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COMPUTATION OF CLASS NUMBERS
OF QUADRATIC NUMBER FIELDS

STÉPHANE LOUBOUTIN

Abstract. We explain how one can dispense with the numerical computation
of approximations to the transcendental integral functions involved when com-
puting class numbers of quadratic number fields. We therefore end up with a
simpler and faster method for computing class numbers of quadratic number
fields. We also explain how to end up with a simpler and faster method for
computing relative class numbers of imaginary abelian number fields.

1. Introduction

Currently, the best available rigorous methods for computing class numbers of
quadratic number fields k of discriminants dk are of complexity O(|dk|0.5+ε). How-
ever, assuming suitable forms of the generalized Riemann hypothesis, one can de-
vise conditional but more efficient methods of lower complexity (see [MoWi] where
a conditional method of complexity O(d0.2+ε

k ) for computing class numbers of real
quadratic fields is developed, and see [Coh, Sections 5.5 and 5.9] where the condi-
tional sub-exponential methods of McCurley and J. Buchmann for computing class
groups of quadratic fields are developed). These rigorous methods stem from the
analytic class number formulae (see [Coh, Sections 5.3.3 and 5.6.2], [MoWi], [ScWa]
and [WiBr]) and require the computation to sufficient accuracy of the transcenden-
tal integral functions E(z) =

∫∞
z
e−xx−1dx (the exponential integral function) and

erfc(z) = 2√
π

∫∞
z e−x

2
dx (the complementary error function) by using the following

power series expansions (if z is small) and continued fractional expansions (if z is
large): ∫ ∞

z

e−x
2
dx =

1

2

√
π −

∑
n≥0

(−1)nz2n+1

n!(2n+ 1)
(1)

=
1

2
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2
(

1

z+

1
2

z+

1

z+

3
2

z+

2

z+

5
2

z+
· · ·
)
,(2)

∫ ∞
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x
= −γ − log(z)−
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(here γ = 0.577 · · · denotes Euler’s constant). In this paper we explain how one
can dispense with these evaluations, thus greatly simplifying the implementation of
these rigorous methods for computing class numbers of quadratic number fields, and
making them faster but still of the same complexity O(|dk|0.5+ε). In contrast with
what is usually done, we will write all our class number formulae at s = 0. Indeed,
values at s = 0 of L-functions associated with odd Dirichlet characters are algebraic
numbers, and we explained in [Lou3] how useful this observation is for computing
their exact values from the computation of their numerical approximations (see
also [Lou5] where we use [Lou4] to generalize the method developed in [Lou3] for
computing relative class numbers of nonabelian CM-fields).

Let us now set some of the notation we will be using throughout this paper. We
let χ be a primitive Dirichlet character modulo f > 1. We set

Sn(χ) =
n∑
k=1

χ(k) and Tn(χ) =
n∑
k=1

1
k
χ(k).(5)

We also set α =
√
π/f , en = e−πn

2/f = e−n
2α2

and

τ(χ) =
f−1∑
x=1

χ(x)e2xπi/f .

For t > 0 real and M ≥ 0 real, we set

B(t,M, f) =
√
f
(
t log(f/π) +M

)
/π = α−1

√
M − 2t logα

and assume f 6= 3, which implies f > π, 0 < α < 1, B(t,M, f) ≥
√
f/π and

e−m
2α2 ≤ α2te−M for m ≥ B(t,M, f). Finally, we will use:

Lemma 1. Let α > 0 be real and g of class C2 in the range )0,+∞( be given. Then
for any positive rational integer n ≥ 1 we have∫ (n+1)α

nα

g = α
g((n+ 1)α) + g(nα)

2
+
θα2

8

∫ (n+1)α

nα

|g′′| (|θ| ≤ 1).

Proof. Set B2(x) = x(x− 1)/2. Then the reader will check that we have∫ (n+1)α

nα

g(x)dx = α
g((n+ 1)α) + g(nα)

2
+ α3

∫ 1

0

B2(x)g′′(α(x + n))dx.

Now, the bound 0 ≤ |B2(x)| ≤ 1/8 for 0 ≤ u ≤ 1 yields the desired result.

2. Imaginary abelian number fields

Let χ be a primitive odd Dirichlet character modulo f > 3. Set W (χ) =
i−1τ(χ)/

√
f , which has absolute value equal to one. We can express L(0, χ) as

the limit of rapidly absolutely convergent series (see [Dav] or [Lou3])

L(0, χ) =
1√
π

(W (χ)
α

∑
n≥1

χ̄(n)
n

en + 2
∑
n≥1

χ(n)
∫ ∞
nα

e−x
2
dx
)

(6)

and

L(0, χ) =
1√
π

(W (χ)
α

∑
n≥1

χ̄(n)
n

en + 2
∑
n≥1

Sn(χ)
∫ (n+1)α

nα

e−x
2
dx
)
.(7)
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Proposition 2 (Compare with Proposition 7). Let χ be a primitive odd Dirichlet
character of conductor f . For some θ satisfying |θ| ≤ 1, it holds that

L(0, χ) =
1√
π

(W (χ)
α

∑
n≥1

χ̄(n)
n

en + α
∑
n≥1

(en + en+1)Sn(χ)
)

+
3θ

8f1/2
.

Proof. Applying Lemma 1 to g(x) = e−x
2

and noticing that |Sn(χ)| ≤ n, we obtain

2
∑
n≥1

Sn(χ)
∫ (n+1)α

nα

e−x
2
dx = α

∑
n≥1

(en + en+1)Sn(χ) +
θα

4
R′(8)

with |θ| ≤ 1 and

R′ = α
∑
n≥1

n

∫ (n+1)α

nα

|g′′|

= α
∑
n≥1

∫ ∞
nα

|g′′|

≤ α

∫ ∞
0

(∫ ∞
αu

|g′′(x)|dx
)
du =

∫ ∞
0

x|g′′(x)|dx def
= Rodd

which, for g(x) = e−x
2
, yields

Rodd =
∫ ∞

0

x|4x2 − 2|e−x2
dx = (4/

√
e)− 1 = 1.426 · · · ≤ 3/2.(9)

Using (7), (8) and (9), we obtain the desired result.

Proposition 3. Assume f > 3, t > 0 and M ≥ 1. For any positive rational integer
m ≥ B(t,M, f) it holds that∣∣∣W (χ)

α

∑
n>m

χ̄(n)
n

en

∣∣∣ ≤ 1
α

∑
n>m

1
n
en ≤

1
2
α2t−1e−M

and ∣∣∣α∑
n>m

(en + en+1)Sn(χ)
∣∣∣ ≤ α∑

n>m

2nen ≤ α2t−1e−M .

Proof. For m ≥ B(t,M, f) we have

1
α

∑
n>m

1
n
e−n

2α2 ≤ 1
α

∫ ∞
m

xe−x
2α2 dx

x2

≤ 1
αm2

∫ ∞
m

xe−x
2α2

dx =
e−m

2α2

2m2α3
≤ α2t−1e−M

2(M − 2t logα)
≤ α2t−1e−M/2

and

α
∑
n>m

2ne−n
2α2 ≤ 2α

∫ ∞
m

xe−m
2x2
dx =

1
α
e−m

2α2 ≤ α2t−1e−M .

According to Propositions 2 and 3, we obtain
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Theorem 4 (Compare with Theorem 9 below). Let M ≥ 1 be given, let χ be a
primitive odd Dirichlet character of conductor f , let m be the least rational integer
greater than or equal to B(1

2 ,M, f) = O(f0.5+ε) and set

LM (0, χ) =
1√
π

(W (χ)
α

m∑
n=1

χ̄(n)
n

en + α
m∑
n=1

(en + en+1)Sn(χ)
)
,(10)

where α =
√
π/f , en = e−n

2α2
and Sn(χ) is defined in (5). Then,

|L(0, χ)− LM (0, χ)| ≤ 3
2
√
π
e−M +

3
8
√
f
.

Remark 5.
1. Of particular importance is the case where χ is the primitive quadratic odd

Dirichlet character of conductor f = |dk| associated with an imaginary qua-
dratic field k of discriminant dk < −4 and class number hk. Then, χ̄ = χ,
W (χ) = +1, hk = L(0, χ) and Theorem 4 provides us with a much more
satisfactory result than [Lou1, Theorem 1].

2. In practice, we do not compute all the en = exp(−πn2/f)’s for 1 ≤ n ≤ m
by using the exponential function. It is more efficient to compute the en’s
inductively by setting fn = exp(−π(2n+1)/f), by computing f0 = exp(−π/f)
and h = exp(−2π/f) and by using the induction formulae fn+1 = hfn and
en+1 = enfn. In this process, at each step n, instead of performing the
computation of exp(−πn2/f) we only perform two multiplications.

3. We explained in [Lou3] how to compute relative class numbers of imaginary
abelian number fields of a given degree by computing numerical approxima-
tions to linear combinations with bounded coefficients of values at s = 0 of
L-functions associated with odd primitive Dirichlet characters. Therefore,
combining Theorem 4 and the method developed in [Lou3], we end up with
an efficient method for computing relative class numbers of imaginary abelian
number fields of a given degree. This method does not require us to compute
approximations to transcendental integral functions.

4. We also explained in [Lou5] how to compute relative class numbers of CM-
fields by computing numerical approximations to linear combinations with
bounded coefficients of values at s = 0 of Heckes’s L-functions associated
with characters on strict ray class groups.

Therefore, in order to extend our present method further, we would like
to find a method (generalizing Proposition 2 and Proposition 3) which would
enable us to dispense with the computation of numerical approximations to
the complicated integral transcendental functions involved when computing
numerical approximations to values at s = 0 of such Hecke’s L-functions (see
[Lou2] and [Lou4]).

3. Real quadratic number fields

Let χ be a primitive even Dirichlet character modulo f > 3. Set W (χ) =
τ(χ)/

√
f , which has absolute value equal to one. Then L(0, χ) = 0 and we can

express the derivative L′(0, χ) as the limit of rapidly absolutely convergent series
(use [Dav]):

L′(0, χ) =
∑
n≥1

χ(n)
∫ ∞
nα

e−x
2 dx

x
+
W (χ)
α

∑
n≥1

χ̄(n)
n

∫ ∞
nα

e−x
2
dx(11)
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and

L′(0, χ) =
∑
n≥1

Sn(χ)
∫ (n+1)α

nα

e−x
2 dx

x
+
W (χ)
α

∑
n≥1

Tn(χ̄)
∫ (n+1)α

nα

e−x
2
dx.

(12)

Lemma 6. For n ≥ 1, set

un =
en
n

+
en+1

n+ 1
+ 2 log(

n+ 1
n

)− 1
n
− 1
n+ 1

.(13)

For any m ≥ 1 we have

∑
n≥1

Sn(χ)
∫ (n+1)α

nα

e−x
2 dx

x
=

1
2

∑
n≥1

unSn(χ) +
θα

4
(14)

for some θ satisfying |θ| ≤ 1, and

1
α

∑
n≥1

Tn(χ̄)
∫ (n+1)α

nα

e−x
2
dx =

1
2

∑
n≥1

(en + en+1)Tn(χ̄) +
θα

4
log(e/α)

(15)

for some θ satisfying |θ| ≤ 1.

Proof. Set g(x) = (e−x
2 − 1)/x. Then xg′′(x) = (4x2 + 2)e−x

2
+ 2(e−x

2 − 1)/x2

and according to Lemma 1 we obtain

m∑
n=1

Sn(χ)
∫ (n+1)α

nα

e−x
2 dx

x

=
m∑
n=1

Sn(χ)
∫ (n+1)α

nα

g(x)dx +
m∑
n=1

Sn(χ) log(
n+ 1
n

)

= α

m∑
n=1

g((n+ 1)α) + g(nα)
2

Sn(χ) +
m∑
n=1

Sn(χ) log(
n+ 1
n

) +
θα

8
R′′

=
1
2

m∑
n=1

unSn(χ) +
θα

8
R′′

where, as in the proof of Proposition 2, we have

R′′ = α

m∑
n=1

n

∫ (n+1)α

nα

|g′′| ≤
∫ ∞

0

x|g′′(x)|dx def
= Reven = 2(βg′(β)− g(β))

where β = 1.792641 · · · is the only positive real zero of g′′. Hence, R′′ ≤ Reven =
4(1− (1 + β2)e−β

2
)/β = 1.853264 · · · ≤ 2.

Applying Lemma 1 to g(x) = e−x
2
, we obtain

1
α

∑
n≥1

Tn(χ̄)
∫ (n+1)α

nα

e−x
2
dx =

1
2

∑
n≥1

(en + en+1)Tn(χ̄) +
θα

8
R′′′(16)
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with |θ| ≤ 1 and

R′′′ =
∑
n≥1

(
n∑
k=1

1
k

)
∫ (n+1)α

nα

|g′′|

=
∑
n≥1

1
n

∫ ∞
nα

|g′′|

≤
∫ ∞
α

|g′′(x)|dx +
∫ ∞

1

(∫ ∞
αu

|g′′(x)|dx
)du
u

=
∫ ∞
α

|g′′(x)|dx +
∫ ∞
α

|g′′(x)| log(x/α)dx

≤
∫ ∞

0

|g′′(x)| log(ex/α)dx

=
4√
2e

log(e/α
√

2)− 2
∫ 1/

√
2

0

e−x
2
dx+ 2

∫ ∞
1/
√

2

e−x
2
dx

≤ 1
2
− 7

4
logα ≤ 2 log(e/α),

and using (16), we obtain the desired result.

According to (12) and to Lemma 6 (where we take the limit as m goes to infinity
in (14)), we obtain

Proposition 7 (Compare with Proposition 2). Let χ be a primitive even Dirichlet
character of conductor f > 1. For some θ satisfying |θ| ≤ 1, it holds that

L′(0, χ) =
1
2

∑
n≥1

unSn(χ) +
W (χ)

2

∑
n≥1

(en + en+1)Tn(χ̄) +
θα

4
log(e2/α).

Proposition 8. Assume f > 3, t > 0 and M ≥ 1. For any positive rational integer
m ≥ B(t,M, f) it holds that∣∣∣∑

n>m

Sn(χ)
∫ (n+1)α

nα

e−x
2 dx

x

∣∣∣ ≤ ∑
n>m

en ≤
1
2
α2t−1e−M(17)

and ∣∣∣1
2

∑
n>m

(en + en+1)Tn(χ̄)
∣∣∣ ≤ 1

2
α2t−1e−M log(e/α).(18)

Proof. We have∣∣∣∑
n>m

Sn(χ)
∫ (n+1)α

nα

e−x
2 dx

x

∣∣∣ ≤ ∑
n>m

n

∫ (n+1)α

nα

e−x
2 dx

x

≤
∑
n>m

e−n
2α2 ≤ 1

m

∫ ∞
m

xe−x
2α2

dx =
e−m

2α2

2mα2
≤ α2t−1e−M

2
√
M − 2t logα

.

In the same way, we have

Rm
def
=
∣∣∣1
2

∑
n>m

(en + en+1)Tn(χ̄)
∣∣∣ ≤ ∑

n>m

(
n∑
k=1

1
k

)en ≤
∑
n>m

log(en)e−n
2α2

.
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Since M ≥ 1 and t > 0 imply m ≥ B(t,M, f) ≥ 1/α and since x 7→ log(ex)e−α
2x2

decreases in the range x ≥ 1/α, we obtain

Rm ≤
∫ ∞
m

log(ex)
x

xe−α
2x2
dx ≤ log(em)e−m

2α2

2mα2
≤ 1

2
α2t−1e−M

log(eu/α)
u

where u =
√
M − 2t logα ≥ 1. Since u 7→ log(eu/α)

u decreases in the range u ≥ α
and since we have u ≥ 1 > α, we obtain the desired result.

According to (12), (14), (15), (17) and (18), we obtain

Theorem 9 (Compare with Theorem 4). Let M ≥ 1 be given, let χ be the primi-
tive even Dirichlet character of conductor f > 1, let m be the least rational integer
geater than or equal to B(1

2 ,M, f) = O(f0.5+ε) and set

L′M (0, χ) =
1
2

m∑
n=1

unSn(χ) +
1
2

m∑
n=1

(en + en+1)Tn(χ̄),(19)

where α =
√
π/f , en = e−n

2α2
, Sn(χ) and Tn(χ) are defined in (5) and un is

defined in (13). Then,

|L′(0, χ)− L′M (0, χ)| ≤ α+ 2e−M

4
log(e2/α).

Remark 10.
1. Of particular importance is the case where χ is the primitive quadratic even

Dirichlet character of conductor f = dk associated with a real quadratic field
k of discriminant dk, fundamental unit εk > 1, and class number hk. Then,
χ̄ = χ, W (χ) = +1, hk = L′(0, χ)/ log εk and Theorem 9 yields

|hk − L′M (0, χ)/ log εk| ≤
5
4

√
π

dk
+

5
2
e−M

(for εk ≥ (
√
dk − 4 +

√
dk)/2 yields log(e2/α) ≤ 5 log εk). We refer the

reader to [WiBr, Section 2] for the evaluation of the regulator log εk of a real
quadratic field k by using an elementary algorithm of complexity O(d0.5+ε

k )
based on the use of continued fractional expansions.

2. Here again, the second point of Remark 5 applies.
3. In contrast with Theorem 4 (see Point 2 of Remark 5), Theorem 9 cannot be

used to compute class numbers of nonquadratic real abelian numbers fields
of a given degree (for it is not known how to reduce their computation to
the computation of numerical approximations to linear combinations with
bounded coefficients of values at s = 0 of derivatives of L-functions associated
with even characters (compare with [Lou3])).

4. Numerical examples

To assess the efficiency of the present technique for computing class numbers hk

of quadratic number fields k of large discriminants dk, we programmed our formulas
(10) and (19) with M = 3 in Kida’s language UBASIC, which allows fast arbitrary
precision calculation on PC’s (the precision of real numbers in significant digits we
used was equal to 28). Let us detail how much our method improves upon the
previous ones based on the use of (6) and Point 1 of Remark 5 for dk < 0, and of
(11) and Point 1 of Remark 10 for dk > 0 (see [Coh] and [WiBr]). We give all the
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Table 1. The imaginary quadratic case

dk < 0 T1 T2 T3 T4 hk

5− 1010 4 10 31 24 38 272
5− 1011 12 34 100 78 95 840
5− 1012 41 112 323 251 506 880
5− 1013 138 376 1 053 812 1 051 452
5− 1014 460 1224 3391 2619 3 312 448

details only in the case that k is imaginary. Set αk =
√
π/|dk|, en = exp(−n2α2

k),
mk = B(1

2 ,M, |dk|) =
√
|dk|(log(|dk|/π) + 2M)/2π,

hk(M) =
1√
π

( 1
αk

mk∑
n=1

χk(n)
n

en + αk

mk∑
n=1

(en + en+1)Sn(χk)
)

(20)

(see Theorem 4 and Point 1 of Remark 5) for which

Rk(M) := |hk − hk(M)| ≤ 3
2
√
π
e−M +

3
8
√
|dk|

,(21)

and

h′k(M) =
1√
π

( 1
αk

mk∑
n=1

χk(n)
n

en + 2
mk∑
n=1

χk(n)
∫ ∞
nαk

e−x
2
dx
)

(22)

(see (6) and Point 1 of Remark 5) for which

R′k(M) := |hk − h′k(M)| ≤ 1√
π
e−M(23)

(notice that 2
∫∞
X
e−x

2
dx ≤ 1

X

∫∞
X

2xe−x
2
dx = e−X

2
/X and use Proposition 3 with

t = 0.5). Notice that the number of terms in the truncated sums (20) and (22)
are equal, and that the error terms Rk and R′k are of the same quality. Now, the
previously known rigorous method for computing hk consists in using (22) and the
power series expansion (1) for small values of z and continued fraction expansion (2)
for large values of z to compute approximations to h′k. The main drawbacks of this
method are (i) that we must carefully explain how many terms we have to consider
in (1) and (2) to end up with good enough approximations to each erfc(nαk), (ii)
that computing erfc(nαk) is slower than computing en = exp(−n2α2

k) and (iii)
that we cannot take advantage of the second point of our Remark 5 while dealing
with the indices for which we use (1) for computing approximations to erfc(nαk).
Instead, by using (20) and Point 2 of Remark 5 we do not meet with any of these
drawbacks and end up with a faster and easier to implement method for computing
hk.

We present in Tables 1 and 2 the results of applying these methods to compute
class numbers of five imaginary quadratic fields with various size discriminants
and of five real quadratic fields with various size discriminants and regulators.
The computations were all carried out on a PC microcomputer with Pentium III,
333Mhz. Here, T1 is the time required to compute hk when using (20) and the
second point of Remark 5, T2 is the time required to compute hk when using (20) but
when disregarding the second point of Remark 5, T3 is the time required to compute
hk when using (22), (1) for nαk = z < 1.8 and (2) for nαk = z ≥ 1.8 and, finally, T4

is the time required to compute hk when using (22), (1) for nαk = z < 1.8 and (2)
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Table 2. The real quadratic case

dk > 0 T0 T1 T2 T3 T4 hk

1010 + 5 0 8 15 51 41 1 134
1011 + 21 4 27 49 167 132 2
1012 + 1 0 90 161 545 427 50 280
1013 + 1 48 297 532 1763 1374 2
1014 + 5 0 959 1729 5706 4417 107 920

for nαk = z ≥ 1.8 and the second point of Remark 5 to compute the exp(−(nαk)2)’s
in (2) for the n’s for which nαk = z ≥ 1.8 All these Ti are expressed in seconds.
Here, T0 denotes the time required to compute log εk by using continued fractions
(see [WiBr]), and T1, T2, T3 and T4 are as in Table 1.

These Tables 1 and 2 clearly show that our method is significantly faster in
practice than existing rigorous methods.
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