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ON A PROBLEM OF BYRNES CONCERNING POLYNOMIALS
WITH RESTRICTED COEFFICIENTS, II

DAVID W. BOYD

Abstract. As in the earlier paper with this title, we consider a question of
Byrnes concerning the minimal length N∗(m) of a polynomial with all coeffi-
cients in {−1, 1} which has a zero of a given order m at x = 1. In that paper
we showed that N∗(m) = 2m for all m ≤ 5 and showed that the extremal poly-
nomials for were those conjectured by Byrnes, but for m = 6 that N∗(6) = 48
rather than 64. A polynomial with N = 48 was exhibited for m = 6, but it
was not shown there that this extremal was unique. Here we show that the
extremal is unique. In the previous paper, we showed that N∗(7) is one of the
7 values 48, 56, 64, 72, 80, 88 or 96. Here we prove that N∗(7) = 96 without
determining all extremal polynomials. We also make some progress toward de-
termining N∗(8). As in the previous paper, we use a combination of number
theoretic ideas and combinatorial computation. The main point is that if ζp
is a primitive pth root of unity where p ≤ m+ 1 is a prime, then the condition
that all coefficients of P be in {−1, 1}, together with the requirement that
P (x) be divisible by (x − 1)m puts severe restrictions on the possible values
for the cyclotomic integer P (ζp).

1. Introduction

Let P(N) denote the set of polynomials with all coefficients in {−1, 1}, leading
coefficient 1, and with length L(P ) = N so that deg(P ) = N − 1. As usual, L(P )
denotes the sum of the absolute values of the coefficients of P which here is just
the number of nonzero coefficients of P . As we saw in [Bo], this is a more natural
parameter than the degree. We will use the notation P (x) =

∑N
i=1 aix

i−1 for the
coefficients of P (x).

We are interested in the minimum value of N for which a P ∈ P(N) has an
m-fold zero at the point x = 1. Let P(N,m) denote the subset of P(N) consisting
of P divisible by (x − 1)m (or by some higher power of x − 1). For given N , let
m∗(N) denote the largest m for which P(N,m) is nonempty. Similarly, for given
m, let N∗(m) denote the smallest N for which P(N,m) is nonempty.

In [By] Byrnes asked for a proof or disproof of the conjecture that N∗(m) = 2m,
which would be attained for

Bm(x) =
m−1∏
k=0

(x2k − 1),(1)
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which has N = 2m. In [Bo] we showed that this conjecture is true for m ≤ 5 but
false for all m ≥ 6 and that in fact N∗(6) = 48. As part of the proof, we exhibited
a symmetric (i.e., reciprocal) polynomial with N = 48 and m = 6 which had been
found by an exhaustive search of all symmetric polynomials with N = 48 vanishing
at x = 1. This is the unique symmetric polynomial in P(48, 6) but it was not shown
that it was the unique polynomial in P(48, 6). Indeed, with the algorithm used in
[Bo], it would have taken roughly five years of computation on the workstation
used there (a SUN Sparcstation 10) to exhaustively search P(48, 1) to determine
all elements of P(48, 6). All computing times quoted in this paper will refer to
computations on this machine. A rough guide to the speed of the algorithms used
is that a search of a set of 1010 polynomials requires one day’s computation on this
machine.

In this paper we use a number of new ideas to improve the algorithm and the
bounds of [Bo]. Recall that in [Bo], we were able to get bounds on m in terms of N
for P ∈ P(N,m) by proving that if p is a prime which does not divide N and if ζp
is a primitive pth root of unity, then P (ζp) 6= 0. Then using the fact that (ζp− 1)m

divides P (ζp), and taking norms gives the inequality

Np−1 ≥ |NormP (ζp)| ≥ pm = Norm(ζp − 1)m.(2)

Here NormP (ζp) =
∏p−1
j=1 P (ζpj).

Here we improve on this idea by observing that we know much more about P (ζp)
and (ζp − 1)m than simply their norms. In fact (see Lemma 3), in the ring Z[ζp],
(ζp − 1)m is divisible by pr for r = bm/(p− 1)c, and hence P (ζp) is divisible by pr

in Z[ζp]. On the other hand, if we write P (ζp) = B1 +B2ζp + · · ·+Bp−1ζp
p−2, the

integers B1, . . . , Bp−1 satisfy some severe restrictions since the coefficients of P (x)
lie in {−1, 1}. In particular, we know the parity of the Bj and bounds on their
magnitude. Combining this with the fact that pr divides Bj for each j, the number
of possibilities for P (ζp) can be shown to be rather small. With a suitable choice of
the prime p, this can sometimes be used to show that P(N,m) is empty or else to
reduce the enumeration of P(N,m) to a feasible computation. Note that in contrast
to (2), we can get useful information from this approach even if p divides N . Also,
the method extends to other classes of polynomials with restricted coefficients, e.g.,
the case of coefficients in {−1, 0, 1}.

An important point is that given a possible value β = P (ζp), there is a simple
explicit way to enumerate the P ∈ P(N, 1) for which P (ζp) = β. Indeed, if Nj is
the number of elements in the finite arithmetic progression j, j + p, j+ 2p, . . . with
j + np ≤ N , then there are Kj with 0 ≤ Kj ≤ Nj so that Kj of the coefficients
aj+np of P (x) must be −1 and the remaining Nj −Kj must be +1. Thus P (x) is
determined by selecting a Kj-subset of the Nj-set {j, j + p, . . . , j + (Nj − 1)p} for
all j = 1, 2, . . . , p. An efficient way to do this enumeration is to use the revolving
door algorithm of Nijenhuis and Wilf [NW], much as in [Bo].

For example, consider N = 48 and m = 6. If P ∈ P(48, 6), then we can show
that P (ζ3) = 0 and hence that x3 − 1 divides P (x). The subset of P ∈ P(48, 1)
for which x3 − 1 divides P (x) is roughly 1/15 the size of P(48, 1); hence, it could
be enumerated in about 15 weeks of computation. (In Section 4, we describe how
some elementary linear algebra can reduce this to about 1 week of computation).
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A better choice of p in this case is p = 5. If P ∈ P(48, 6), we will see that ±P (ζ5)
is one of the three possibilities

β1 = −10 + 10ζ2
5 − 5ζ3

5 + 5ζ4
5 ,

β2 = 10− 10ζ5 + 10ζ52 − 5ζ53 − 5ζ54,

or

β3 = 10ζ5 − 5ζ53 − 5ζ54.

Indeed, if m ≥ 7, only P (ζ5) = β1 is possible. There are only 326592 polynomials
P ∈ P(48, 1) which satisfy ±P (ζ5) = β1, and a few seconds of computation shows
that none of these have m = 7, i.e., that |P(48, 7)| = 0. The enumeration of
P ∈ P(48, 1) for which ±P (ζ5) = βk for k = 2 and 3 takes about 12 minutes
and shows that |P(48, 6)| = 1, so that the polynomial found in [Bo] is the unique
element of P(48, 6).

In a similar way, we can use p = 5 to enumerate P(48, 5). In this case we find
that there are ten possibilities for ±P (ζ5), in addition to β1, β2, β3, most of which
can be handled with a few seconds of computation. The only possibility that leads
to a substantial computation is ±P (ζ5) = −5ζ53 + 5ζ54 which is satisified by 97
polynomials P ∈ P(48, 5), as one checks after 39 hours of computation. The end
result is that |P(48, 5)| = 102.

Generally, the most useful prime to use in a given situation is the smallest p
which does not divide N . However, sometimes larger primes can be used effectively.
For example, because 48 = 72 − 1, it turns out that p = 7 is quite effective for
P ∈ P(48, 7). In this case one can show that P (ζ7) = B1 + B2ζ7 + · · · + B6ζ7

5,
where 3 of the Bj must be +7 and 3 must be −7. Thus there are only 200 possible
P to check and none of these has order of vanishing at x = 1 higher than 3, again
showing |P(48, 7)| = 0.

Another simple idea can be used in conjunction with the above to reduce the
computation even further. Choose m of the coefficients of P and use linear algebra
to solve the equations P (1) = P ′(1) = · · · = P (m−1)(1) = 0 for these m coefficients.
If these are chosen appropriately, we can still use the same basic algorithm but on
a smaller set of coefficients, saving a factor of close to 1/2m. (We do not quite
achieve this factor for reasons that will be clear when the more detailed description
of the algorithm is given in Section 4). For example, with N = 48, m = 5 and
p = 3, this reduces 15 weeks of computation to slightly over 2 weeks and provides
a second verification of the result |P(48, 5)| = 102.

In [Bo] we showed that the only possibilities for N∗(7) are 48, 56, 64, 72, 80, 88,
and 96. We have just described how one rules out N = 48. By using the prime
p = 2, we can rule out three of the remaining possibilities rather easily. In [Bo]
we observed that if 2k is the largest power of 2 dividing N , then the order m of
vanishing of P ∈ P(N) at x = 1 satisfies

m ≤ 2k − 1.(3)

The proof of this result depended on the obvious fact that if P ∈ P(N), then
P (x) ≡ 1 + x+ · · ·+ xN−1 (mod 2). Thus the factorization of P over F2 is known.
For a certain range of N and m, we show here that if P ∈ P(N,m), then P (−1) = 0,
i.e., x+ 1 divides P . In this case (3) can be improved to m ≤ 2k−2. If 2k = 8, this
will allow us to show that m ≤ 6 if 8‖N and N < 2m (Lemma 1). This rules out
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N = 56, 72, and 88 as candidates for m = 7, leaving only the possibilities N = 64,
80, and 96. Note that this depends on the lucky fact that 7 is one less than a power
of 2 and hence will not be useful again until one is considering m = 15.

In [Bo] we had shown that 6 ≤ m∗(64) ≤ 7 and that 6 ≤ m∗(80) ≤ 7. Here
we show that m∗(64) = 6 and m∗(80) = 6 by considering the possibilities for
P (ζ3). Combined with the results for N = 48 described above, this shows that
N∗(7) = 96. Two polynomials in P(96, 7) can be constructed from the unique
element P of P(48, 6), namely (x48 − 1)P (x) and (x− 1)P (x2). It is unlikely that
these exhaust P(96, 7), but an enumeration of this set does not seem feasible using
the current methods.

The methods developed here allow one to narrow the possibilities for N∗(8) to
N = 96, 144, 160, 176, or 192. We illustrate this by computing bounds for m∗(N)
for those multiples of 16 in 96 ≤ N ≤ 256. In some cases, the bounds determine
m∗(N), e.g., m∗(128) = 7, but do not allow an enumeration of P(N,m∗(N)).

Some other values of m∗(N) can be determined by combining the constructions
given in [Bo] with the methods of this paper. For example we show that m∗(56) = 5
without determining the entire set P(56, 5), and we show that m∗(72) = 6 with-
out determining P(72, 6). As mentioned above, we show that m∗(64) = 6 and
briefly describe a computation which shows that |P(64, 6)| = 3. In this case all the
polynomials are symmetric and had already been determined in [Bo].

2. High order vanishing at 1
implies vanishing at certain roots of unity

Thoughout the paper, we will let 2k denote the largest power of 2 dividing N
and will assume that P (1) = 0 so that N must be even. We write Φq(x) for the
qth cyclotomic polynomial, i.e., the minimal polynomial over Q of the primitive qth
roots of unity. Since P (x) ≡ (xN − 1)/(x− 1) (mod 2), the complete factorization
of P over F2 is known (see [LN]). In particular, if 2k‖N , then the product of the
linear divisors of P (mod 2) is (x+ 1)2k−1. Also, if p is a prime divisor of N , then
Φp(x) = (xp−1)/(x−1) divides P (mod 2), although this will not in general be an
irreducible factor (see [LN, pp. 63–66]). Another obvious fact that we use without
comment below is that |P (x)| ≤ N if |x| = 1 by the triangle inequality.

We begin with some results that depend on slight extensions of the ideas of [Bo].

Lemma 1. If P ∈ P(N,m) and if N < 2m, then P (−1) = 0. Furthermore, if
m < 2k − 1 and if N < 2m+1, then P (−1) = 0.

Proof. Write P (x) = (x − 1)mQ(x). If Q(−1) 6= 0, then |Q(−1)| ≥ 1 and we have
N ≥ |P (−1)| = |(−2)mQ(−1)| ≥ 2m, contrary to the assumption N < 2m. Hence
Q(−1) = 0 and so P (−1) = 0.

Now consider the case m < 2k−1. As discussed above, P (x) (mod 2) is divisible
by (x+1)2k−1 and since P (x) ≡ (x+1)mQ(x) it follows that Q(x) (mod 2) must be
divisible by x+ 1. That is Q(−1) is an even integer. Hence P (−1) = (−2)mQ(−1)
is divisible by 2m+1. However, |P (−1)| ≤ N so if N < 2m+1, we must have
P (−1) = 0.

Corollary 1. If P ∈ P(N,m) and if N < 2m, then m ≤ 2k − 2.

Proof. From Lemma 1, P (x) = (x − 1)m(x + 1)R(x) for some polynomial R(x) ∈
Z[x]. Hence P (x) (mod 2) is divisible by (x+ 1)m+1. But the product of all linear
factors of P (x) (mod 2) is (x + 1)2k−1 and hence m+ 1 ≤ 2k − 1.
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Remark 1. In particular, if P(N, 7) is nonempty and N < 128, then N must be
divisible by 16. This rules out N = 56, 72, and 88 as candidates for m = 7. Using
the lower bounds established in [Bo], we now have 5 ≤ m∗(N) ≤ 6 for N = 56
and 88 and m∗(72) = 6. We will show by a computation described below that
m∗(56) = 5.

We observed in [Bo] that knowing the factorization of P (x) over F2 shows that
if Φp(x) divides P (x), then p divides P (x). The following is a partial converse of
this.

Lemma 2. If P ∈ P(N,m), if p is an odd prime divisor of N , and if Np−1 <
2p−1pm, then Φp(x) divides P .

Proof. Since p divides N , it follows that Φp(x) divides (xN − 1)/(x − 1) ≡
P (x) (mod 2); hence if ζp is any root of Φp(x), the number P (ζp) ∈ 2Z(ζp).
Thus, NormP (ζp) =

∏p−1
j=1 P (ζpj) is an integer divisible by 2p−1. Writing P (x) =

(x − 1)mQ(x), we see that NormP (ζp) is divisible by Norm(ζp − 1)m = pm.
Thus NormP (ζp) is divisible by 2p−1pm. But

|NormP (ζp)| =
p−1∏
j=1

|P (ζpj)| ≤ Np−1 < 2p−1pm

by assumption, so we have NormP (ζp) = 0, i.e., that Φp(x) divides P (x).

Remark 2. In particular, if N = 48 and m = 6, we have 482 = 2304 < 2236 = 2916,
so if P ∈ P(48, 6), then x2 + x + 1 divides P and hence x3 − 1 divides P . The
more precise discussion of P (ζ3) in the next section will enable us to show that if
P ∈ P(48, 5), then x3 − 1 divides P .

3. Values of P at roots of unity

In this section, assuming P ∈ P(N,m), we see what we can say about the
possibilities for P (ζp) when p is a prime and ζp is a primitive pth root of unity. We
will thus be working in the ring Z[ζp]. This is a familiar ring which occurs in the
study of Fermat’s Last Theorem [E], but here we do not need or use any deep facts
about Z[ζp]. All we will need is the fact that every element of Z[ζp], in particular
P (ζp), can be represented in a unique way as a sum

P (ζp) = B1 +B2ζp + · · ·+Bp−1ζp
p−2,(4)

where the Bj are integers. This follows from the fact that the minimal polynomial
of ζp, Φp(x) = xp−1 + · · ·+ 1, has degree p− 1.

Another natural, and also unique, representation of P (ζp) for P ∈ P(N, 1) is as
a sum

P (ζp) = A1 +A2ζp + · · ·+Apζp
p−1,(5)

where Aj are integers with
∑p

j=1 Aj = 0. To see how this comes about, notice that
we can write any polynomial P (x) in the form

P (x) =
p∑
j=1

Pj(xp)xj−1.(6)
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Here Pj(x) =
∑Nj
n=1 aj+(n−1)px

n−1, where Nj is either bN/pc or dN/pe. The Nj
satisfy N1 ≥ N2 ≥ · · · ≥ Np and

∑p
j=1 Nj = N . Now using ζpp = 1 in (6) gives (5)

with Aj = Pj(1). Substituting x = 1 in (6) gives 0 = P (1) =
∑p
j=1 Aj .

Using

ζp
p−1 = −1− ζp − · · · − ζpp−2,(7)

we see from (4) and (5) that

Bj = Aj −Ap for j = 1, . . . , p− 1,(8)

so that
p−1∑
j=1

Bj = −pAp.(9)

Thus we can easily convert between the representations (4) and (5).
The reason that we need the representation (4) is that P (ζp) = prβ, for some

β ∈ Z[ζp], is equivalent to pr dividing Bj for each j. It is important to realize that
this is not equivalent to pr dividing Aj for each j.

The following fact is well known but we give a simple proof for completeness.

Lemma 3. Let m ≥ 0 be an integer, p an odd prime, and let r = bm/(p − 1)c.
Then (ζp − 1)m is divisible by pr in Z[ζp]. That is, (ζp − 1)m can be written in the
form prβ, where β ∈ Z[ζp].

Proof. We need only show that (ζp−1)p−1 is divisible by p since if m = r(p−1)+s
we can write (ζp− 1)m = ((ζp − 1)p−1)r(ζp − 1)s to show that (ζp − 1)m is divisible
by pr. Using the binomial theorem and (7), we have

(ζp − 1)p−1 =
p−1∑
j=0

(
p− 1
j

)
(−1)jζpj =

p−2∑
j=0

(
(−1)j

(
p− 1
j

)
− 1
)
ζp
j .(10)

Now check that each coefficient in the right member of (10) is divisible by p.

Example 1. Let N = 48, m = 6, and p = 5. Then the lengths N1, . . . , N5 of
P1(x), . . . , P5(x) in (6) are 10, 10, 10, 9, 9, respectively. Since Aj = Pj(1), we thus
have |Aj | ≤ L(Pj) for j = 1, . . . , 5 and Aj ≡ Nj (mod 2) so that Aj is even for
j = 1, 2, 3 and odd for j = 4, 5. From (8), we thus have that Bj is odd and |Bj | ≤ 19
for j = 1, 2, 3 and that B4 is even and satisfies |B4| ≤ 18. Lemma 3 shows that
(ζ5−1)m is divisible by 5 and hence P (ζ5) is divisible by 5. Thus each Bj is divisible
by 5 and hence Bj ∈ {±5,±15} for j = 1, 2, 3 and B4 ∈ {0,±10}.

We also have that NormP (ζ5) is divisible by Norm(ζ5 − 1)m = 56. Checking
the 3 × 43 possibilities for

∑4
j=1 Bjζ5

j−1, we find that there are only 3 choices for
±P (ζ5), namely

β1 = −10 + 10ζ52 − 5ζ3
5 + 5ζ4

5 ,

β2 = 10− 10ζ5 + 10ζ52 − 5ζ53 − 5ζ54,

β3 = 10ζ5 − 5ζ53 − 5ζ54.

We have Normβ1 = 57 and Normβk = 56, for k = 2, 3.
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Since all coefficients of Pj(x) are in {−1, 1}, in order to have Pj(1) = Aj , we
must have Kj = (Nj −Aj)/2 coefficients equal to −1 and Nj −Kj = (Nj +Aj)/2
coefficients equal to +1. The size of the subset of P(N, 1) satisfying

±P (ζp) =
p∑
j=1

Ajζp
j−1

is thus
p∏
j=1

(
Nj
Kj

)
.(11)

(The restriction that P be monic is compensated for by the ambiguous ± sign
except in the case P (ζp) = 0 when (11) can be multiplied by 1

2 .)
Thus, for±P (ζp) = β1, for example, we have (K1, . . . ,K5) = (10, 5, 0, 7, 2). From

(11), the size of the set of P ∈ P(48, 1) with ±P (ζ5) = β1 is
(

10
5

)(
9
2

)2
= 326592.

(In this case, P (ζ5) = −β1 is impossible for P monic since this would require that
all coefficients of P3(x) be −1, but a48 = 1 is the leading coefficient of P3.) This
set contains P(48, 7) since β1 is the only possible value of P (ζ5) with NormP (ζ5)
divisible by 57. The search of this set by the methods of [Bo] for P (x) divisible by
(x − 1)7 requires only a few seconds and shows that |P(48, 7)| = 0. Furthermore,
there are no P (x) in this set divisible by (x− 1)6 or (x − 1)5.

For β2, we have (K1, . . . ,K5) = (0, 10, 0, 7, 7) so the subset of P(48, 1) with
±P (ζ5) = β2 is of size

(
9
2

)2
= 1296 which similarly can be searched in a few seconds

for P (x) divisible by (x− 1)6. As one might expect, there are no such P . Nor are
there any such P (x) divisible by (x− 1)5.

For ±P (ζ5) = β3, we have (K1, . . . ,K5) = (5, 0, 5, 7, 7), so the size of the set to
be searched is

(
10
5

)2(9
2

)2
= 8.230× 107. The search of this set for P (x) divisible by

(x − 1)6 took 10 minutes. The only such polynomial is the one described in [Bo].
There are no other polynomials of this form divisible by (x− 1)5.

Extending the above to m = 5 requires only the determination of those β =∑p
j=1 Ajζp

j−1 satisfying the conditions of the first paragraph of this example and
having norm divisible by 55. Up to sign, there are thirteen such β, of which we
have already listed three. These are easily described: there are three (A1, . . . , A5)
of the form (10, 10,−10,−5,−5), there are six of the form (−10, 0, 10,−5, 5), there
are three of the form (0, 0, 10,−5,−5), where in each case the first three entries can
be permuted arbitrarily. Finally, there is (0, 0, 0, 5,−5). The number of possibilities
in the latter case is

(
10
5

)3(9
2

)2
= 2.074× 1010 and the search of this set requires 39

hours of computation.
The final result is that there are 97 elements of P(48, 5) with ±P (ζ5) = 5ζ53 −

5ζ54. There are 2 elements of P(48, 5) for each of (A1, . . . , A5) = (0, 0, 10,−5,−5)
and (10, 0, 0,−5,−5) and 1 for (0, 10, 0,−5,−5) (namely the unique element of
P(48, 6) as already described).

Example 2. N = 48, m ≥ 4, and p = 3. Using the above technique, write
N = 48 = N1 + N2 + N3, where Nj = 16 for all j. Thus, we see that all Aj
are even and satisfy |Aj | ≤ 16 and hence Bj is even and |Bj | ≤ 32 for j = 1, 2.
Also |B1 − B2| = |A1 − A2| ≤ 32. Since m ≥ 4, Lemma 3 implies that 32 divides
Bj for j = 1, 2 and hence we must have Bj ∈ {0,±18}. So there are exactly
four possibilities up to sign, namely (B1, B2) = (0, 0), (0, 18), (18, 0) and (18, 18)
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corresponding to (A1, A2, A3) = (0, 0, 0), (−6, 12,−6), (12,−6,−6), (6, 6,−12). The
norms in the latter three cases are all 4× 34.

This shows that if m ≥ 5, then we must be in the first case, i.e., P (ζ3) = 0,
which improves the result obtained from Lemma 2, which required m ≥ 6. If we
want to enumerate P(48, 4), then the enumeration for the latter three cases would
require a search of size 3

(
16
5

)2(16
2

)
= 6.868×109 or less than one day’s computation.

The size of the subset of P(48, 1) with P (ζ3) = 0 is 1
2

(
16
8

)3
= 1.066×1012, where

the factor 1
2 is inserted since we can insist that P be monic. This search would

require about 15 weeks of computation, which is a considerable improvement over
the 5 years required to search all of P(48, 1) as in [Bo]. However, as a method for
determining P(48, 6), it is considerably more than the 10 minutes required by using
p = 5 as in Example 1. As we see in the next section, a little linear algebra can be
used to reduce the search by a factor of about 1/15.

Example 3. N = 48, m ≥ 6, p = 7. Here Nj = 7 for j = 1, . . . , 6 and N7 = 6.
Thus all Bj are odd and |Bj | ≤ 13. By Lemma 3, if m ≥ 6, 7|Bj and hence all
Bj = ±7. All these 26 choices of β will have 76|Normβ. If we restrict to m ≥ 7,
it turns out that 77|Normβ requires that

∑6
j=1 Bj = 0, i.e., that Aj = Bj for

j = 1, . . . , 6 and A7 = 0. Thus 3 of the Aj for j ≤ 6 are −1 and 3 are +1. Since
L(Pj) = 7 = |Aj | for j ≤ 6, the Pj for j ≤ 6 are completely determined by the
signs of the Aj . And since A7 = 0, we have P7(1) = 0. Thus

P (x) =
x49 − 1
x7 − 1

F (x) + x6P7(x7),

where F (x) = (A1 +A2x+ · · ·+A6x
5)/7 and ±P7(x) are in P(6, 1). An easy search

of the 200 possibilities for F and P7 determines that there are four such P (x) which
are divisible by (x − 1)3 but none divisible by any higher power of x − 1 so again
P(48, 7) is empty.

Example 4. N = 40, m = 4, p = 3. Recall that in [Bo], we determined that
|P(40, 4)| = 2207 and that |P(40, 5)| = 1 by a search of the 1

2

(
40
20

)
= 6.892 × 1010

elements of P(40, 1). This computation took slightly over one week and was needed
to show that |P(40, 6)| = 0. Using the new method with N = 40, m = 4 and p = 3,
we write 40 = 14 + 13 + 13 so that A1 is even with |A1| ≤ 14 and Aj is odd with
|Aj | ≤ 13 for j = 2, 3. Thus B1 is odd with |B1| ≤ 27, B2 is even with |B2| ≤ 26,
and |B1−B2| ≤ 27. Since m = 4, we have 32|Bj by Lemma 3 and hence we find that
±P (ζ3) = 9 + 18ζ3 = 9ζ3− 9ζ32, with norm 35 or else ±P (ζ3) = 9 = 6− 3ζ3− 6ζ32,
with norm 34. This shows that P(40, 6) is empty without any further computation.

To determine P(40, 5), we need only consider the first possibility. In this case
(K1,K2,K3) = (7, 2, 11), giving a total of

(
14
7

)(
13
2

)2
= 2.088×107 polynomials. This

requires only three minutes of computation and yields the 61 polynomials of P(40, 4)
with ±P (ζ3) = 9ζ3 − 9ζ32, one of which is the unique element of P(40, 5). To
determine the remaining elements of P(40, 4), we consider the second possibility, for
which (K1,K2,K3) = (10, 5, 5), i.e., a total of

(
14
10

)(
13
5

)2
= 1.658× 109 polynomials.

This computation takes three hours and yields the remaining 2146 polynomials of
P(40, 4).

Example 5. N = 64, m = 6, p = 3. Writing 64 = 22 + 21 + 21 and proceeding as
above, we see that if P ∈ P(64, 6), then ±P (ζ3) = 27 = 18− 9ζ3 − 9ζ32 which has
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norm 36. This shows that P(64, 7) is empty and, since Byrnes’ example B6(x) has
m = 6, we have m∗(64) = 6 without any further computation. We know from the
computations of [Bo] that there are three symmetric polynomials in P(64, 6).

A complete determination of P(64, 6) using just the information from p = 3
would require a search of

(
22
2

)(
21
6

)2
= 6.802× 1011 polynomials or about 2 months

of computation, which is certainly feasible (especially if a faster machine is used).
However, it is possible to speed up this search by using information from other
primes. Our methods show, for example, that if P ∈ P(64, 6), then ±P (ζ5) =
5− 5ζ5 − 5ζ52 + 5ζ53. The prime 7 can also be used. There are 26 possible values
for ±P (ζ7). Of these, 25 of these can be eliminated by a direct search requiring
about 15 hours of computation. This leaves only the possibility ±P (ζ7) = 7. For
the prime 2, we have P (−1) = 0 from Lemma 1. The information from the primes
2, 3, 5, and 7 can be combined by using an extension of the linear algebra method
described in the next section. A computation based on these ideas required three
additional hours to determine that |P(64, 6)| = 3, the three polynomials being the
three symmetric polynomials determined in [Bo].

Example 6. N = 80, m = 6, p = 3. Here 80 = 27 + 27 + 26, and we find
that if P ∈ P(80, 7), then ±P (ζ3) = 27 − 27ζ3, which has norm 37. However,
in this case all coefficients of P0(x) are equal, to +1, say, and all coefficients of
P1(x) are equal, say to −1. Thus there are only

(
26
13

)
possibilities to check and

a direct enumeration shows P(80, 7) is empty. (It is also possible to combine the
information from the primes p = 3 and p = 7 to show that P(80, 7) is empty without
an extensive computation, as was pointed out to me by Ron Ferguson.) Since we
can construct elements of P(80, 6) from the unique element of P(40, 5), we have
m∗(80) = 6. We know from the computations of [Bo] that there are exactly 50
symmetric polynomials in P(80, 6), but it does not seem feasible to compute the
entire set P(80, 6), even using the information from the primes p = 3, 5, and 7.

Remark 3. Combining the results of Examples 1, 5, and 6 with Remark 1, we have
m∗(N) ≤ 6 for all N < 96 and hence we have shown that

N∗(7) = 96.

As already remarked, we know that |P(96, 7)| ≥ 2 so m∗(96) ≥ 7. By using the
prime p = 5, we can prove that if P ∈ P(96, 8), then P (ζ5) = ±25 which has norm
58. Thus P(96, 9) is empty and hence we have 7 ≤ m∗(96) ≤ 8. To completely
enumerate P(96, 8) using the information that ±P (ζ5) = 25 = 20 − 5ζ5 − 5ζ52 −
5ζ53− 5ζ54 would require the examination of

(
20
0

)(
19
7

)4
= 6.446× 1018 polynomials,

which is not currently feasible.

Example 7. N = 56, m = 6, p = 3. We now know that m∗(48) = m∗(64) = 6. In
[Bo] we showed that 5 ≤ m∗(56) ≤ 7 and in Remark 1 above that in factm∗(56) ≤ 6.
Using p = 3, we have 56 = 19 + 19 + 18 and can show that if P ∈ P(56, 6), then
±P (ζ3) = 9+9ζ3−18ζ32. Thus to determine all of P(56, 6) requires an examination
of only

(
19
5

)2(18
0

)
= 1.352×108 polynomials. It required 38 minutes of computation

to verify that P(56, 6) is empty, so m∗(56) = 5.

Remark 4. We now briefly consider the possibilities for N∗(8). We know from
Lemma 1 that this will require N to be a multiple of 16. We have just shown that
N∗(7) = 96. From the known elements of P(96, 7) we can construct a number
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of elements of P(192, 8), so we need only consider multiples of 16 in the range
96 ≤ N ≤ 192. Using the above methods, choosing p = 3 or 5 to be the smallest
nondivisor of N , we find the following bounds: 7 ≤ m∗(96) ≤ 8, 6 ≤ m∗(112) ≤ 7,
m∗(128) = 7, 6 ≤ m∗(144) ≤ 10, 7 ≤ m∗(160) ≤ 8, 6 ≤ m∗(176) ≤ 8, and
8 ≤ m∗(192) ≤ 9. Thus the only possibilities for N∗(8) are 96, 144, 160, 176,
and 192. The most likely possibility seems to be 192, but N = 144 = 24 × 32 is
an intriguing possibility because of the large upper bound m∗(144) ≤ 10 that our
methods yield.

Example 8. N = 144, m = 8, p = 5. Writing 144 = 29+29+29+29+28, we find
that P ∈ P(144, 8) gives four possibilities for ±P (ζ5), namely 25(1− ζ5− ζ52 + ζ5

3)
with norm 510, 25(1 − ζ5 + ζ5

2 − ζ53) or 25(1 + ζ5 − ζ52 − ζ53) with norm 59 and
5 + 5ζ5 + 5ζ52 + 5ζ53 − 20ζ54 with norm 58. So even to rule out m = 9 or 10
using this information would require the examination of 3

(
29
2

)4(28
14

)
= 3.270× 1018

possibilities, which is not currently feasible. Using p = 7 leads to 72 possibilities
for ±P (ζ7), one with norm 711, one with norm 710, 8 with norm 79, and 62 with
norm exactly divisible by 78.

Example 9. In view of Byrnes’ examples Bk(x) with N = 2k, it is worth seeing
what the above methods yield in this case. Using p = 3, we find that m∗(2k) = k
for 1 ≤ k ≤ 7, that k ≤ m∗(2k) ≤ k + 1 for 8 ≤ k ≤ 12, and 13 ≤ m∗(213) ≤ 15.

4. Computations

We now describe the improvements on the algorithm of [Bo] implied by the results
of the previous sections. We will write P (x) =

∑N
j=1 a(j)xj−1, and P (1 + t) =∑N

i=1 c(i)t
i−1 with

c(i) =
N∑
j=1

a(j)
(
j − 1
i− 1

)
.(12)

Thus P ∈ P(N,m) if and only if c(i) = 0 for i = 1, . . . ,m.
In [Bo] we used the fact that if P (1) = 0, then N must be even and have N/2

coefficients equal to +1 and N/2 equal to −1. So P is specified by the subset of j
for which a(j) = −1 and hence by an N/2-subset of the (N − 1)-set {1, . . . , N − 1}
(because of the assumption a(N) = 1). Thus, for example, the set P(48, 1) contains
1
2

(
48
24

)
= 1.612 × 1013 polynomials. Recall that in [Bo], we enumerated the set

P(40, 1) which has 1
2

(
40
20

)
= 6.892 × 1010 elements in about 1 week on a Sparc 10

workstation. Thus the enumeration of P(48, 1) would take roughly 234 weeks or
about 4.5 years on the same machine.

By the method of the previous section, if P ∈ P(N,m) and p ≤ m + 1, we can
determine all possible β ∈ Z[ζp] for which ±P (ζp) = β. Using the decomposition
(6), we thus have to determine all P ∈ ±P(N) for which Pj(1) = Aj , j = 1, . . . , p.
(The ambiguous sign simply means we do not restrict P to be monic). Thus, as
already described, Pj must have Kj = (Nj − Aj)/2 coefficients equal to −1 and
Nj −Kj coefficients equal to +1, and so is completely specified by giving the Kj-
subset of negative coefficients of the Nj-set of all coefficients of Pj .

As in [Bo] one can use the “revolving door” algorithm of Nijenhuis and Wilf [NW,
p. 34] in exactly the same way as used in [Bo] to enumerate the above set. That
algorithm provides an enumeration of the k-subsets of {1, . . . , n} in a circular list
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in which each set differs from the previous set by the addition of one element “in”
and the omission of an element “out”. We simply need to set up the enumeration
of each of the arrays a(j + np), j = 1, . . . , p as a p-tuple of nested loops. Since
the loops are circular, one can thus regard the whole system as an odometer, using
“carry” flags to indicate the completion of each loop.

This gives an enumeration of (a(1), . . . , a(N)) in which each vector differs from
the previous one by the change of sign of some a(in) from +1 to −1 and some other
a(out) from −1 to +1, so that the c(i) can be updated by the rule

c(i)← c(i)− 2
(

in− 1
i− 1

)
+ 2
(

out− 1
i− 1

)
(13)

for i = 1, . . . ,m. The test for (x − 1)m to divide P (x) is that c(i) = 0 for
i = 1, . . . ,m. It is interesting that (13) does not depend on N and hence the
computation time depends almost entirely on the size of the set to be searched and
not explicitly on the size of N .

A linear algebra trick. There is a simple method for reducing the size of the
search space by using some basic linear algebra. Select any m of the components
of (a(1), . . . , a(N)), say a(i1), . . . , a(im), and solve the equations c(i) = 0 for the
a(ij). It is easily seen that the rank of the coefficient matrix is m (by considering
its interpretation in terms of a polynomial interpolation problem). And hence one
obtains a matrix equation

(a(i1), . . . , a(im)) = (a(1), . . . , a(N))′A,(14)

where the ′ means to set the entries a(ij), j = 1, . . . ,m to 0. The matrix A will
have rational entries with a common denominator d, say, and hence we can write
(6) as

(b(1), . . . , b(m)) = (a(1), . . . , a(N))′B,(15)

where b(j) = da(ij). If we enumerate the vectors (a(1), . . . , a(N))′ by a revolving
door algorithm, then the b(j) can be updated by in a manner analogous to (13),
i.e.,

b(i)← b(i)− 2B(i, in) + 2B(i, out).(16)

The test for (x − 1)m to divide P (x) is now that |b(i)| = d for i = 1, . . . ,m. Since
there are now only N −m variables a(j), we seem to have gained a factor of 1/2m.

However, there is a slight complication. Since we have eliminated m of the a(i)
from consideration, we now no longer know exactly how many remaining a(j+np) in
the jth congruence class modulo p are −1, at least if {i1, . . . , im} intersects the jth
congruence class. The solution is to have {i1, . . . , im} intersect as few congruence
classes as possible. If {i1, . . . , im} has k elements in the jth congruence class, we
enumerate all possible subsets of the Nj−k remaining elements using the Gray code
ordering [NW, p. 18]. Recall that this is an ordering of all subsets of {1, . . . , n} in a
circular list in which each subset differs from the preceding subset by one element.
This requires an easy modification of (16) for those congruence classes affected.

For example, consider N = 48, m = 5, p = 3, where Nj = 16 and Kj = 8 for
each j, and here we can assume that P is monic so a(48) = 1. A straighforward
enumeration as in Example 2 would have taken about 15 weeks. Let us choose ij =
3j, j = 1, . . . , 5. Then we enumerate the 210 remaining subsets of {18, 24, . . . , 45}
by the Gray code algorithm and the

(
16
8

)
= 12870 8-subsets of each of {1, 4, . . . , 46}
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and {2, 5, . . . , 47}, by the revolving door algorithm. Thus we need to enumerate a
total of 210

(
16
8

)2
= 1.696× 1011 polynomials i.e., about 2.5 weeks of computation.

(In fact, the saving is somewhat larger than this since the Gray code enumeration
is faster than the revolving door enumeration.) The value of d is 35 = 243 so the
entries of B in (16) can be represented as single precision integers.

If we had wanted to simply enumerate P(48, 6) by this method, we would have
takenm = 6 and so the time would be about half of this. Of course, the enumeration
of P(48, 6) using the prime p = 5 as in Example 1 took only 10 minutes and hence
was considerably more efficient.

The set P(48, 5). Using the methods of Examples 1 and 2, we have verified by
two independent computations that |P(48, 5)| = 102. Here are some more details
about the polynomials in this set. The only symmetric polynomial in the set is the
unique element of P(48, 6). There are in addition 41 antisymmetric polynomials
in P(48, 5). All these were found in [Bo]. The remaining 60 polynomials come in
pairs (P,±P ∗), where P ∗(x) = x47P (1/x) is the reciprocal of P .

The factorization of the various polynomials is of interest. Lemmas 1 and 2 and
Example 2 guarantee that each P found will be divisible by Φ5

1Φ2Φ3. In fact, all P
have the additional factor Φ4(x) = x2 + 1. The most common factorization, which
occured for 32 of the 102 polynomials was

P = Φ5
1Φ2Φ3Φ4Q37,

where Q37 denotes an irreducible noncyclotomic polynomial of degree 37 (different
for different P , of course). These are necessarily not symmetric or antisymmetric
since the only irreducible such polynomials of odd degree are Φ1(x) = x − 1 and
Φ2(x) = x+ 1. In addition, two of the antisymmetric polynomials factored as

P = Φ5
1Φ2

2Φ3Φ4Q36.

The most highly composite P found was one of the antisymmetric P , which
factored as

P48 = Φ5
1Φ2

2Φ3
3Φ2

4Φ2
6Φ8Φ2

12Φ24Q6,

where Q6(x) = x6 +x5 + 2x4 + 3x3 + 2x2 +x+ 1. In fact P12 = (x−1)3Φ3Q6 is the
unique element of P(12, 3), P24 = (x12 − 1)P12 ∈ P(24, 4) and P48 = (x24 − 1)P24,
accounting for the highly composite structure of P48.

As we indicated in [Bo], the extremal P ∈ P(48, 6) factors as Φ6
1Φ3

2Φ3Φ4Φ6Φ8Q28,
where the first half of the coefficients of Q28 are

1, 4, 9, 16, 24, 32, 41, 50, 59, 68, 76, 82, 87, 90, 91.

5. Spectral-null codes

After the first version of this paper had been submitted for publication and
circulated as a preprint, we were informed by R. Roth that there are a number
of papers in the engineering literature on “spectral-null codes”. These are sets of
polynomials with coefficients in ±1 that have a high order zero at x = 1. In that
terminology, our set P(N, k) is the kth order spectral-null code of length N . The
conjecture of Byrnes was also formulated at about the same time by Roth, Siegel
and Vardy in [RSV]. The paper of Roth [R] and its references will provide an entry
into this literature.
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In a master’s thesis, Skachek [S] has also enumerated P(48, k) for k = 2, 5 and 6
and showed that P(48, 7) is empty. He computed P(56, 5) and showed that P(64, 7)
is empty but did not compute the set P(64, 6). His methods have some relation
to those used here in that congruences modulo various primes are derived for the
coefficients. These are derived without the use of Z[ζp] and are not quite as strong
as those we derive from Lemma 3.

In a recent paper, Freiman and Litsyn [FL] prove an asymptotic formula for
P(N, k).

Finally, we should mention that Borwein and Mossinghoff [BM] have recently
adapted the methods of this paper to treat the case of polynomials with coefficients
in {−1, 0, 1}.

I would like to thank Ron Ferguson for his very careful reading of the manuscript.
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