖u1α‖A,Ω3 ≤ ‖u1α − u3‖A,Ω3 + ‖u3‖A,Ω3

≤ (α− 1)θ + ‖u3‖A,Ω3 .
(4.18)

Since both u1 and u3 solve (3.1) on Ω1 and Ω3, respectively, we get

‖ui‖2A,Ωi ≤ ‖ui‖1,Ωi |G|1,Ωi ≤ c
−1/2
Ab ‖ui‖A,Ωi |G|1,Ωi , i = 1, 3.(4.19)

Transferring ‖u3‖A,Ω3 to the left-hand side of (4.18), cancelling ‖ui‖A,Ωi on both
sides of (4.19), and plugging the quantities into

‖u1‖2A,Ω1
− ‖u3‖2A,Ω3

=
(
‖u1‖A,Ω1 − ‖u3‖A,Ω3

)(
‖u1‖A,Ω1 + ‖u3‖A,Ω3

)
,

we finish the proof.

Theorem 4.1. Let ∇G ∈ [L∞(Ω13)]2 and G ∈ H2(Ω3). Then

‖u2 − u1‖2A,Ω1

≤ (α− 1)c−1/2
Ab

[
θ (|G|1,Ω1 + |G|1,Ω3) + 2(α+ 1) meas Ω1c

−1/2
Ab ‖∇G‖2∞,Ω13

]
,

where θ is defined in Lemma 4.6.

Proof. By virtue of (4.5), Lemma 4.7, Lemma 4.1, and meas Ω13 = (α2−1) meas Ω1,

‖u2 − u1‖2A,Ω1
≤ ‖u1‖2A,Ω1

− ‖u3‖2A,Ω3
+ ‖u12‖2A,Ω12

+ ‖u23‖2A,Ω23

≤ (α− 1)θc−1/2
Ab (|G|1,Ω1 + |G|1,Ω3 ) + 2(α2 − 1) meas Ω1c

−1
Ab‖∇G‖2∞,Ω13

.

Remark 4.2. As in the previous section, aΩ can be replaced by a0
Ω. Then all results

remain valid provided that we also substitute the first seminorm for the Sobolev
norm and consider factor spaces H1/P instead of the Sobolev spaces H1 at appro-
priate places. Some parts would be even simpler as a result of b = 0 (see e.g., (4.8)
and Lemma 4.6).

Remark 4.3. Let us emphasize that the estimate in Theorem 4.1 does not depend
on the particular choice of u2, i.e., H̃ . The estimate covers all possibilities discussed
in the introductory part of Section 4.

Remark 4.4. The same upper bound as in Theorem 4.1 can be applied to estimate
‖u3 − u2‖2A,Ω2

. Indeed, by Lemma 4.2 (cf. (4.5))

‖u3 − u2‖2A,Ω2
≤ ‖u3 − (u2, u23)‖2A,Ω3

= ‖u2‖2A,Ω2
+ ‖u23‖2A,Ω23

− ((u2, u23)− u3 + u3, u3)A,Ω3

≤ ‖u1‖2A,Ω1
+ ‖u12‖2A,Ω12

+ ‖u23‖2A,Ω23
− ‖u3‖2A,Ω3

,

and the last part coincides with the right-hand side of (4.5).
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Domains with the Lipschitz boundary. We would like to generalize the idea
utilized in the previous subsection to not necessarily starshaped domains, namely
to the class of domains with the Lipschitz boundary.

Having a starshaped domain Ω1, we can easily “blow it up” to get a superdomain
Ω3 ⊃ Ω2 ⊃ Ω2 ⊃ Ω1. The following lemma shows that we can blow up even more
general domains, though the mapping doing this job is not as simple as before.

Lemma 4.8. Let Ω1 be a domain with the Lipschitz boundary. Then a parameter
ε0 can be found such that for any ε, 0 < ε ≤ ε0, a smooth mapping κε and a domain
Ωε3 exist and it holds Ωε3 = κε(Ω1), Ω1 ⊂ Ωε3. Moreover, dist(x,Ω1) ≤ εC for any
x ∈ Ωε3 \ Ω1, where C is an arbitrary constant greater than one.

Proof. The idea of the proof comes from the technique used in [N1] and [N2]. The
proof is outlined as follows.

The Lipschitz boundary can be locally defined as a graph of a Lipschitz function.
This can be closely approximated by a smooth function. By means of such functions
certain local mappings will be defined. These together with the partition of unity
will lead to the mapping κε.

Let S be a global Cartesian coordinate system for Ω1. According to the definition
of the Lipschitz boundary (see [NH] or, equivalently, [N2]), there exist real numbers
α > 0 and β > 0 such that for each x0 ∈ ∂Ω1 we can rotate and translate S to
get a local Cartesian system S′x0

having the following properties: the origin of
S′x0

coincides with x0; a Lipschitz continuous function ω exists in S′x0
such that it

maps the segment (−α, α) onto a part of the boundary ∂Ω1 and, moreover, the sets
defined in S′x0

as

M ′< = {x̂ = (x̂1, x̂2) : x̂1 ∈ (−α, α) and ω(x̂1)− β < x̂2 < ω(x̂1)},
M ′> = {x̂ = (x̂1, x̂2) : x̂1 ∈ (−α, α) and ω(x̂1) < x̂2 < ω(x̂1) + β}

are subsets of Ω1 and R2 \ Ω1, respectively.
In the system S′x0

, we fix the point (0, inf−α<x̂1<α ω(x̂1) − β) as the origin of
a new Cartesian coordinate system Sx0 parallel to S′x0

. Let us again denote the
function describing a part of ∂Ω1 by ω.

Our final goal is to construct a continuously differentiable mapping κ. To this
end, we first define two sets by means of the coordinate system Sx0 :

Mω = {y : y1 ∈ (−α, α) and 0 < y2 < ω(y1)},
Mβ
ω = {y : y1 ∈ (−α, α) and 0 < y2 < ω(y1) + β}.(4.20)

We can suppose that β is small enough to ensure Mω ⊂ Ω1.
We choose a small parameter ε, 0 < ε � β, and approximate ω by an infin-

itely smooth positive function η. According to [A, Lemma 2.18], we can assume
‖ω − η‖∞,(−α,α) ≤ ζ, where 0 < ζ � ε is an arbitrary small positive value.

We set up a smooth mapping κε defined on Mβ
ω as

κε(y) =
(
y1, y2 +

ε

η(y1)
γ(y1, y2)

)
, y = (y1, y2) ∈Mβ

ω ,(4.21)

where γ is a smooth function onMβ
ω , nondecreasing in y2, and such that γ(y1, 0) = 0

and γ(y1, η(y1)) = η(y1) for y1 ∈ (−α, α). Function γ is not specified in detail and
offers a possibility to appropriately adjust κε to some needs which become apparent
later.
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It holds that Mω ⊂ κε(Mω) because ζ is small. The set κε(Mω) covers ∂Ω1 in
the vicinity of x0.

The set ∂Ω1 is compact and therefore can be covered by a finite number, say
N , of domains Ui, i = 1, 2, . . . , N , defined by the same manner as Mβ

ω in (4.20).
Similarly, we consider functions ηi, mappings γi and define smooth mappings κiε on
Ui (see (4.21)). Adding just one appropriate domain UN+1 ⊂ Ω1, UN+1 ⊂ Ω1, we
get a family Θ of open sets covering Ω1, i.e.,

⋃N+1
i=1 Ui ⊃ Ω1. We can assume that

any point x ∈ Ω1 belongs at most to two sets Uj, Uk, j, k ∈ {1, 2, . . . , N}, j 6= k, and
possibly also to UN+1. Adjusting β, we can also suppose that if (Uj ∩Uk) \Ω1 6= ∅,
then (Uj ∩ Uk) ∩ Ω1 6= ∅, i.e., if Uj and Uk intersect then the intersection is not a
proper subset of R2 \ Ω1.

We define a C∞-partition of unity for Ω1 subordinate to Θ and denote its func-
tions by ϕi, i = 1, 2, . . . , N + 1 (see [N2]).

We have much freedom in defining γi so we can suppose that a constant δ,
β > δ � ε, exists such that

Ωδ = {x ∈ Ω1 : dist(x, ∂Ω1) ≤ δ} ⊂
N⋃
i=1

Ui(4.22)

and that γi(y) = 0 if y ∈ Ui \ Ωδ/2, where Ωδ/2 is defined by the parameter δ/2
used in (4.22) instead of δ. We assume Ωδ ∩ UN+1 = ∅.

To get a mapping in the global coordinate system S, we transform mappings κiε
from the local coordinate systems to the global coordinate system, and we denote
the transformed mappings by κ̃iε. We define κ̃N+1

ε on UN+1 as an identity mapping.
Finally, we introduce mappings κiε, i = 1, . . . , N + 1, defined as follows: κiε(x) =

ϕi(x)κ̃iε(x) if x ∈ Ui. By the properties of Θ, each κiε is a smooth mapping and
has its support contained in Ui.

Summing up κiε and restricting the domain of definition to Ω1, we get a smooth
mapping

κε(x) =
N+1∑
i=1

κiε(x), x ∈ Ω1.

The mapping κε is equal to the identity mapping on a subdomain of Ω1 and, if ζ,
ε, and γi are properly chosen, it maps the boundary layer Ωδ/2 of Ω1 onto a larger
layer containing ∂Ω1.

We can label ε as ε0 and repeat the above steps for a new parameter ε, 0 < ε < ε0.
Two possibilities can happen. Either ζ, ηi, γi can remain unchanged or we have to
adjust them appropriately.

We see that the constant C depends on ζ and ηi. But the smaller ζ the closer
C to one we can get.

Lemma 4.9. Let κε be the mapping from Lemma 4.8 with a parameter ε > 0.
Then

κε(x) = (y1, y2), yi = xi + eεi (x1, x2), i = 1, 2, x ∈ Ω1,

where eεi is a smooth function. Positive constants Ce, C′e independent of ε exist
such that

‖eεi‖∞,Ω1 ≤ εCe,
∥∥∥∥ ∂eεi∂xj

∥∥∥∥
∞,Ω1

≤ εC′e, i, j = 1, 2.
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As a consequence, κε is a one-to-one mapping if ε is small, i.e., εCe � 1, εC′e � 1.

Proof. We can take up the proof of Lemma 4.8. According to (4.21), any mapping
κ̃iε, i = 1, 2, . . . , N + 1, is a small perturbation of identity, i.e., κ̃iε(x) = x + eiε(x),
eN+1
ε = 0. The sum

∑N+1
i=1 ϕ(x) equals 1 if x ∈ Ω1 so

κε(x) = x+
N∑
i=1

ϕi(x)eiε(x) = x+ eε(x), eε(x) =
(
eε1(x), eε2(x)

)
.

By the properties of the partition of unity, (4.21), and Lemma 4.8,

‖eεj‖∞,Ω1 ≤ εC, j = 1, 2,

and Ce is close to one if ζ, ηi and γi are properly chosen.
Let us focus on the constant C′e. It depends on ϕi, ηi, γi, and their derivatives.

The partition of unity is fixed, therefore functions ϕi as well as overlapping parts
of Ui are fixed too.

The derivative of ηi can be bounded independently of i and ζ because ω has
a fixed Lipschitz constant along the boundary ∂Ω; i.e., ω can be approached by a
sequence of smooth functions the Lipschitz constant of which is uniformly bounded,
but possibly different.

Also, functions γi though indirectly dependent on ε can be constructed in such
a way that their first derivatives are bounded independently of ε.

We infer that functions ϕi as well as ηi and γi are smooth with first derivatives
bounded in Ω1 independently of ε. Thus an εC′e bound is guaranteed.

Remark 4.5. Due to the assumption made in the proof of Lemma 4.8, κε maps a
δ/2-layer along ∂Ω1 onto a (δ/2 + ε)-layer containing ∂Ω1. The role ε plays here is
similar to that of α− 1 in the starshaped domain case. We have a lot of freedom in
choosing γi and thus ensuring both the invertibility of κε and a reasonable value
of C′e.

By Lemma 4.9, κε can be constructed as a small perturbation of the identity
mapping. As a consequence, we can immediately formulate the statement of Lemma
4.9 for the inverse mapping κ−1

ε .

Lemma 4.10. Let κε be the mapping from Lemma 4.9 restricted to Ω1, and Ωε3 =
κε(Ω1). Then κ−1

ε (y) = (x1, x2), where xi = yi+ gεi (y1, y2), i = 1, 2, maps Ωε3 onto
Ω1. Also, positive constants Cg, C′g, independent of ε, exist such that ‖gεi ‖∞,Ω3 ≤
εCg, ‖∂gεi /∂xj‖∞,Ω3 ≤ εC′g.

In the next parts, we will follow the ideas presented in the course of the already
performed analysis of starshaped domains. In contrast to it, we will face formulae
complicated by some additional terms, the order of which, however, will be equal
to ε.

We again deal with domains Ω1, Ω2, and, omitting the superscript ε,

Ω3 =
{
y ∈ R2 : ∃x ∈ Ω1 y = κε(x)

}
,

where κε is the mapping from Lemma 4.9, Ω1 ⊂ Ω2 ⊂ Ω2 ⊂ Ω3 ⊂ Ω3 ⊂ B, and Ω2

can be N-unstable.
Focusing on κ−1

ε : Ω3 → Ω1 and a differentiable function w(x) = w(κ−1
ε (y)) =

v(y), we evaluate quantities corresponding to (4.6) applied to κ−1
ε ; i.e., the roles of
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xi and yi are interchanged:

D = 1 +
∂g1

∂y1
+
∂g2

∂y2
+
∂g1

∂y1

∂g2

∂y2
− ∂g2

∂y1

∂g1

∂y2
,

∂w

∂x1
=
[
∂v

∂y1

(
1 +

∂g2

∂y2

)
− ∂v

∂y2

∂g2

∂y1

]
/D,(4.23)

∂w

∂x2
=
[
∂v

∂y2

(
1 +

∂g1

∂y1

)
− ∂v

∂y1

∂g1

∂y2

]
/D.

We can write ∇xw = (∇yv +Mg∇yv) /D, where the 2× 2 matrix Mg comprises
partial derivatives of g1 and g2. Let us notice that D > 0 if ε is sufficiently small.

We introduce u1ε(y) = u1ε(κε(x)) = u1(x) and transfer aΩ1(u1, w) from Ω1 to
Ω3 ∫

Ω1

(A∇u1 · ∇w + bu1w dx)

=
∫

Ω3

A(∇yu1ε +Mg∇yu1ε) · (∇yv +Mg∇yv)|D|/D2 dy

+
∫

Ω3

bu1εv|D| dy

=
∫

Ω3

A∇u1ε · ∇vD−1 dy + â(g;u1ε, v) +
∫

Ω3

bu1εvD dy

= aΩ3(u1ε, v) + ag(u1ε, v).

(4.24)

The forms â and ag comprise terms with Mg and 1−D, it is D−1 = 1+(1−D)/D.
On the basis of Lemma 4.10,

|ag(u1ε, v)| ≤ εĈ1‖u1ε‖1,Ω3‖v‖1,Ω3 ≤ εĈ1C̃1|G|1,Ω1‖v‖1,Ω3

≤ εC1|G|1,Ω1‖v‖1,Ω3 , v ∈ H1(Ω3),
(4.25)

because ‖u1ε‖1,Ω3 ≤ c−1
Ab |G|1,Ω1 + ‖u1‖1,Ω1O(ε) ≤ C̃1|G|1,Ω1 as can be seen from

(4.23), (2.6), and (2.3).
Denoting G1ε(y) = G1(κ−1

ε (y)) = G1(x), G1 ≡ G|Ω1
, we have∫

Ω1

∇?xG1 · ∇xw dx

=
∫

Ω3

(
∇?G1ε +M?

g∇?G1ε

)
·
(
∇v +Mg∇v

)
|D|/D2 dy(4.26)

=
∫

Ω3

∇?G1ε · ∇v dy + Eg(G1ε, v),

where M?
g comprises permuted elements of Mg and Eg(G1ε, ·) is a continuous linear

form on H1(Ω3). Again, a positive constant C2 independent of ε exists such that

|Eg(G1ε, v)| ≤ εC2|v|1,Ω3 .(4.27)

By (4.24) and (4.26), u1ε ∈ H1(Ω3) solves the equation

aΩ3(u1ε, v) + ag(u1ε, v) =
∫

Ω3

∇?G1ε · ∇v dy + Eg(G1ε, v) ∀v ∈ H1(Ω3).
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Let us remark that κε and κ−1
ε transform H1(Ω1) onto H1(Ω3) and vice versa,

respectively, because both mappings are sufficiently smooth quasi-isometric map-
pings (see [M, Section 1.1.7]).

Our aim is to derive an estimate assessing the difference between u1ε and u3, the
solution of (2.6) on Ω3, cf. (4.10). We start with (see (4.25), (4.27))

|aΩ3(u3 − u1ε, v)|

=
∣∣∣∣∫

Ω3

∇?
(
G−G1ε

)
· ∇v dy + ag(u1ε, v)− Eg(G1ε, v)

∣∣∣∣(4.28)

≤ ‖v‖1,Ω3

(
|G−G1ε|1,Ω3

+ εC1|G|1,Ω1 + εC2

)
.

We are at the point of estimating |G − G1ε|1,Ω3 , i.e., we need to generalize
Lemma 4.5. To this end we put two additional assumptions on κε. First, we
suppose onwards that any two points x and κε(x), x ∈ Ω1, can be connected by a
straight segment lying in Ω3. Second, as κε are rather unspecified mappings, we
have to assume that a generalization of Lemma 4.4 holds, i.e., if ϕ ∈ L1(Ω3)∩C(Ω3)
is a nonnegative function, then∫

Ω1

∫ κ(x)

x

ϕ(z) dz dx ≤ εC
∫

Ω3

ϕ(x) dx,(4.29)

where C > 0 does not depend on ε.

Lemma 4.11. Let G ∈ H2(Ω3) and G1ε be the composite of G|Ω1
and κ−1

ε from
Lemma 4.10. Then

|G−G1ε|1,Ω3 ≤ εC3 (|G|1,Ω1 + |G|2,Ω3) ,

where C3 is a positive constant independent of ε and G.

Proof. We will write Gε and κ instead of G1ε and κε, respectively. First, we assume
that G ∈ C∞(B). Then Gε is also smooth on Ω3.

By Lemma 4.9 and (4.23) adapted to κ, we observe, if ỹ = (ỹ1, ỹ2) = κ(x̃) and

D̃ = 1 +
∂e1

∂x1
+
∂e2

∂x2
+
∂e1

∂x1

∂e2

∂x2
− ∂e2

∂x1

∂e1

∂x2
,

that

Gε,y1(ỹ) ≡ ∂Gε(ỹ)
∂y1

=
[
∂G(x̃)
∂x1

(
1 +

∂e2(x̃)
∂x2

)
−∂G(x̃)

∂x2

∂e2(x̃)
∂x1

]
/D̃(x̃)

=
∂G(x̃)
∂x1

+
∂G(x̃)
∂x1

1− D̃(x̃)

D̃(x̃)

+
[
∂G(x̃)
∂x1

∂e2(x̃)
∂x2

− ∂G(x̃)
∂x2

∂e2(x̃)
∂x1

]
/D̃(x̃)

=
∂G(x)
∂x1

∣∣∣∣
x=x̃

+ ψ1(x̃) =
∂G(y)
∂y1

∣∣∣∣
y=x̃

+ ψ1(x̃),

(4.30)

where function ψ1 comprises all terms with partial derivatives of e1, e2. The last
equality is (4.12) in essence.
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Thus we get

|G,y1(ỹ)−Gε,y1(ỹ)| ≤ |G,y1(ỹ)−G,y1(x̃)|+ |ψ1(x̃)|.(4.31)

Connecting x̃ and ỹ by a straight segment, we estimate

|G,y1(ỹ)−G,y1(x̃)| ≤
∫ κ(x̃)

x̃

|∇G,x1(z)| dz = ψ2(x̃).

Integrating (4.31) over Ω3, we infer∫
Ω3

(G,y1 −Gε,y1)2 dy ≤
∫

Ω1

(|ψ1(x)| + ψ2(x))2 |D̃(x)| dx

=
∫

Ω1

(
ψ2

1 + 2|ψ1ψ2|+ ψ2
2

)
|D̃| dx ≡ I1 + I2 + I3.

(4.32)

By (4.30) and Lemma 4.9

I1 =
∫

Ω1

ψ2
1 |D̃| dx ≤ ε2Ĉ

∫
Ω1

|∇G|2 dx = ε2Ĉ |G|21,Ω1
,(4.33)

where Ĉ > 0 is a constant independent of G and ε if 0 < ε < ε0 and ε0 is a small
parameter.

On the basis of (4.29) we get

I3 =
∫

Ω1

(∫ κ(x)

x

|∇G,x1 | dz
)2

|D̃| dx

≤ εC̃
∫

Ω1

(∫ κ(x)

x

|∇G,x1 |
2 dz

)
dx ≤ ε2C̃

∫
Ω3

|∇G,x1 |
2 dx,

(4.34)

where a positive constant C̃ does not depend on ε, 0 < ε ≤ ε0, and G.
Finally, applying (4.33), (4.34), and the Schwarz inequality, we infer

I2 = 2
∫

Ω1

|ψ1ψ2||D̃| dx

≤ 2C
(∫

Ω1

ψ2
1 dx

)1/2(∫
Ω1

ψ2
2 dx

)1/2

≤ ε2C′|G|1,Ω1 |G,x1 |1,Ω3 ,

(4.35)

where, again, C′ > 0 is independent of ε and G.
Plugging (4.33)–(4.35) into (4.32), we arrive at∫

Ω3

(G,y1 −Gε,y1)2 dy ≤ ε2C2
3 (|G|1,Ω1 + |G,x1 |1,Ω3)2

/2.

The estimates for G,y2 −Gε,y2 can be derived in a similar way. Referring to the
density of smooth functions in H2(Ω3), we finish the proof.

Applying Lemma 4.11 to (4.28) with v = u3 − u1ε, we generalize Lemma 4.6.

Lemma 4.12. If G ∈ H2(Ω3), then

‖u3 − u1ε‖A,Ω3 ≤ εθ̂,(4.36)

where θ̂ = c
−1/2
Ab

[
(C1 + C3)|G|1,Ω1 + C3|G|2,Ω3 + C2

]
. Constants C1, C2, and C3

come from (4.25), (4.27), and Lemma 4.11.

We also adjust Lemma 4.1.
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Lemma 4.13. Let us assume both ∇G ∈ [L∞(Ω13)]2 and meas Ω13 ≤ εC4cAb/2,
C4 is a positive constant independent of ε. Then

‖u12‖2A,Ω12
+ ‖u23‖2A,Ω23

≤ εC4‖∇G‖2∞,Ω13
.(4.37)

We need some analogy to the inequality in (4.8). By (4.24) we have

‖u1‖2A,Ω1
= ‖u1ε‖2A,Ω3

+ ag(u1ε, u1ε).(4.38)

Let us consider a domain Ω2, Ω1 ⊂ Ω2 ⊂ Ω2 ⊂ Ω3. Proceeding as in the
starshaped domain case, we can formulate a generalization of Theorem 4.1.

Theorem 4.2. Let Ω1, Ω2, and Ω3 be the domains introduced in previous para-
graphs, and let u1 and u2 be the respective solution to (3.1) on Ω1, H = H1(Ω1),
and Ω2, H = H̃. Let κε be the mapping from Lemma 4.9, Ω3 = κε(Ω1). Assume
∇G ∈ [L∞(Ω13)]2 and G ∈ H2(Ω3). Then

‖u2 − u1‖2A,Ω1
≤ εC,

where a positive constant C depends on |G|1,Ω1 , |G|1,Ω3 , |G|2,Ω3 , ‖∇G‖∞,Ω13 , and
constants cAb, C̃1, C1, C2, C3, and C4, but is independent of ε, 0 < ε ≤ ε0, if ε0 is
sufficiently small.

Proof. By (4.38), the triangle inequality, (4.25), and (4.36),

‖u1‖2A,Ω1
= ‖u1ε‖2A,Ω3

+ ag(u1ε, u1ε)

≤
(
‖u1ε − u3‖A,Ω3 + ‖u3‖A,Ω3

)2

+εC1|G|1,Ω1‖u1ε‖1,Ω3

≤ ε2θ̂2 + 2εθ̂‖u3‖A,Ω3 + ‖u3‖2A,Ω3
+ εC1C̃1|G|21,Ω1

.

We estimate 2εθ̂‖u3‖A,Ω3 by means of |G|1,Ω3 and get

‖u1‖2A,Ω1
− ‖u3‖2A,Ω3

≤ ε2θ̂2 + 2εθ̂c−1/2
Ab |G|1,Ω3 + εC1C̃1|G|21,Ω1

.(4.39)

To finish the proof, we plug (4.37) and (4.39) into (4.5):

‖u2 − u1‖2A,Ω1
≤ ε2θ̂2 + 2εθ̂c−1/2

Ab |G|1,Ω3

+ εC1C̃1|G|21,Ω1
+ εC4‖∇G‖2∞,Ω13

≤ εC,
where C > 0 depends on G.

An analogy to Remark 4.4 is also valid.
Let us again emphasize that the estimate of ‖u2 − u1‖A,Ω1 and ‖u3 − u2‖A,Ω2

depend neither on the particular domain Ω2 nor its stability status, provided that
Ω2 is approximated from inside and outside by Ω1 and Ω3, respectively. As a con-
sequence, the estimate applies also to solutions um mentioned in the introductory
paragraphs of Section 4.

5. Stability of Ω under general convergence Ωn → Ω

We will show that if Ω is N-stable with respect to monotone convergence
Ωn ↗ Ω, Ωn ↘ Ω, then it is also stable (in a natural sense) with respect to a
general convergence Ωn → Ω.

Let ∂Ω = ∂Ω and {Ωn}∞n=1 be a sequence of domains with Lipschitz boundary
such that Ωn → Ω in the set sense.
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We can construct sequences
{

Ω↑n
}∞
n=1

and
{

Ω↓n
}∞
n=1

such that ∂Ω↑n, ∂Ω↓n are

Lipschitz or even smooth, Ω
↑
n ⊂ Ωn ⊂ Ωn ⊂ Ω↓n, and Ω↑n ↗ Ω, Ω↓n ↘ Ω. The spaces

H↑, H↓ and functions uG, uG are defined via these sequences (see Section 3).
Let

{
u↑n
}∞
n=1

and
{
u↓n
}∞
n=1

be the sequences of the solutions of (3.1) on Ω↑n and
Ω↓n, respectively, n = 1, 2, . . . .

Theorem 5.1. Let Ω be stable with respect to the Neumann boundary value problem
and monotone sequences of domains, i.e., H↑ = H↓ and uG = uG. Then

lim
n→∞

‖u↓n − un‖A,Ωn = 0 = lim
n→∞

‖u↑n − un‖A,Ω↑n .

Proof. We wish to benefit from (4.5) and Remark 4.4. To this end we identify
Ω↑n, Ωn and Ω↓n with Ω1, Ω2 and Ω3, respectively (see Section 4). We denote the
respective solutions of (4.1) by u12

n and u23
n .

Let us notice that by (4.1) and (2.3) ‖uin‖A,Ωi ≤ C, i = 12, 23, where C is a
positive constant independent of n, cf. the beginning of the proof of Lemma 3.1,
for instance.

By Remark 4.4 and (4.1)

‖u↓n − un‖2A,Ωn ≤ ‖u
↑
n‖2A,Ω↑n − ‖u

↓
n‖2A,Ω↓n + ‖u12

n ‖2A,Ωn\Ω↑n + ‖u23
n ‖2A,Ω↓n\Ωn

≤ ‖u↑n‖2A,Ω↑n − ‖u
↓
n‖2A,Ω↓n + 2C|G|1,Ω↓n\Ω↑n .

The right-hand side of the inequality tends to zero by virtue of Lemma 3.2, Lemma
3.3 (see (3.16)) and limn→∞meas(Ω↓n \ Ω↑n) = 0. This and (4.5) also proves the
other limit.

6. Example, applications, and conclusions

Let us go back to Example 1.1 presented in the Introduction.
Based on the theory expounded in previous sections, the proposed approach to

Neumann boundary value problems on uncertain domains consists in approximating
the uncertain domain Ω by known domains Ωlow and Ωup, Ωlow ⊂ Ω ⊂ Ω ⊂ Ωup,
in setting the BVP with the boundary condition formulated in the nonclassic way
elaborated in Section 2, in solving the BVP on Ωlow and Ωup, respectively, and in
applying estimates based on (4.5). Though a simple idea, it is not easy to bring it
to life.

Figure 1 shows the original pixel domain in 256 levels of the gray color. Setting
the threshold for white color to 123, we produced Figure 2 (left). Choices 63 and
190 lead to Figure 3 (left) and (right), respectively. We can see that the domain in
Figure 3 (right) is embedded into the domain in Figure 2 (left), and this domain

Figure 3. Postprocessing: Low threshold (left), high threshold (right)
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is further embedded to the largest domain depicted in Figure 3 (left). We can also
observe deterioration of the images. The domain in Figure 2 (left) seems to be
quite acceptable, whereas white pixels in Figure 3 (left) do not create a connected
set. Figure 3 (right) shows a connected white set but its connectivity is far more
multiple than in Figure 2 (left).

The question arises of how to choose threshold values. The bigger the difference
between them, the larger the difference between respective white areas, and the
greater the amount of uncertainty taken into consideration. Also, threshold values
that are too low or too high would force the domain’s pixels to turn into background
pixels due to uneven contrast and brightness or noise superimposed onto the basic
signal.

A rule of thumb could be to define a function describing the dependence of the
total white area on the threshold value. Experience shows that such a function has
a rapid decay for low and high thresholds and a slow decay in between. Values,
where the slope of the function starts and ends to be moderate, seem to be a good
choice to define Ωlow and Ωup.

If we suppose that the digitalized domain is connected, then by observing the
number of connected white sets implied by threshold settings we can also arrive at
reasonable approximations of Ω.

Both approaches can be combined and, moreover, we can add a two-pixel-wide
white layer to our upper approximation of Ω to get a strengthened Ωup. By adding
a black layer, we can get a strengthened Ωlow. According to experiments, details
beneath 1.5 pixel size are almost invisible. That is why we suggest adding layers
two pixels wide.

We can also introduce some calibration stemming from a comparison between
measured properties of a real sample and results of a digital image based compu-
tation.

Another difficulty arises if we compare the physical domain Ω with its, possibly
postprocessed, digital images. It can happen that we do not get an upper or
lower estimate of Ω simply because all details (e.g., cracks, micro-holes, and thin
projections) below the digital image resolution are invisible or merged with other
sources of pollution and noise.

This implies that though we wish to take into account as much uncertainty as
is possible and reasonable, we still must make some assumptions. Basically, we
have to assume that the digital image is a good representation of Ω in the sense
that a manipulation with digital data can deliver reasonable domains Ωlow and Ωup

estimating Ω from inside and outside, respectively. The notion reasonable is vague
but it certainly does not mean whole white and black rectangles we can always
produce as certainly true upper and lower estimates.

Having Ωlow and Ωup, we can apply the presented theory. Let us remark that
Ωlow and Ωup need not be pixel domains. They can have a piecewise smooth
boundary (cf. Figure 2 (right)) as requested by computational methods, say, the
finite or boundary elements. Thus we lose, however, the mesh formed from pixels
which could be directly used in calculations.

From the computational point of view of the finite element method, it is ad-
vantageous, if the coefficients of the equation are constant, to have Ωlow and Ωup

starshaped, Ωup = αΩlow, α > 1, because in that case we can assemble only one
stiffness matrix as the other depends on α in a simple way.
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If Ωlow and Ωup are not starshaped, they differ by a layer of elements which, if
properly numbered, will lead to two different stiffness matrices, the smaller being
a block of the larger one. This speeds up direct solving of the system of linear
algebraic equations. One can also expect that solutions on Ωlow and Ωup will not
differ much; i.e., that one solution can be used as a good initial guess in an iterative
solver to get the other solution.
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