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ASYMPTOTIC ESTIMATION
OF GAUSSIAN QUADRATURE ERROR

FOR A NONSINGULAR INTEGRAL IN POTENTIAL THEORY

DAVID M. HOUGH

Abstract. This paper considers the n-point Gauss-Jacobi approximation of

nonsingular integrals of the form
∫ 1
−1

µ(t)φ(t) log(z− t) dt, with Jacobi weight

µ and polynomial φ, and derives an estimate for the quadrature error that
is asymptotic as n → ∞. The approach follows that previously described
by Donaldson and Elliott. A numerical example illustrating the accuracy of
the asymptotic estimate is presented. The extension of the theory to similar
integrals defined on more general analytic arcs is outlined.

1. Introduction

Let Pν denote the linear space of polynomials of degree not exceeding ν, let A
denote the space of functions which are analytic at all finite points of the cut plane
C \ (−∞, 1] and let K : Pν 7→ A be defined by

Kφ(z) :=
∫ 1

−1

µ(t)φ(t) log(z − t) dt , φ ∈ Pν , z /∈ [−1, 1] ,(1.1)

where µ(t) := (1−t)α(1+t)β is the classical Jacobi weight function. We note that in
general, apart from certain special choices of µ, Kφ cannot be expressed as a finite
combination of elementary functions. The n-point Gauss-Jacobi approximation Kn

to K is defined by

Knφ(z) :=
n∑
k=1

µkφ(tk) log(z − tk) , z /∈ [−1, 1] ,(1.2)

where {µk} and {tk} are the weights and abscissae of the n-point Gauss-Jacobi rule
associated with µ. Let

En := K −Kn .(1.3)

The central aim of the paper is to derive an estimate for Enφ that is valid asymp-
totically as n→∞.

The function Kφ arises directly in the numerical solution of harmonic boundary
value problems on polygonal domains via the boundary integral representation using
the single layer logarithmic potential. In this case, the weight µ models the solution
singularity that arises at corner points on the physical boundary or at points where
boundary conditions are discontinuous. The polynomial φ then corresponds to a
typical basis function for the finite-dimensional space in which an approximation
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to the unknown boundary density function is to be constructed; a set of Jacobi
polynomials is a natural choice for this basis; see, for example, Hough [Hou90].
Finally, in a collocation solution of the boundary integral equation, the field point
z corresponds to a typical collocation point somewhere on the physical boundary
but not on the integration arc [−1, 1]. Thus, an analytic estimate of the quadrature
error Enφ(z) is directly relevant in constructing the numerical solution to harmonic
boundary value problems on polygonal domains.

In the case of domains with nonpolygonal boundaries, let Γ denote a typical
boundary arc and let ζ : [−1, 1] 7→ Γ be an analytic parametrisation of Γ. Also let
Aζ denote the set of functions that is analytic at all finite points of the cut plane
C\{B∪Γ}, where B is any suitable branch cut extending from ζ(−1) to∞. There
then arises the more general operator Kζ : Pν 7→ Aζ defined by

Kζφ(z) :=
∫ 1

−1

µ(t)φ(t) log(z − ζ(t)) dt , z /∈ Γ .(1.4)

The corresponding Gauss-Jacobi estimate is

Kζ,nφ(z) :=
n∑
k=1

µkφ(tk) log(z − ζ(tk)) ,(1.5)

with error defined by

Eζ,n := Kζ −Kζ,n .

An additional reason for wishing to estimate the error function Enφ is that, for
many functions ζ of practical interest, the error Eζ,nφ can be expressed in terms of
Enφ.

In Section 2, we derive our asymptotic estimate for the error Enφ as n → ∞;
our central result is contained in Theorem 2.6 where a simple explicit formula is
presented. A numerical example illustrates the accuracy of the aymptotic estimate
at relatively small values of n. The analysis of Section 2 is based on the ideas
described in Donaldson and Elliott [DE72]. In Section 3, we outline how Eζ,nφ is
related to Enφ for the case of an entire parametric function ζ.

2. Asymptotic analysis

The analysis requires that, for any given z 6∈ [−1, 1], the domain of definition
of the function log(z − ·) should be extended to the whole complex plane cut by
a suitable branch cut linking z to the point at infinity. It turns out to be most
convenient to use a hyperbolic branch cut Hz defined as follows. Let

S+ := {w ∈ C : <(w) > 0 , −π < =(w) ≤ π} .
Then it is readily established that if the domain of the hyperbolic cosine is restricted
to S+, then the resulting map cosh : S+ → C \ [−1, 1] is bijective and hence has an
inverse, say cosh−1

+ : C \ [−1, 1]→ S+. Given any z 6∈ [−1, 1] define

Hz := {w ∈ C : w = cosh
(
cosh−1

+ (z) + t
)
, 0 ≤ t <∞} .(2.1)

It may be noted that cosh
(
cosh−1

+ (z) + t
)
≡ z cosh t +

√
z2 − 1 sinh t, so that the

latter formula represents a somewhat more obvious parametrization of Hz. The
hyperbolic arc Hz starts at z and goes out to ∞ without ever crossing the segment
[−1, 1]. For the special case when z is real, the above definition implies that if
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z > 1, then Hz is the segment [z,∞) of the real axis whilst if z < −1, then Hz is
the segment (−∞, z].

We remark that the expression for Enφ(z) derived in Theorem 2.1 below is quite
independent of the specific choice of the branch cut. One can readily appreciate that
this should be the case since, from (1.1), we see that selecting an alternative branch
for the logarithm function modifies the expression Kφ(z) by integer multiples of
2πi

∫ 1

−1
µ(t)φ(t) dt. This latter integral is evaluated exactly by the n-point Gauss-

Jacobi rule provided ν < 2n and hence contributes nothing to Enφ(z).
According to Donaldson and Elliott [DE72, Theorem 1] the n-point Gauss Jacobi

error function can be expressed in the form

Enφ(z) =
1

2πi

∫
C

η(α,β)(w) dw(2.2)

where

η(α,β)(w) :=
Π(α,β)
n (w)

P
(α,β)
n (w)

φ(w) log(z − w) ,(2.3)

P
(α,β)
n (t) is the Jacobi polynomial of degree n associated with the weight µ(t) and

Π(α,β)
n denotes the Jacobi function of the second kind, namely

Π(α,β)
n (w) :=

∫ 1

−1

(1− t)α(1 + t)βP (α,β)
n (t)

w − t dt .(2.4)

Note that Π(α,β)
n is analytic in the cut plane C \ [−1, 1]. The integration path C

in (2.2) may be any simple closed curve, traversed in the anticlockwise direction,
which encircles the segment [−1, 1] but does not cross the branch cut Hz. One such
path is formed from the circular paths C0, C1 and the two edges of the cross-cut
L1 as indicated in Figure 1. Here, C0 and C1 denote circular paths traversed in the
anti-clockwise direction and defined by

C0 := {w ∈ C : w = ρ eit , 0 ≤ t ≤ 2π},(2.5)
C1 := {w ∈ C : w = z + δ1 eit , 0 ≤ t ≤ 2π}

where

ρ > max(1, |z|)(2.6)

and δ1 is small enough to ensure that C1 ⊂ intC0 and (intC1 ∪C1) ∩ [−1, 1] ≡ ∅.
Also,

L1 := Hz ∩ intC0 ∩ extC1

is that part of Hz which lies between C0 and C1, traversed in the direction from
C1 towards C0. With the above definitions it follows that∫

C

η(α,β)(w) dw =
∫
C0

η(α,β)(w) dw −
∫
C1

η(α,β)(w) dw

−
∫
L1

η
(α,β)
− (w) dw +

∫
L1

η
(α,β)
+ (w) dw(2.7)
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Figure 1. Components C0, C1 and L1 of the contour C

where, since arg(z − w) decreases by 2π as w traverses C1 in the anti-clockwise
direction and recalling (2.3), we have written

η
(α,β)
− (w) =

Π(α,β)
n (w)

P
(α,β)
n (w)

φ(w) log(z − w),(2.8)

η
(α,β)
+ (w) =

Π(α,β)
n (w)

P
(α,β)
n (w)

φ(w) (log(z − w)− 2πi) .

Hence it follows that∫
L1

(
η

(α,β)
+ (w) − η(α,β)

− (w)
)

dw = −2πi
∫
L1

Π(α,β)
n (w)

P
(α,β)
n (w)

φ(w) dw .(2.9)

Substituting the previous result into (2.7) and allowing δ1 → 0 in conjunction with
the fact that

lim
δ1→0

∫
C1

η(α,β)(w) dw = 0 ,

it follows from (2.2) that

Enφ(z) = −
∫ σ

z

Π(α,β)
n (w)

P
(α,β)
n (w)

φ(w) dw

∣∣∣∣∣
Hz

+
1

2πi

∫
C0

η(α,β)(w) dw ,(2.10)

where

σ := Hz ∩ C0

and ·|Hz indicates that the integration path is along Hz.
The above expression can be further simplified by allowing ρ→∞; the result is

summarised in the following theorem.

Theorem 2.1. With notation as previously defined, if ν < 2n, then

Enφ(z) = −
∫
Hz

Π(α,β)
n (w)

P
(α,β)
n (w)

φ(w) dw .(2.11)
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Proof. We wish to prove that the second integral in (2.10) approaches zero as ρ→
∞. Recalling the definitions (2.3), (2.4) and interchanging the order of integration
gives ∫

C0

η(α,β)(w) dw =
∫ 1

−1

µ(t)P (α,β)
n (t)

(∫
C0

φ(w) log(z − w)

P
(α,β)
n (w)(w − t)

dw

)
dt .(2.12)

In view of (2.6), w ∈ C0 implies that the series

1
w − t =

∞∑
k=0

tk

wk+1
(2.13)

is absolutely convergent. Substituting (2.13) into (2.12) and making use of the
orthogonality of the Jacobi polynomials it follows that∫

C0

η(α,β)(w) dw =

∞∑
k=n

{(∫ 1

−1

µ(t)P (α,β)
n (t)tk dt

)
×
(∫

C0

φ(w) log(z − w)

P
(α,β)
n (w)wk+1

dw

)}
.(2.14)

Now, since deg(φ) ≤ ν, the rational function defined by the expression

φ(w)

P
(α,β)
n (w)wν−n

is analytic on C\[−1, 1] and hence the maximum principle for such functions implies
that

max
w∈C0

∣∣∣∣∣ φ(w)

P
(α,β)
n (w)wν−n

∣∣∣∣∣ ≤ max
|w|=1

∣∣∣∣∣ φ(w)

P
(α,β)
n (w)

∣∣∣∣∣ =: L(α,β)
n .(2.15)

Also, in view of (2.6), w ∈ C0 implies that |z − w| < 2ρ and hence

max
w∈C0

| log(z − w)| < log(2ρ) + 2π .(2.16)

Therefore, using (2.15) and (2.16) it follows that∣∣∣∣∣
∫
C0

φ(w) log(z − w)

P
(α,β)
n (w)wk+1

dw

∣∣∣∣∣ < L(α,β)
n (log(2ρ) + 2π)

∫
C0

|dw|
|w|k+1−ν+n

=
2πL(α,β)

n (log(2ρ) + 2π)
ρk−ν+n

.(2.17)

Furthermore, making use of the Rodrigues type formula

(1− t)α(1 + t)βP (α,β)
n (t) = −

(
(1− t)α+1(1 + t)β+1P

(α+1,β+1)
n−1 (t)

2n

)′
, n ≥ 1 ,

see Szegö [Sze75, §4.10], we see that∣∣∣∣∫ 1

−1

µ(t)P (α,β)
n (t)tk dt

∣∣∣∣ =
k

2n

∣∣∣∣∫ 1

−1

(1− t)α+1(1 + t)β+1P
(α+1,β+1)
n−1 (t)tk−1 dt

∣∣∣∣
≤ kM

(α,β)
n

2

∫ 1

−1

|t|k−1 dt

= M (α,β)
n , k ≥ n ≥ 1 ,(2.18)
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where

M (α,β)
n := max

−1≤t≤1

(
(1− t)α+1(1 + t)β+1|P (α+1,β+1)

n−1 (t)|
n

)
.

Thus, combining (2.14), (2.17) and (2.18) we conclude that∣∣∣∣∫
C0

η(α,β)(w) dw
∣∣∣∣ < 2πM (α,β)

n L
(α,β)
n (log(2ρ) + 2π)

ρ2n−ν(1− ρ−1)
.(2.19)

Hence, if ν < 2n, then

lim
ρ→∞

∫
C0

η(α,β)(w) dw = 0 .(2.20)

Finally, it is clear that as ρ→∞, so σ →∞ and the integration path for the first
integral in (2.10) becomes the full semi-infinite branch cut Hz. Hence, allowing
ρ→∞ in (2.10) leads to the result (2.11).

The approach to quadrature error estimation outlined by Donaldson and Elliott
[DE72] is based on the use of asymptotic estimates for Π(α,β)

n and P (α,β)
n as n→∞.

These are used in (2.11) to produce an asymptotic estimate for Enφ. The results
are summarised in the following lemmas.

Lemma 2.2. Given any z ∈ C \ [−1, 1], let f be any function for which the asso-
ciated function F defined by

F (t) := sinh(ξ + t)f ◦cosh(ξ + t) , ξ := cosh−1
+ (z) , 0 ≤ t <∞ ,

has a well-defined Laplace transform

LF (s) :=
∫ ∞

0

e−stF (t) dt .

Then ∫
Hz

f(w)
(w +

√
w2 − 1)n

dw =
LF (n)

(z +
√
z2 − 1)n

.

Proof. This is simply a matter of using the parametrisation for Hz given in the
definition (2.1). Thus,∫

Hz

f(w)
(w +

√
w2 − 1)n

dw = lim
τ→∞

∫ τ

0

sinh(ξ + t)f ◦cosh(ξ + t)
(cosh(ξ + t) + sinh(ξ + t))n

dt

=
1

( eξ)n
lim
τ→∞

∫ τ

0

e−ntF (t) dt

=
LF (n)

(z +
√
z2 − 1)n

,

where

ξ := cosh−1
+ (z) .(2.21)

Remark 2.3. In the previous lemma, and at various points below, we encounter
the expression z +

√
z2 − 1. Any ambiguity in its meaning is removed by always

using the value whose magnitude exceeds 1. This is effectively achieved by defining√
z2 − 1 to be (z − 1)

1
2 (z + 1)

1
2 with | arg(z ± 1) < π|.
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The following lemma is proved in, for example, Henrici [Hen77, §11.5].

Lemma 2.4 (Watson-Doetsch). If F has an asymptotic power series

F (t) ∼ tγ
∞∑
k=0

Fkt
kλ = tγF0 + . . .

as t→ 0, t > 0, then LF has the asymptotic power series

LF (n) ∼ 1
nγ+1

∞∑
k=0

FkΓ(γ + 1 + kλ)
nkλ

=
F0Γ(γ + 1)

nγ+1
+ . . .

as n→∞.

The next lemma is proved in a more general form in Elliott [Ell71].

Lemma 2.5. If w is bounded away from [−1, 1], then the leading term in the asym-
totic expansion of Π(α,β)

n (w)/P (α,β)
n (w) as n→∞ is given by

Π(α,β)
n (w)

P
(α,β)
n (w)

∼ N
(α,β)
n (w − 1)α(1 + w)β

(w +
√
w2 − 1)2n+α+β+1

where

N (α,β)
n := 24n+2α+2β+2 Γ(n+ 1)Γ(n+ α+ 1)Γ(n+ β + 1)Γ(n+ α+ β + 1)

Γ(2n+ α+ β + 2)Γ(2n+ α+ β + 1)
.

Theorem 2.6. If ν < 2n, then the operator Ẽn : Pν 7→ A defined by

Ẽnφ(z) := − N
(α,β)
n (z − 1)α(1 + z)βφ(z)

√
z2 − 1

(2n+ α+ β + 1)(z +
√
z2 − 1)2n+α+β+1

,

defines a computable estimate for the Gauss-Jacobi quadrature error operator En
and is valid asymptotically as n→∞ with z 6∈ [−1, 1].

Proof. Substituting the leading expansion term given by Lemma 2.5 into (2.11) and
utilizing Lemma 2.2 leads to the result

Enφ(z) ∼ −N
(α,β)
n LF (2n+ α+ β + 1)
(z +

√
z2 − 1)2n+α+β+1

where F is defined by

F (t) := (cosh(ξ + t)− 1)α(1 + cosh(ξ + t))β sinh(ξ + t)φ(cosh(ξ + t)) .

Since cosh ξ = z /∈ [−1, 1], it follows that the above function F is analytic at t = 0
and consequently Lemma 2.4 implies that, as n→∞,

Enφ(z) ∼ Ẽnφ(z) ,

where Ẽnφ(z) is defined in the statement of the theorem.

We conclude this section by presenting an example to illustrate the accuracy
of the estimate of Theorem 2.6. In this example, the Gauss-Jacobi estimate Knφ,
which is needed for the calculation of Enφ, is computed via the IMSL Fortran
algorithm DGQRUL; this is a double-precision implementation of the eigensystem
formulation of Golub and Welsch [GW69] for the calculation of Gaussian quadrature
points and weights.
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Table 1. A comparison of exact and asymptotic quadrature errors

δ n EnT4(z) |EnT4(z)| ẼnT4(z) |ẼnT4(z)|

0.1 3 (−6.9 + 5.4i)× 10−1 8.8× 10−1 (−2.0 + 1.8i)× 10−1 2.7× 10−1

6 (3.5 + 1.2i)× 10−2 3.7× 10−2 (2.2 + 0.76i)× 10−2 2.3× 10−2

12 (−3.5 + 2.7i)× 10−4 4.4× 10−4 (−2.8 + 2.2i)× 10−4 3.6× 10−4

24 (1.6 + 0.81i)× 10−7 1.8× 10−7 (1.5 + 0.71i)× 10−7 1.7× 10−7

0.01 3 −1.2 + 0.50i 1.3 (−3.0 + 4.7i)× 10−1 5.6× 10−1

6 (0.60 + 3.3i)× 10−1 3.4× 10−1 (1.3 + 1.66i)× 10−1 2.1× 10−1

12 (0.46− 6.0i)× 10−2 6.0× 10−2 (0.32− 5.7i)× 10−2 5.7× 10−2

24 (9.4− 0.26i)× 10−3 9.4× 10−3 (8.6− 0.78i)× 10−3 8.6× 10−3

Example 2.7. In [DE72], Donaldson and Elliott remark that asymptotic estimates
for the quadrature error are frequently found to be good even for relatively small
values of the number of quadrature points n. This example gives further support
to this remark. We consider the Chebyshev weight function

µ(x) :=
1√

1− x2
.

Let Tr denote the Chebyshev polynomial of degree r associated with µ. Then we
have the simple exact result

KTr(z) = −π
r

(z +
√
z2 − 1)−r , r > 0 ;

see, for example, [Lev91, Appendix A]. In Table 1 we compare the exact quadrature
error EnT4(z) with its asymptotic estimate ẼnT4(z) for the cases n = 3, 6, 12, 24 at
the two points

z = cos(π/16) + iδ, δ = 0.1, 0.01 .

The values z = cos(π/16) + iδ are chosen because as δ → 0 the real and imaginary
parts of KT4(z) tend to become equal in magnitude. Accurate values of KT4(z)
correct to ten decimal places are :

δ = 0.1 : −0.0455932530 + 0.2411950862i
δ = 0.01 : −0.4439538326 + 0.4662079164i .

A quadrature error estimate is perfectly acceptable for most practical purposes if it
is correct to one significant figure. From this point of view, the magnitudes of the
error estimates in Table 1 are very good for n = 12, 24 and are close to acceptable
even at n = 6.

3. Entire parametrizations

In this section we return to the comments made in the introduction and examine
how the results of the previous section may be extended to the case of a general
arc Γ with analytic parametrisation ζ.
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In the first place we briefly note that the results of the previous section apply
directly to the case where Γ is an arbitrary line segment. Such a line segment can
be parametrised by ζ(t) = a+ bt, b 6= 0, t ∈ [−1, 1]. Thus, for any field point z /∈ Γ
we may determine a unique complex parameter value, say w, such that ζ(w) = z.
Substituting this into (1.4) gives

Kζφ(z) = Kφ(w) + log b
∫ 1

−1

µ(t)φ(t) dt .

Since the integral expression above is evaluated exactly by the n-point rule provided
ν < 2n, we conclude that for any line segment

Eζ,nφ(z) = Enφ(ζ−1(z)) , ν < 2n .(3.1)

The result (3.1) generalises to the case of a polynomial function ζ except that in
this case the right-hand side will involve a summation over all the deg(ζ) values of
ζ−1(z). However, perhaps the most natural generalisation of the result (3.1) is to
the case where ζ is entire; see Henrici [Hen77, §8.3] for a summary of the properties
of such functions. This class includes the practically important cases of polynomial
and trigonometric polynomial parametrizations.

For the remainder of this section we assume that ζ is an entire function of finite
genus γ. Then given any z ∈ C, the function ζz : t 7→ z − ζ(t) is also of genus γ.
Let

Wz := {w ∈ C : ζz(w) = 0}

be the set of zeros of ζz , otherwise known as the z-points of ζ. If these z-points
satisfy ∑

w∈Wz

1
|w|γ+1

<∞,

then ζz can be expressed as the canonical product

ζz(t) = exp ◦gz(t)
∏
w∈Wz

σ(tw−1)(3.2)

where gz is a polynomial function of degree q, with coefficients depending on z,

σ(t) := (1− t) exp ◦`(t) ,(3.3)

` is a polynomial of degree p defined by

`(t) :=


1 , p = 0,
p∑
k=1

tk

k
, p > 0,

(3.4)

and γ = max(p, q).

Theorem 3.1. If ζ is an entire function of finite genus γ and γ + ν < 2n, then

Eζ,nφ(z) =
∑
w∈Wz

Enφ(w) .



726 DAVID M. HOUGH

Proof. Using the form (3.2) in (1.4) and (1.5) gives

Kζφ(z) =
∫ 1

−1

µ(t)φ(t)

{
gz(t) +

∑
w∈Wz

log σ(tw−1)

}
dt(3.5)

Kζ,nφ(z) =
n∑
k=1

µkφ(tk)

{
gz(tk) +

∑
w∈Wz

log σ(tkw−1)

}
(3.6)

If the elements of Wz are indexed in order of increasing modulus, then the summa-
tion over Wz appearing in (3.5) and (3.6) is uniformly convergent for t ∈ [−1, 1];
see [Hen77, §8.3]. Therefore the integration and summation order in (3.5) can be
interchanged, as can the order of the two summations in (3.6). Performing these
interchanges and noting that, since deg(φgz) ≤ ν + γ < 2n, the Gaussian rule is
exact for the integral involving φgz , it follows that

Eζ,nφ(z) =
∑
w∈Wz

{∫ 1

−1

µ(t)φ(t) log σ(tw−1) dt−
n∑
k=1

µkφ(tk) log σ(tkw−1)

}
.

(3.7)

Also, we note from (3.3) that

log σ(tw−1) = log(w − t) + `(tw−1)− logw ,

which may be substituted termwise in the series of (3.7) and combined with the
fact that deg(φ`) ≤ ν + γ < 2n to deduce that

Eζ,nφ(z) =
∑
w∈Wz

{∫ 1

−1

µ(t)φ(t) log(w − t) dt−
n∑
k=1

µkφ(tk) log(w − tk)

}
=

∑
w∈Wz

Enφ(w) .

An asymptotic estimate for Eζ,nφ can thus be defined as

Ẽζ,nφ :=
∑
w∈Wz

Ẽnφ(w)(3.8)

where Ẽnφ(w) is defined by Theorem 2.1. However, in order to turn this definition
into a genuinely computable estimate, a number of important practical issues would
need to be addressed, including algorithms for truncating the series in (3.8) and
for the efficient computation of the relevant points in Wz . It is hoped that these
matters may be taken up in a future paper.
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