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COMPUTING DISCRETE LOGARITHMS
IN HIGH-GENUS HYPERELLIPTIC JACOBIANS

IN PROVABLY SUBEXPONENTIAL TIME

ANDREAS ENGE

Abstract. We provide a subexponential algorithm for solving the discrete
logarithm problem in Jacobians of high-genus hyperelliptic curves over finite
fields. Its expected running time for instances with genus g and underlying
finite field Fq satisfying g ≥ ϑ log q for a positive constant ϑ is given by
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The algorithm works over any finite field, and its running time does not rely
on any unproven assumptions.

1. Motivation and main result

Jacobians of hyperelliptic curves over finite fields were suggested for use in pub-
lic key cryptosystems by Koblitz in [17]. As abelian groups, these structures are
adequate for Diffie-Hellman type systems, whose security relies on the intractability
of the discrete logarithm problem in the underlying group. In principle, hyperellip-
tic cryptosystems offer the same security as elliptic cryptosystems of the same key
length.

However, in 1994 Adleman, DeMarrais and Huang showed that under some rea-
sonable heuristic assumptions there is a subexponential algorithm for discrete log-
arithms in high-genus hyperelliptic Jacobians [1]. The algorithm was presented for
curves over prime fields only. Müller, Stein and Thiel gave a rigorous subexponen-
tial algorithm for computing logarithms in the infrastructure of a real-quadratic
congruence function field in [24]. Again, only the odd characteristic case was de-
scribed, and the authors did not take into account the dependence of the running
time of the algorithm on the ratio g/ log q.

The present paper deals with a randomised subexponential algorithm whose ex-
pected running time can be rigorously proven without any heuristic arguments. Its
running time depends on the minimal ratio g/ log q for all instances under consid-
eration, and this dependence can be quantified. On the other hand, the running
time does not depend on the knowledge of the class number. Finally the algo-
rithm is valid for hyperelliptic curves over any finite field, in particular over fields
of characteristic 2.
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We postpone the introduction of the relevant notions and notations to Section 2
and present the main result of this article:

Theorem 1.1. Let

L(ρ) := eρ
√

(g log q) log(g log q)

denote the subexponential function with respect to g log q, and consider all instances
of the hyperelliptic logarithm problem satisfying g ≥ ϑ log q for a given positive
constant ϑ. Then there is an algorithm solving these instances in time
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The rest of this paper is devoted to the proof of this theorem. After introducing
hyperelliptic curves, their Jacobians and the discrete logarithm problem associated
with them, we describe the subexponential algorithm solving this problem. We
then show how to choose the factor base, an essential ingredient of the algorithm,
properly. Finally we compose all partial results to prove the desired subexponential
running time.

2. Hyperelliptic Jacobians

In this section we briefly present hyperelliptic curves and their Jacobians, relating
all results without proof. An excellent elementary introduction is given in [21].
While we are chiefly interested in curves over finite fields, the results hold in full
generality.

Let K = Fq be the finite field with q elements and K its algebraic closure. A
hyperelliptic curve over K is a degree 2 cover of the projective line P1(K). Re-
stricting our attention to curves with a ramified rational prime divisor, we consider
hyperelliptic curves of genus g over K which admit an affine model of the form

H : Y 2 + vY = u,

where v ∈ K[X ] is of degree at most g and u ∈ K[X ] monic of degree 2g + 1 (see
[26, 11, 12]). We first examine H as a curve over K. Then it consists of the finite
points P = (x, y) ∈ K×K whose coordinates satisfy the equation, and an additional
point at infinity, denoted by O. These are in bijection with the primes or valuations
of the function field K(H) := K(X)[Y ]/(H), which is a quadratic extension of the
rational function field K(X). The group of divisors Div(H) associated to H is the
free abelian group over the points on H ; the degree of a divisor D =

∑
P∈HmPP

is the sum of its coefficients, degD =
∑

P∈HmP . The degree zero part of the

divisor group consists of all divisors of degree zero and is denoted by Div0(H). To
a rational function in K(H) can be associated the divisor of its zeroes and poles,
each with the corresponding multiplicities; such a divisor is called principal, and all
principal divisors form the subgroup Prin(H) ⊆ Div0(H). Now the Jacobian of H
is defined as the abelian group J(H) := Div0(H)/Prin(H); its elements are called
divisor classes.

A divisor consisting of only one point is called prime, and a different view of such
a divisor is useful: Being given a finite prime of the rational function field K(X),
i.e., an irreducible polynomial a = X − x, the equation

Y 2 + vY − u ≡ 0 (mod a) ⇔ Y 2 + v(x)Y − u(x) = 0



DISCRETE LOGARITHMS IN HYPERELLIPTIC JACOBIANS 731

has a solution y ∈ K ' K[X ]/(a), and its second solution is given by −y − v(x);
they correspond to the prime P = (x, y) and its conjugate P = (x,−y − v(x)),
respectively. Hence P and P are the primes of K(H) which lie over a, and we call
a, P and P split if P 6= P and ramified otherwise. The ramified prime O extends
the infinite valuation given by the negative degree on K(X).

Furthermore, the degree zero divisor P −O can be represented as the gcd of the
divisors of X − x and Y − y, where

gcd

(∑
P∈H

mPP,
∑
P∈H

nPP

)
=

∑
P∈H,P 6=O

min(mP , nP )P

−

 ∑
P∈H,P 6=O

min(mP , nP )

O;

we write P = div(X − x, y).
A degree zero divisor D =

∑
P∈HmPP is called reduced if all mP ≥ 0 for P 6= O,

at most one of mP and mP is positive for a split prime P , mP ∈ {0, 1} for a ramified
prime P 6= O and

∑
P 6=OmP ≤ g. Any divisor class contains a unique reduced

representative, which can be uniquely written as div(a, b) := gcd(div(a), div(Y −b))
for a, b ∈ K[X ], a monic, deg b < deg a ≤ g, and a|b2 + vb− u.

In order to compute in Jacobians, we must reduce all notions above to the finite
field K itself. Note that the Galois group of K/K is topologically generated by the
Frobenius automorphism

ϕ : K → K, x 7→ xq,

which acts in the obvious manner on points and divisors by (x, y) 7→ (xq, yq). We
call a divisor rational over K if it consists of complete orbits under ϕ, each of
these orbits representing a prime of the function field K(H). We denote such a
rational prime divisor again by P , and define degP by the cardinality of the orbit.
Adopting the projective point of view it is easy to see that O is rational of degree 1.
Then we can define Div(H) as the free abelian group over the rational primes, and
the definitions of Div0(H), Prin(H) and the Jacobian J(H) carry over from the
algebraically closed case. As we are only interested in degree zero divisors, we make
use, without explicitly mentioning it in the following, of the canonical epimorphism
Div→ Div0, D 7→ D−(degD)O, and identify each prime P with the corresponding
degree zero divisor P − (degP )O.

A finite prime of K(X) is given by an irreducible polynomial a ∈ K[X ], and
three cases can be distinguished:
• Y 2 + vY − u ≡ 0 (mod a) has two solutions b and −b − v in K[X ]. Then

there are two primes in K(H) which lie over a, given by P = div(a, b) and
P = div(a,−b− v); their degrees are deg a, and a, P and P are called split.

• There is one (double) solution b, corresponding to a unique prime P =
div(a, b) over a such that P = P . The degree of P is deg a, and a and P
are called ramified.
• There is no solution to the congruence in K[X ], and a corresponds to the

prime P = div(a) of K(H). The degree of P is 2 deg a, and a and P are
called inert.

It can be easily seen that a reduced divisor div(a, b) is rational if and only if
a, b ∈ K[X ]; so as before, each divisor class of J(H) has a unique representative
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div(a, b) with a, b ∈ K[X ], a monic, deg b < deg a ≤ g and a|b2 + vb−u. Moreover,
in this representation there is a deterministic algorithm for adding divisor classes,
using O(g2) elementary operations in K, described by Cantor in [5] (see also [10]).

So far, we have shown how to construct rational prime divisors with respect
to their representations as div(a, b), and that it is possible to compute reduced
expressions for arbitrary sums of these primes. We also need the converse operation,
namely to determine the multiplicities of the primes in a reduced degree zero divisor
D = div(a, b). To this purpose we decompose a into a product of distinct irreducible
polynomials a = ae11 · · · aerr . It follows from the definition of reduced divisors that
none of the ai can be inert. If ai is ramified, then the unique prime Pi over ai
occurs in D with multiplicity ei = 1. If ai is split, let bi ≡ b (mod ai), and the
prime Pi = div(ai, bi) occurs with multiplicity ei in D. (This is nicely explained in
[1], Section 3.)

3. Solving the discrete logarithm problem

Suppose that we are given two reduced degree zero divisors D(1) and D(2) such
that D(2) is in the same divisor class as lD(1) for an integer l (which we denote by
D(2) ∼ lD(1)). The discrete logarithm problem is to determine l, which is unique
up to multiples of the class number h = |J(H)| of H . As usual for subexponential
discrete logarithm algorithms we proceed in two stages: First, we try to determine
the structure of the group under consideration; second, we solve the individual
discrete logarithm problems.

3.1. Finding the group structure. Let B = {P1, . . . , Pn}, the factor base, be a
set of rational primes that generates J(H). (The term “factor base” comes from the
multiplicative setting in a finite field, but we keep some muliplicative terminology
in our additive setting. How B is constructed is the topic of Section 4.) The group
homomorphism

Zn → J(H), (e1, . . . , en) 7→ e1P1 + . . . enPn,

is surjective, and if Γ is its kernel, then

Zn/Γ ' J(H).

As |J(H)| = h is finite, Γ is a full lattice of determinant h, whose elements are called
relations. During the first stage of the algorithm, we try to determine a basis for
Γ. Starting with the empty matrix M , by a randomised procedure described below
we alternately create a new relation and add it as a new column to M . In the case
where h is known it is then easy to determine whether the columns of M generate
Γ. Since we do not wish to make this assumption, we have to generate a rather
large number of relations, pretend that they generate Γ and try to solve the discrete
logarithm problem. If we do not succeed, we have to repeat the group structure
finding step. In the case that the columns of M do generate Γ, the structure of
J(H) is closely related to a special transform of M ; recall the following definitions
(see [6, Section 2.4]):

Definition and Theorem 3.1. Let A = (aij) be an integral n×m-matrix of rank
n.

1. A is in column echelon form if its first m− n columns are zero and its last n
columns form an upper triangular matrix.
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2. A is in Hermite normal form if it is in column echelon form and moreover
ai,i+m−n > 0 for i = 1, . . . , n and 0 ≤ ai,j+m−n < ai,i+m−n for i = 1, . . . , n,
j = i+1, . . . , n. There is a unique matrix N ∈ Zn×m in Hermite normal form
such that N = AT for a unimodular matrix T ∈ Zm×m. Hence the columns
of N and A span the same lattice, and the essential part of N , i.e., its nonzero
columns, forms a canonical basis for this lattice.

3. Suppose that N ∈ Zn×n is the essential part of the Hermite normal form of A.
Then there is a unimodular matrix S ∈ Zn×n such that ∆ := SN is a diagonal
matrix with diagonal entries d1| · · · |dn; ∆ is called the Smith normal form of
A. If A is the matrix M above, then d1, . . . , dn are the group invariants of
J(H).

The principles outlined so far are the same as those underlying the algorithm in
[1]. The main difference in our algorithm is the creation of new relations, which
follows ideas first presented by McCurley in [20]. Basically we compute random
linear combinations of prime divisors, reduce them and try to express the reduced
divisors as another linear combination of prime divisors. The probability of success
for this procedure is apparently easier to analyse than the approach in [1], where
divisors of random polynomial functions are used to build relations.

The following algorithm succeeds with a high probability in finding the group
structure:

Algorithm 3.2.
1. Let M be the empty matrix. Fix a maximal exponent E such that J(H) is

generated by at most the (E − 1)-th multiples of primes in B. (The choice of
E is discussed in subsection 3.3.) Construct the factor base B = {P1, . . . , Pn}
explicitly as described in Section 2.

2. Find 20n relations. To this purpose, repeatedly select a random vector e =
(e1, . . . , en) ∈ {0, . . .E−1}n and compute the reduced representation div(a, b)
∼ e1P1 + · · ·+ enPn until it factors over B as div(a, b) = r1P1 + · · ·+ rnPn,
as explained in Section 2. Then (r1 − e1, . . . rn − en)T ∈ Γ; add this column
to M .

3. Compute the rank of M . If M does not have full rank, then go to Step (2).
4. Otherwise construct 40n ldE new relations by the procedure described under

Step (2).
5. Compute the Smith normal form of M .

Notice that we have made no attempt to write down an algorithm suited for
implementation, but that our concern is to simplify the analysis. For instance,
in practice it should usually suffice to create about 2n relations and the relations
should not be obtained randomly, but by sieving techniques. For a description of
an implementation based on a sieving approach, see [14].

3.2. Computing individual logarithms. To relate D(1) and D(2) to the primes
in B, we have to find B-smooth divisors D̃(1) ∼ D(1) and D̃(2) ∼ D(2), i.e., divisors
which can be decomposed into the primes in B. To do so, we again choose random
vectors e ∈ {0, . . . E − 1}n until D(1) +

∑n
i=1 eiPi ∼

∑n
i=1 riPi, and let D̃(1) =∑n

i=1(ri − ei)Pi; an analogous procedure yields D̃(2).
Assume that the algorithm of subsection 3.1 has yielded a basis for Γ and that

N ∈ Zn×n is the essential part of its Hermite normal form and ∆ = SN its Smith
normal form with diagonal entries d1| · · · |dn. Denote by c(j) the coefficient vector of
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D̃(j) with respect to P1, . . . , Pn. Then since D̃(2)− lD̃(1) ∼ 0 and the columns of N
generate Γ, we know that c(2)− lc(1) ∈ ImN , or equivalently Sc(2)− lSc(1) ∈ Im ∆.

Letting Sc(j) = a(j) =
(
a

(j)
1 , . . . , a

(j)
n

)T
, this is equivalent to

a
(2)
i ≡ la

(1)
i (mod di) for i = 1, . . . , n,

from which l can be determined modulo h = d1 · · ·dn.
If the algorithm of subsection 3.1 did not succeed in finding a basis of Γ, but

only of a sublattice, then the above congruences may or may not have a solution.
In the first case the solution is the correct discrete logarithm; otherwise we declare
failure and start the whole group structure determination again.

3.3. Estimating the class number. It would be helpful in two ways to know the
class number h. First, Fermat’s Little Theorem implies that hD ∼ 0 for any degree
zero divisor D, so that E = h is a suitable parameter in Step (1) of Algorithm 3.2.
Second, the columns of M generate Γ if and only if the determinant of the Smith
normal form of M equals h. While, on correct input, our algorithm is guaranteed
to output the discrete logarithm, without knowledge of h it will run forever if no
discrete logarithm exists.

Unfortunately, to date there is no polynomial time algorithm computing h; notice
that Pila’s deterministic algorithm [25], often referred to as “polynomial”, is so only
for fixed g. The same is true for the algorithm described by Huang and Ierardi in
[16]. However, an approximation Θ of the class number such that h ≤ Θ < 2h
would be a sufficient criterion when enough relations have been collected, since we
could stop as soon as the determinant of the Smith normal form no longer exceeds
Θ. Such an approximation can probably be obtained using methods analogous to
those in [27].

Concerning the maximal exponent E, so far it is only necessary that it be at
least the exponent of J(H), which is a divisor of h. We recall a bound on h due to
Artin (see [3, §24, Formula (8)]):

Theorem 3.3.

h ≤ (2g + 1)qg.

In order to ease the analysis of subsection 4.2, we set

E = 5(2g + 1)qg + g > 5h.

4. A suitable factor base

To keep our intended time bound for the algorithm, we have to secure two points:
First of all, B should be large enough to generate the Jacobian and to achieve a
reasonable probability of divisors being B-smooth, i.e., of obtaining new relations.
This will be the topic of subsections 4.1 and 4.2. On the other hand, B must be
small so as to be easily computable and to keep down the expected number of
relations needed. We show in subsection 4.3 that this implies an extra condition
on g, namely that it be at least of the order of log q.

4.1. Generating the Jacobian. In [24], Müller, Stein and Thiel showed that the
ideal class group of a real quadratic congruence function field with finite constant
field of odd characteristic is generated by prime ideals of small degree. Their proof
is based on the extended Riemann hypothesis, which is true in function fields, and
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directly carries over to hyperelliptic Jacobians over any finite field. We cite from
[24], Corollary 1, slightly reformulated:

Theorem 4.1. Let χ be a character of finite order of Div(H), which is not princi-
pal when restricted to Div0(H). Then there is a prime divisor P of degree at most⌈

2 log(4g−2)
log q

⌉
such that χ(P ) 6= 1.

Corollary 4.2. J(H) is generated by the split and ramified prime divisors of degree
at most ⌈

2 logq(4g − 2)
⌉
.

Proof of the corollary. Let U be the subgroup of J(H) generated by the split and
ramified prime divisors that match the given degree bound. To show that U = J(H)
we have to verify that any nonprincipal character χ of J(H) remains nonprincipal
when restricted to U . From J(H) = Div0(H)/Prin(H) we can interpret χ as a
nonprincipal character of Div0(H), and extending trivially to Div(H) ' Div0(H)×
Z yields a character of finite order of Div(H). Now by the previous theorem, there
is a prime divisor P of degree at most

⌈
2 logq(4g − 2)

⌉
such that χ(P ) 6= 1. As the

restriction of χ to Prin(H) is principal and any inert prime divisor lies in Prin(H),
we have P ∈ U , and χ is not principal on U .

Hence we fix B = {P1, . . . , Pn} as the set of split and ramified prime divisors of
degree at most C, where C ≥

⌈
2 logq(4g − 2)

⌉
will be determined later. Then since

each such prime is of the form div(a, b) with deg a ≤ C, a monic, and to each a
correspond at most two values of b, we see that n ≤ 2qC .

4.2. Smooth divisors. In this section we show that a suitable choice of parameters
assures a “reasonable” probability of finding new relations. Denote by NB the
number of B-smooth reduced degree zero divisors. If the randomly generated linear
combinations of primes in B were uniformly distributed over all divisor classes, the
probability of finding a relation would be NB

h ≈
NB
qg (cf. Theorem 3.3; this heuristic

will be made rigorous in subsection 5.1). This implies that for a subexponential
running time we require qg

NB
to be subexponential, and to this purpose we must

raise B to subexponential size. Precisely, we set

C =
⌈
logq L(ρ)

⌉
for a positive constant ρ to be determined later. Then the following theorem, which
is proved in [13], provides the desired result:

Theorem 4.3. Let C =
⌈
logq L(ρ)

⌉
for a positive constant ρ, and let B consist of

the split and ramified rational prime divisors of degree at most C. Then there is a
function β(g) in o(1) for g →∞ such that

NB ≥ L
(
− 1

2ρ
− β(g)

)
qg.

We must check that, with this choice for C, the set B is indeed a factor base,
i.e., generates the Jacobian. With respect to Corollary 4.2 it is sufficient to verify
if

logq L(ρ) ≥ 2 logq(4g − 2),
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or equivalently

ρ
√

(g log q) log(g log q) ≥ 2 log(4g − 2)

holds. Taking into account that ρ is a constant and that q ≥ 2, the equation holds
asymptotically for g →∞.

4.3. A necessary condition for subexponentiality. We have claimed that our
algorithm is of subexponential running time in the input size O(g log q). Since B
contains O(qC) elements, a first necessary condition is that qC be subexponential
in g log q. The problem is that we have to round up the value assigned to C for
Theorem 4.3 to hold, so that qC can be (almost) as big as qlogq L(ρ)+1 = qL(ρ).
Hence we must assume that q is subexponential in g log q, which can only happen
for large g. More precisely, we fix a constant ϑ and consider only the problem
instances for which g ≥ ϑ log q. Then we have the following result:

Theorem 4.4. If g ≥ ϑ log q, then q ≤ L
(

1√
ϑ

)
, and

qC ≤ L
(
ρ+

1√
ϑ

)
.

Proof.

q = elog q = e
1√
ϑ

√
ϑ(log q)2 ≤ e

1√
ϑ

√
g log q ≤ L

(
1√
ϑ

)
.

We remark that the authors of [24] treat the case ϑ = 1, but do not take into
account that C has to be rounded up. Their assumption that qC ∈ L(ρ+ o(1)) and
consequently their running time analysis are, however, asymptotically correct for
g log q →∞ and ϑ = g/ log q →∞.

5. The running time of the algorithm

According to Section 4, we make the following conventions: C =
⌈
logq L(ρ)

⌉
for

a constant ρ to be determined later in this section and B consists of the split and
ramified rational prime divisors of degree at most C. We consider all instances
satisfying g ≥ ϑ log q for a given constant ϑ > 0. Notice that we are interested in
asymptotic bounds on the running time of our algorithm for the input size g log q
tending to infinity, and that under the restriction imposed on g this is equivalent
to g →∞.

We first analyse different parts of the algorithm separately before collecting the
partial results to determine an overall time bound and to optimise the constant ρ.

5.1. Finding a relation. The crucial part of Algorithm 3.2 is the creation of
relations in Steps (2) and (4). We argued in subsection 4.2 that the probability of
finding a relation is heuristically NB

h , a claim we make precise in this section, using
techniques inspired by those in [4] and [27]. In a first step we determine how many
exponent vectors e yield a fixed relation c:

Lemma 5.1. Let c ∈ Γ. Then the number of vectors e ∈ {0, . . . , E − 1}n which
yield the relation c equals the number of B-smooth reduced degree zero divisors∑r
i=1 riPi such that r− c ∈ {0, . . . , E − 1}n.
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Proof. It follows from the description of the relation generating process in Step (2)
of Algorithm 3.2 that e creates the relation c if and only if e + c is the coefficient
vector of a B-smooth reduced degree zero divisor.

Since the coefficients of a reduced degree zero divisor are elements of the set
{0, . . . , g}, the lemma allows us to make a more precise assertion for relations con-
tained in the cubes W− = {g + 1− E, . . . , 0}n and W+ = {1− E, . . . , g}n:

Corollary 5.2.
1. Let c ∈ Γ ∩W−. Then there are exactly NB choices for e ∈ {0, . . . , E − 1}n

which yield the relation c.
2. Let c ∈ Γ ∩ W+. Then there are at most NB exponent vectors e ∈
{0, . . . , E − 1}n which yield the relation c.

3. Let c ∈ Γ\W+. Then there is no exponent vector e ∈ {0, . . . , E − 1}n which
yields the relation c.

This implies that a uniform choice of e ∈ {0, . . . , E − 1}n yields a relation with
probability between

|Γ ∩W−|NB
En

and
|Γ ∩W+|NB

En
,

and we have to estimate the cardinalities of intersections between a lattice and a
cube. This can be done using a theorem due to Lenstra ([19, Lemma 4.1]), which
we cite in a slightly different phrasing:

Theorem 5.3. Let Γ′ ⊆ Zn be a full lattice of determinant h′ and W ′ an axes
parallel cube with integral vertices and side length S − 1. Then

1
h′

(
1− h′ − 1

S

)
Sn ≤ |Γ′ ∩W ′| ≤ 1

h′

(
1 +

h′ − 1
S

)
Sn.

Applying the theorem to our situation we find that

|Γ ∩W−|
En

≥
1
h

(
1− h−1

E−g

)
(E − g)n

En

=
1
h

(
1− h− 1

E − g

)(
1− g

E

)n
≥ 1

h

(
1− 1

5

)(
1− g

10gqg

)10qg · 1
40

for E = 5(2g + 1)qg + g and n ≤ 1
4
qg

≥ 4
5 40
√
eh

where e is Euler’s constant;

and similarly
|Γ ∩W+|

En
≤ 6 40

√
e

5h
.

Thus we have shown the following result:

Theorem 5.4. If E = 5(2g+ 1)qg + g, e is chosen uniformly from {0, . . . , E− 1}n
and g is large enough, then the probability of finding a relation lies between

4
5 40
√
eh
NB and

6 40
√
e

5h
NB;
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it is bounded below by a function in

4
5 40
√
e(2g + 1)

L

(
− 1

4ρ
− o(1)

)
.

Proof. The first assertion has been proved above; notice that the condition n ≤ 1
4q
g

is asymptotically fulfilled for g →∞. For the second assertion substitute the results
of Theorems 3.3 and 4.3 into the lower bound.

5.2. Linear algebra. Since we are dealing with matrices of subexponential size,
we must make sure that all matrix operations involved take time polynomial in
the sizes of the matrices and their entries. Moreover, the exact exponents of the
polynomial time bounds for the matrix operations have a direct impact on the
constant of the subexponential time bound for the algorithm. Hence a judicious
arrangement of the computations is necessary. We need the following results:

Theorem 5.5. Let A = (aij) ∈ Zn×m with m ≥ n and

|A| = max{|aij | : i = 1, . . . , n, j = 1, . . . ,m}.

1. The rank of A can be determined in time O(m2n2 log2(n|A|)).
2. If A has rank n, then its Hermite normal form can be computed in time
O(mn2(n2 +m) log2(n|A|)).

3. If N ∈ Zn×n is the essential part of the Hermite normal form of A, then
computing the Smith normal form takes time in O(n3 log4(|N |)).

Proof. 1. See [23, Satz 3.9].
2. It is straightforward to see that the Hermite normal form of A can be com-

puted by unimodular transformations with a polynomial number of arithmetic
operations. This näıve approach, however, involves intermediate results of
possibly exponential size. To remedy to this problem, Domich, Kannan and
Trotter described an algorithm using modular arithmetics [8]. It was analysed
in detail by Müller (see [23, Satz 4.12]).

3. See [9, Satz 3.29].

5.3. Expected time for one run. In this section we determine the expected time
needed for one run of the algorithm, assuming that each step is executed only once
and no jump back to Step (2) is required.

In the first step, we have to compute the factor base B as described in Section 2.
The irreducible polynomials of degree at most C are enumerated by trial divisions of
allO(qC) monic polynomials of degree at mostC by the O(qC−1) monic polynomials
of smaller degree. Compared to this, the cost of solving a quadratic equation modulo
each of the resulting irreducible polynomials is negligible. So the bit complexity of
the first step is in

O
(
(C2 log2 q)q2C−1

)
⊆ O

(
(C2 log2 q)L

(
2ρ+

1√
ϑ

))
⊆ O

(
L

(
2ρ+

1√
ϑ

+ o(1)
))

by Theorem 4.4. Here o(1) is a function of g and q which tends to zero for g log q →
∞; it is needed to neutralise the effect of the factor C2 log2 q, which is polynomial
in g log q.
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From Theorem 5.4 we know that the expected number of trials for finding a
relation is bounded above by 5

4
40
√
e(2g + 1)L

(
1
2ρ

)
∈ O

(
L
(

1
2ρ + o(1)

))
. Each

trial amounts to computing a linear combination of prime divisors by O(n logE)
polynomial operations and to factoring a polynomial of degree at most g in expected
polynomial time. Since logE is polynomial in the input size, the expected time
bound for Step (2) is O

(
n2L

(
1
2ρ + o(1)

))
⊆ O

(
L
(

2
(
ρ+ 1√

ϑ

)
+ 1

2ρ + o(1)
))

.
By Theorem 5.5 (1) the rank of the relation matrix M can be computed in time

O
(
L
(

4
(
ρ+ 1√

ϑ

)
+ o(1)

))
. We assume that M has full rank, the probability for

this event being evaluated in the next section. The expected time bound for comput-
ing the additional relations in Step (4) is again in O

(
L
(

2
(
ρ+ 1√

ϑ

)
+ 1

2ρ + o(1)
))

.
The Smith normal form of the new relation matrix can be determined in time
O
(
L
(

5
(
ρ+ 1√

ϑ

)
+ o(1)

))
by Theorem 5.5 (2) and (3).

Smoothing the divisors D(j) as described in subsection 3.2 is performed in
expected time O

(
L
(
ρ+ 1√

ϑ
+ 1

2ρ + o(1)
))

; this follows from arguments analo-
gous to those of subsection 5.1. With the notation of subsection 3.2, computing
a(1) and a(2) and solving the system of equations modulo the di takes time in
O
(
L
(

2
(
ρ+ 1√

ϑ

)
+ o(1)

))
.

It follows that the complexity of one complete run of the algorithm is in

O

(
L

(
max

{
5
(
ρ+

1√
ϑ

)
, 2
(
ρ+

1√
ϑ

)
+

1
2ρ

}
+ o(1)

))
.

5.4. Probability of success. While we have seen in subsection 5.1 that there is a
positive probability of finding relations, there is no guarantee that a new relation is
not already contained in the lattice generated so far. Hence there is a small chance
that the 20n relations created in Step (2) of Algorithm 3.2 do not generate a full
lattice.

Formally, assume that during the algorithm we have generated a sublattice Γ1 of
Γ of dimension less than n, and let c be a further relation as determined in Step (2).
We call c useful if it increases the dimension of Γ1, and it is our aim to determine
the probability that a newly created relation is useful.

Denote by Γ2  Γ a full sublattice which contains QΓ1 ∩ Γ. Then all relations
outside Γ2 are useful, and the probability of finding a relation within Γ2 is by
Corollary 5.2 bounded above by

|Γ2 ∩W+|
En

NB ≤ 1
kh

(
1 +

kh− 1
E + g

)(
E + g

E

)n
NB

by Theorem 5.3, where k ≥ 2 is the index of Γ2 in Γ

≤ 7 40
√
e

10h
NB

by arguments analogous to those used in the proof of Theorem 5.4.
Hence the conditional probability that a newly found relation is useless, which is

the probability of finding a useless relation divided by the probability of finding any
relation, is bounded above by 7 40√e

10h /
4

5 40√eh = 7 20√e
8 < 18

19 according to Theorem 5.4,
and the probability that a newly found relation is useful is at least 1/19.

We can now prove the following theorem:
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Theorem 5.6. The probability of success for one run of the algorithm is asymp-
totically 1 for g log q →∞, whence it has to be repeated an expected O(1) times.

Proof. We first compute the probability that the matrix M obtained after Step (2)
has full rank, which is equivalent to saying that n of the 20n relations computed
are useful. Let X denote a Binomial(20n, 1/19)-distributed random variable. By
the discussion above, the probability that M has full rank is at least

P (X ≥ n) ≥ 1− P
(∣∣∣∣X − 20

19
n

∣∣∣∣ ≥ 1
19
n

)
≥ 1− Var(X)

1
361n

2

by Tschebyscheff’s inequality (see any statistics textbook). Since Var(X) = 360
361n,

the matrix M has full rank with probability at least 1− 360
n , which tends to 1 for

g log q →∞.
A similar reasoning applies to Step (4). Now let the full lattice Γ2  Γ be already

generated, and call a relation useful if it decreases the index of Γ2 in Γ. Then the
same reasoning as above shows that a new relation is useful with probability at
least 1/19. We now have to estimate the number of useful relations needed to find
a generating system of Γ. Let Γ1 be the lattice obtained in Step (2). Then the
number of useful relations needed for Γ is bounded above by

ld[Γ : Γ1] = ld(det Γ1)− ld(det Γ) ≤ ld(det Γ1).

From the description of the relation collecting phase in Algorithm 3.2 we know
that all relations constructed lie in the cube {1 − E, . . . , g}n. Now Hadamard’s
upper bound shows that det Γ1 ≤ (

√
nE)n ≤ E2n at least asymptotically since n is

subexponential and E exponential in g log q. Hence,

ld(det Γ1) ≤ 2n ldE

for g log q large enough. Simulating the creation of relations again by a binomially
distributed variable shows that the probability of obtaining a generating system is
asymptotically 1 for g log q →∞.

5.5. Optimising the parameter ρ. The analysis of the previous sections shows
that the expected running time of the algorithm is in

O

(
L

(
max

{
5
(
ρ+

1√
ϑ

)
, 2
(
ρ+

1√
ϑ

)
+

1
2ρ

}
+ o(1)

))
.

Hence we have to minimise the function

f : ρ 7→ max
{

5
(
ρ+

1√
ϑ

)
, 2
(
ρ+

1√
ϑ

)
+

1
2ρ

}
subject to ρ > 0. This function is unimodal and thus has a unique global minimum.

The strictly convex function ρ 7→ 2
(
ρ+ 1√

ϑ

)
+ 1

2ρ admits its unique global
minimum at

ρ =
1
2
.

Both functions have the same value for

ρ∗(ϑ) =
1√
6

(√
1 +

3
2ϑ
−
√

3
2ϑ

)
.
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Hence f admits its unique minimum at min{ρ, ρ∗(ϑ)}. (This can easily be veri-
fied by drawing two generic pictures corresponding to ρ < ρ∗(ϑ) and ρ ≥ ρ∗(ϑ),
respectively.) Since ρ > ρ∗(ϑ) for all positive values of ϑ, this proves Theorem 1.1.
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binärer quadratischer Formen, Dissertation, Universität des Saarlandes, Saarbrücken, 1991.

[10] Andreas Enge, The extended Euclidian algorithm on polynomials, and the computational ef-
ficiency of hyperelliptic cryptosystems, Des. Codes Cryptogr., 23 (2001), 53–74. CMP 2001:11

[11] , Hyperelliptic cryptosystems: Efficiency and subexponential attacks, Dissertation,
Universität Augsburg, 2000, ISBN 3-8311-1868-X.

[12] , How to distinguish hyperelliptic curves in even characteristic, to appear in Pro-
ceedings of the Conference on Public Key Cryptography and Computational Number Theory,
Warszawa 2000.

[13] Andreas Enge and Andreas Stein, Smooth ideals in hyperelliptic function fields, Math. Comp.,
posted on October 4, 2001, PII S0025-5718(01)01352-7 (to appear in print).

[14] Ralf Flassenberg and Sachar Paulus, Sieving in function fields, Experiment. Math. 8 (1999),
no. 4, 339–349. MR 2000j:11179
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